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Energy band structure of CuInS2 and optical spectra of CuInS2 nanocrystals
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Using first principles calculations we describe the energy band structure of bulk CuInS2. The energy band
parameters for the multiband effective mass approximation that describes the band edges of this semiconductor
are obtained by fitting them to the first principles spectra. Within the multiband effective mass approximation we
develop a theoretical description for the structure of band-edge levels and optical properties of the CuInS2

nanocrystals. For the nanocrystals of spherical shape, the optical transitions are weakly allowed between
the electron and hole ground states due to the tetragonal symmetry of the crystal lattice, resulting in a
large Stokes shift of photoluminescence up to 300 meV in the smallest nanocrystals. This theory of the
band-edge optical transitions in CuInS2 NCs can be applied to spherical NCs made of other chalcopyrite
compounds.
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I. INTRODUCTION

Broad application of solar power calls for efficient and
inexpensive solar cells. The latter requirement has intensified
the search for compounds which could potentially replace
crystalline Si, which is not suitable for low-cost, thin-film
photovoltaic (PV) solar cells because of its very low absorption
coefficient [1]. Record efficiency has been demonstrated for
thin film solar cells based on wide-gap chalcopyrites, with
efficiencies of 12.5% reported in CuInS2 devices [2]. One
of the most promising thin film technologies for solar cells
is based on polycrystalline Cu(In,Ga)Se2 films, which show
efficiencies higher than 20% [3].

The first solar cell based on the chalcopyrite I-II-VI2 [4]
was prepared without the use of Ga, which was added into
compound only 20 years later, when it was shown that alloying
optimized the solar cell energy gap for the solar spectrum
and significantly improved device efficiency [5]. Energy-gap
engineering can be also realized by using nanocrystal (NC)
quantum dots, whose energy gap could be tuned to a required
value by changing the NC size. In addition, the relatively
inexpensive preparation process of colloidal quantum dots and
their chemical postprocessing allows one to grow low-cost thin
films for solar cell PV [6–8]. A great degree of progress in this
direction has been reached using lead-based compounds such
as PbSe, PbS, and PbTe NCs [9–13].

Lead-based compounds, along with other traditionally used
III–V and IV–VI compounds, contain toxic elements. This
has led to a growing interest in use of CuInS2 and CuInSe2

NCs, since these have been identified as potentially less
toxic materials. In addition, the absorption energy gap and
photoluminescence in these materials are tunable over a
wide range of the spectrum, from the near-infrared through
the visible to the ultraviolet [14–17]. These flexible optical
properties, combined with nontoxicity, indicate the great
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potential of CuInS2 and CuInSe2 NCs for use in a large variety
of applications, including biotechnology [18–23].

In bulk CuInS2, reflectivity, photoreflectivity, and photolu-
minescence (PL) spectra show two distinct exciton resonances
associated with three excitons, A, and the degenerate excitons,
BC [24]. For the A exciton, the binding energy and polariton
doublet energies have been reported [25–27]. A binding energy
of 18.5 meV has been measured in high-quality CuInS2 single
crystals [28]. Masses have been estimated using measurements
of diamagnetic shift [29]. Theoretical descriptions of excitons
have been developed using the limited knowledge of material
parameters for chalcopyrites [30,31].

No theoretical studies can be found in the literature on the
electronic and band-edge optical properties of CuInS2 NCs.
Experimental studies of the size dependence of absorption
show only one broad absorption maximum, whose width
increases with decreasing size [14–17]. The PL line measured
in large CuInS2 NCs is below the bulk absorption edge [15,17],
and hence this line is likely associated with deep defects
created by the Cu vacancies [15]. Even for bulk CuInS2,
the electronic band structure has been theoretically studied in
a handful of publications [32,33]. Only recently have some
energy band parameters for CuInSe2 been extracted from
the fine structure of the band-edge excitons and interband
magnetoabsorption spectra [34,35].

In this paper we study the band-edge level structure and
optical selection rules in spherical CuInS2 NCs. The energy
level structure of the NCs has been calculated using bulk
energy parameters provided by our first principles calculations
and extracted from available experimental data [24–30,36].
We show that the ground hole levels in these NCs have p-type
symmetry and optical transitions between these levels, and the
ground 1S electron state of conduction band is only weakly
allowed due to a low symmetry of the crystal structure of
these semiconductors. As a result the intrinsic PL of these
NCs should have a significant Stokes shift from its absorption.
The developed theory of the band-edge optical transitions in
CuInS2 NCs can be applied to spherical NCs made of other
chalcopyrite compounds.
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TABLE I. Crystallographic information for CuInS2 in the chal-
copyrite structure at equilibrium, as determined by experiment [37]
and by VASP calculations using the PBE and HSE06 functionals
described in the text.

Space Group I42d (no. 122)

Cu (4a) (0 0 0)
Wyckoff positions In (4b) (0 0 1/2)

S (8d) (xS 1/4 1/8)
Exp. PBE HSE06

a (Å) 5.523 5.580 5.553
Lattice parameters c (Å) 11.12 11.246 11.218

xS 0.214 0.218 0.226

II. FIRST PRINCIPLES CALCULATIONS FOR CuInS2 IN
THE CHALCOPYRITE (E11) STRUCTURE

Experimentally, bulk CuInS2 exists in the body-centered
tetragonal chalcopyrite structure (Strukturbericht E11) [37],
described in Table I. As with many chalcopyrites [33], this
structure is very close to the cubic zincblende structure, which
we could obtain if, e.g., we replaced the Cu and In atoms by
one species, e.g., Zn or Cd, and took c → 2a and xS → 1/4.

The electronic structure of CuInS2 was determined using
the Vienna Ab-initio Simulation Package (VASP) [38–40] with
Projector Augmented Wave functions [41]. Our initial calcu-
lations used the Perdew-Burke-Ernzerhof (PBE) Generalized
Gradient Approximation [42] within the Kohn-Sham ansatz
of Density Functional Theory [43,44]. We used an energy
cutoff of 280 eV and a �-centered 6 × 6 × 6 k-point grid
with 30 k points in the irreducible Brillouin zone. The initial
experimental structure was allowed to relax until equilibrium
was achieved. This equilibrium position did not change when
we increased the density of the k-point mesh. Spin polarization
and spin-orbit effects are negligible in this system, so we used
the unpolarized version of the PBE functional.

As noted many years ago [32], standard DFT predicts
CuInS2 to be a semimetal. Jaffe and Zunger corrected for
this by an ad hoc increase in the exchange energy [33]. We
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FIG. 1. The HSE06 band structure of CuInS2 in the chalcopyrite
structure. The direct gap is 1.23 eV, in reasonable agreement with the
experimental value of 1.55 eV [24,33].
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FIG. 2. (Color online) The Brillouin zone of CuInS2. The special
points and symmetry directions follow the conventions of Lax [46]
and are used in the band structure plot of Fig. 1. Note that the
orientation of the x and y axes are rotated by 45◦ from the usual
positions.

instead used the Heyd-Scuseria-Ernzerhof “HSE06” hybrid
density functional [45], within VASP, setting the screening
parameter HFSCREEN to 0.2. Starting from the PBE equilibrium
structure and wave functions, we relaxed the structure using
the HSE06 functional. Table I compares the PBE, HSE06, and
experimental equilibrium lattice parameters. We note that the
equilibrium lattice parameters a and c are better predicted by
HSE06 than by PBE, but the internal sulfur position parameter
xS is better determined by PBE.

The HSE06 band structure of CuInS2 is shown in Fig. 1,
using the notation shown in Fig. 2. There is a direct band gap,
Eg , of 1.24 eV, in reasonable agreement with the experimental
value of 1.55 eV [24,33].

In cubic zincblende structures such as ZnS the valence
bands at � are triply degenerate. The presence of indium breaks
the cubic symmetry, leaving a singlet just below the doubly
degenerate state at the top of the valence band, with a shift of
6.5 meV. This is shown more clearly in Fig. 3.
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FIG. 3. A close-up view of the valence bands of CuInS2 near
�, looking along the �, �, and � directions (see Fig. 2). Note the
splitting of the valence band into singly and doubly degenerate levels
due to the tetragonal symmetry, even in the absence of spin-orbit
coupling. The upper band remains doubly degenerate along �.
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Next we turn to the energy spectra of the bulk CuInS2

valence band. Preliminary information allows us to assume that
the spin-orbit splitting of the valence band in CuInS2 is small,
and we will initially consider only the case where valence band
spin-orbit splitting is � = 0. The corresponding calculation of
the energy band structure of CuInS2 is shown in Fig. 1. For
better understanding of the critical points of the Brillouin zone
in Fig. 2 we compare the CuInS2 unit cell with the unit cell
of a virtual cubic crystal. The crystal structure of CuInS2 has
tetragonal symmetry stretched in the z direction or [001]. The
[100] and [110] directions are in the plane perpendicular to the
elongation.

III. MULTIBAND EFFECTIVE MASS APPROXIMATION

We will describe optical properties of NCs using the
multiband k · p effective mass Hamiltonian. The conduction
band can be described using the Kane model, which takes
into account the coupling between the conduction and valence
bands. The electron energy Ec within this model is given by
Ref. [47]:

Ec = p2

2m0

[
α + Ep

Eg + Ec

]
, (1)

where m0 is the mass of a free electron, Ep is the Kane energy
parameter, and α is the contribution of the remote bands to the
electron effective mass. The best fit of our first principle spec-
trum is given by α = 0.48 and Ep = 7.95 eV. For Ec � Ep,
the effective mass of electron is 0.15m0. This value is close to
experimental value of the electron effective mass 0.16m0 [48].

The valence band structure can be constructed by the
method of invariants introduced by Luttinger [49]. The
parameters of this Hamiltonian were obtained from our first
principles calculations. For the valence band in spherical
approximation, the method of invariants gives

Ĥcubic = 1

2m0

[
(γ1 + 4γ2)p2 − 6γ2

(
p2

xI
2
x + p2

yI
2
y + p2

z I
2
z

)
− 12γ3({px,py}{Ix,Iy} + {py,pz}{Iy,Iz}
+ {pz,px}{Iz,Ix})

]
, (2)

where γ1, γ2, and γ3 are the Luttinger parameters, {a,b} =
(ab + ba)/2, and I is the spin one matrix operator [49]:

Ix =
⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠, Iy =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

Iz =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (3)

The D2d group symmetry of CuInS2 allows additional invariant
terms V̂2d , which can be added to the Hamiltonian in Eq. (2)
[50]:

Ĥ2d = Ĥcubic + V̂2d . (4)

The crystal structure of CuInS2 is very close the cubic
zincblende structure, and we try to find the minimum number
of invariants in V̂2d which would reproduce the energy band
structure shown in Fig. 3. The D2d group consists of rotations

around the vertical C2 axis and two horizontal C2 axes (U2

axes) perpendicular to the C2 axis plus two vertical reflection
planes at a 45◦ angle between two horizontal C2 axes. One can
compose algebraic combinations of the projections of vector
p̂ and pseudovector Î , which are invariant with respect to the
symmetry operations of the D2d group [50].

For the band structure obtained from our first-principles
calculation, we found that the valence band spectrum can be
described by the Hamiltonian in Eq. (4) with the following
addition to the cubic Hamiltonian quadratic invariants:

V̂2d = �cI
2
z + 1

2m0

[
(γ1⊥ + 4γ2⊥)

(
p2

x + p2
y

)

− 6γ2⊥
(
p2

xI
2
x + p2

yI
2
y

) − 12γ3⊥{px,py}{Ix,Iy}
− 6γ4⊥

(
p2

xI
2
y + p2

yI
2
x

)]
. (5)

The seven Luttinger parameters γi (i = 1, . . . ,7) which
defined Ĥ2d can be associated with the effective masses of the
three valence subbands in various crystallographic directions.
Figures 4(a)–4(c) show the spectra in the [001], [100], and
[110] directions near the � point, where the spectrum is
split by �c into double and single degenerate energy states.
Along the � line (in the [001] direction), the doubly and
singly degenerate states form the heavy- and light-hole bands
with the the masses m0/(γ1 − 2γ2) and m0/(γ1 + 4γ2). For
the other two directions, it is convenient to introduce γ ′

1 =
γ1 + γ1⊥, γ ′

2 = γ2 + γ2⊥, and γ ′
3 = γ3 + γ3⊥. Along the �

line (the [100] direction in Fig. 2), one heavy-hole band
with the masses m0/(γ ′

1 − 2γ ′
2) is degenerate at the � point

with the light-hole band with the mass m0/(γ ′
1 + 4γ ′

2 − 6γ4⊥),
which are both split from the other heavy-hole band with the
mass of m0/(γ ′

1 − 2γ ′
2 − 6γ4⊥). Along the � line (the [110]

direction), the spectrum is similar, but the masses are differ-
ent. The light-hole mass is m0/(γ ′

1 + γ ′
2 + 3γ ′

3 − 3γ4⊥). The
two heavy-hole masses are m0/(γ ′

1 + γ ′
2 − 3γ ′

3 − 3γ4⊥) and
m0/(γ ′

1 − 2γ ′ − 6γ4⊥). The parameter γ3 can be determined
from the nonparabolic spectrum in direction [111]. For our
first principles spectrum, the best fit is provided by γ1 = 2.63,
γ1⊥ = −0.03, γ2 = 0.63, γ2⊥ = 0.12, γ3 = 0.8, γ3⊥ = 0.3,
γ4⊥ = −0.06, and �c = −2.7 meV. For the effective masses of
holes, we estimate mA = mB = 0.73m0, mC = 0.19m0 in the
[001] direction, mA = 0.91m0, mB = 0.17m0, mC = 0.68m0

in the [100], and mA = 4.3m0, mB = 0.15m0, mC = 0.68m0

in the [110] direction.
The complete set of invariants for the D2d group can be

found in Ref. [51]. The invariant omitted in Hamiltonian (4)
are two linear in momentum invariants:

V̂ ′
2d = uI (Ixpx − Iypy) + ūI (Ixpy − Iypx),

(6)
V̂ ′′

2d = uσ (σxpx − σypy) + ūσ (σxpy − σypx),

and the spin-orbit interaction

V̂so = − 1
3�‖

s Izσz − 1
3�⊥

s (Ixσx + Iyσy), (7)

where σx,y,z are Pauli matrices. The spin-orbit splitting mod-
ifies the masses near the � point where the energy dispersion
is much smaller than the splitting [see Figs. 4(d)–4(f)]. For
the splitting �s = �

‖
s = �⊥

s = −21 meV [26,36], the effec-
tive masses are mA = 0.41m0, mB = 0.73m0, mC = 0.24m0

in the [001] direction and mA = 0.34m0, mB = 0.28m0,
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FIG. 4. (Color online) The hole dispersion in bulk CuInS2 calculated along the � [001] � [100], and � [110] directions without and with
spin-orbit splitting are shown in (a)–(c) and (d)–(f), respectively.

mC = 0.49m0 in the [100] and [110] directions. The linear
invariants and the spin-orbit coupling, at energies higher
than �s , do not substantially contribute to the valence band
structure, but they can change the optical selection rules of
NCs. The effect of these invariants is considered below.

IV. ELECTRONS AND HOLES IN CuInS2 NANOCRYSTALS

Using the multiband k · p effective mass Hamiltonian we
can describe optical properties of small spherical CuInS2 NCs.
In small NCs, both holes and electrons are subjected to strong
spatial confinement and the optical properties are determined
by transitions between their quantum-size levels. We consider
the band-edge optical transitions and hence describe only the
lowest energy levels in the conduction and valence bands. In
spherical NCs, the ground 1Se level of the conduction band has
zero angular momentum and its energy, E1Se

for the infinitely
high confinement barrier, is [52]

E1Se
= �

2π2

2m0a2

[
α + Ep

Eg + E1Se

]
, (8)

where a is the NC radius.
In spherical NCs the hole confined levels can be found using

first order perturbation theory with the spherical Hamiltonian:

Ĥsphere = 1

2m0
[(γ1 + 4γ )p2 − 6γ ( pI)2]. (9)

This Hamiltonian can be obtained from Ĥcubic in Eq. (2) if
we neglect the hole energy spectrum warping by putting γ2 =
γ3 = γ . For the hole confined in the spherical potential the first
order corrections to the hole energy level are connected with
the warping of hole energy, which is proportional to γ2 − γ3

and vanishes if one selects γ = (2γ2 + 3γ3)/5 [53]. For the
spherical approximation in Eq. (9), we estimate γ1 = 2.63
γ = 0.73. The Hamiltonian (9) describes the spectrum of
the valence band consisting of three branches: the light-hole

branch and two heavy-hole branches degenerate at p = 0. The
effective masses of the light and heavy holes are m0/(γ1 + 4γ )
and m0/(γ1 − 2γ ), respectively. For the γ parameters obtained
from our first principles calculations, the masses are ml =
0.18m0 and mh = 0.85m0.

Let us now consider the energy levels of holes in spherical
CuInS2 NCs with radius a, whose effective mass Hamiltonian
is given by Eq. (9). The Hamiltonian (9) commutes with opera-
tor of the total momentum F̂ = I + l̂ F = I + l = 0,1,2, . . .,
whose eigenfunctions are the spherical vectors introduced in
Ref. [54]:

YF,l,M (θ,φ) =
∑

m+μ=M

C
F,M
lm,1μYlm(θ,φ)χμ, (10)

where Ylm(θ,φ) are spherical harmonics, C
F,M
lm,1μ are the

Clebsch-Gordan coefficients defined in Ref. [54], and χμ

are spinors representing the eigenvectors of the operator Îz:
Îzχμ = μχμ where μ = ±1,0 and

χ−1 = 1√
2

⎛
⎝ 1

−i

0

⎞
⎠, χ0 =

⎛
⎝0

0
1

⎞
⎠, χ1 = − 1√

2

⎛
⎝1

i

0

⎞
⎠. (11)

In a spherical NC one can separate variables for each
state with total angular momentum F . In this paper, we are
interested only in the manifold of the lowest energy levels of
holes with the angular momentum F = 1. Using techniques
developed in Ref. [55] we found that wave functions of the
even states with F = 1 and angular momentum projection
M = ±1,0, can be written

+
1,M (r) = R0(r)Y00(θ,φ)χM + R2(r)

×
1∑

μ=−1

C
1,M
2,M−μ;1,μY2,M−μ(θ,φ)χμ, (12)
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FIG. 5. (Color online) Dependence on β: (a) φ; (b) N ; (c) D0, D2, and D20; (d) D01 and D21.

where

C
1,M
2,M−μ;1,μ =

μ
M −1 0 1

−1
√

1
10

√
3

10

√
3
5

0 −
√

3
10 −

√
2
5 −

√
3

10

1
√

3
5

√
3

10

√
1
10

. (13)

The radial functions R0 and R2 satisfy the radial equations

γ1�̂0R0(r) + 2
√

2γ Â1Â2R2(r) = −2m0

�2
ER0(r),

(γ1 + 2γ )�̂2R2(r) + 2
√

2γ Â+
1 Â+

0 R0(r) = −2m0

�2
ER2(r),

(14)

where E is the hole energy, Â+
l = −∂r + l/r , Âl =

∂r + (l + 1)/r are the raising and lowering operators
[Â+

l jl(kr) = kjl+1(kr) and Â−
l jl(kr) = kjl−1(kr)], and �̂l =

∂2
r + (2/r)∂r − l(l + 1)/r2 is the Laplacian [�̂ljl(kr) =

−k2jl(kr)].
The solution of Eq. (14) can be found as a linear

superposition of spherical Bessel functions with indexes
j0(kr) and j2(kr). Substituting these functions into Eq. (14),
for any given energy E, we find two independent solu-
tions R0+(r) = √

1/3j0(k+r), R2+(r) = −√
2/3j2(k+r), and

R0−(r) = √
2/3j0(k−r), R2−(r) = √

1/3j2(k−r), where k± =

√
2m0E/�2(γ1 + γ ± 3γ ). In a NC, the wave function

is a linear superposition of two solutions, b+R0+(k+r) +
b−R0−(k−r) and b+R2+(k+r) + b−R2−(k−r), which must
satisfy boundary conditions at r = a. For an infinitely high
barrier at the NC surface, the wave functions turn to zero at
r = a, and we have

b+j0(
√

βφ) + b−
√

2j0(φ) = 0,
(15)

−b+
√

2j2(
√

βφ) + b−j2(φ) = 0,

where φ = k−a, φ
√

β = k+a, and β = (γ1 − 2γ )/(γ1 + 4γ )
is the ratio of the light to heavy hole effective masses. The
nontrivial solution of Eq. (15), b+ = −b−

√
2j0(φ)/j0(

√
βφ),

exists if φ ≡ φ(β) is a root of the following equation:

j0[φ(β)
√

β]j2[φ(β)] + 2j0[φ(β)]j2[φ(β)
√

β] = 0. (16)

The roots φn(β) of Eq. (16) define the spectrum of energy. The
lowest energy level is

E+ = Ea(γ1 − 2γ )φ2
1(β), (17)

where Ea = �
2/2m0a

2 and φ1 is the first root of Eq. (16)
shown in Fig. 5(a). The normalized wave functions of the even
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FIG. 6. (Color online) (a) Size dependence of the two lowest odd (blue open circles) and even (red lines) hole levels with F = 1 in spherical
approximation with γ1 = 2.63 and γ = 0.73. (b) Fine structure energy levels of holes: “even” (red lines) and “odd” (blue open circles) states
split by tetragonal invariants in the Hamiltonian.

states are given by

R+
0 (r) = b+

a3/2

√
2

[
− j0(φ)

j0(
√

βφx)
j0(

√
βφx) + j0(φx)

]
,

(18)

R+
2 (r) = b+

a3/2

[
2

j0(φ)

j0(
√

βφ)
j2(

√
βφx) + j2(φx)

]
,

where x = r/a and the constant b+ is determined by the
normalization condition:

∫ a

0 r2 dr([R+
0 ]

2 + [R+
2 ]

2
) = 1.

For the odd states the wave function with F = 1 has the
form

−
1,M (r) = R−

1 (r)
1∑

μ=−1

C
1,M
1,M−μ;1,μY1,M−μ(θ,φ)χμ, (19)

where

C
1;M
1,M−μ;1,μ =

μ
M −1 0 1

−1 1√
2

1√
2

0

0 − 1√
2

0 1√
2

1 0 − 1√
2

− 1√
2

. (20)

The radial function R−
1 (r) is a solution of the following

equation:

�
2

2m0
(γ1 − 2γ )�̂1R

−
1 (r) = −ER−

1 (r). (21)

The solutions of Eq. (21) are given by R−
1 (r) = bj1(kr),

where k =
√

2m0E/�2(γ1 − 2γ ) and hence R−
1 (r) belong to

the heavy hole states which are three fold degenerate with
respect to M = ±1,0. In a spherical confinement with the
infinite barrier, the radial function is zero at r = a. The zeros
kna of the spherical Bessel function j1(ka) correspond to the
energy levels of odd states in a NC. The normalized wave
functions of the lowest odd energy state is given by

R−
1 (r) = b−

a3/2
j1(ξ1r/a), (22)

where b− is determined by the normalization condition:∫ a

0 r2 dr[R−
1 ]2 = 1 and ξ1 = k1a ≈ 4.49 with the correspond-

ing energy level given by

E− = Ea(γ1 − 2γ )ξ 2
1 . (23)

Comparing ξ1 with φ1(β) in Fig. 5(a) we conclude that the
odd state is the ground hole level in the case when β < 0.215.
Our calculations shows that in CuInS2 NCs this is the case
since β = 0.21. This β is very close to the critical value of
0.215 and in the cubic approximation in CuInS2 the even and
odd states become accidentally degenerate [see Fig. 6(a).

The odd states are optically passive because in the spherical
approximation they are composed of only p symmetry wave
functions, so that optical transitions from to the ground electron
level with the s symmetry are forbidden. At the same time, the
even levels of holes with F = 1 are optically active because
their wave functions have the s symmetry contributions,
resulting in nonzero transition matrix elements. In the spherical
and cubic approximations, both optically active and optically
passive states are present at the absorption edge.

The tetragonal invariants in the Hamiltonian, V2d , lift the
threefold degeneracy of energy levels with F = 1 in each
manifold of the odd and even states. As we show below, the
tetragonal invariants substantially split the odd and even states
with the odd levels becoming the optically passive ground
state of holes. The optically passive ground state, however, is
partially activated by the linear terms V ′

2d and V ′′
2d , which mix

the even and odd states.

V. FINE STRUCTURE OF THE HOLE ENERGY LEVELS

Here we consider the fine structure splitting of the lowest
even and odd states, which is associated with a difference of the
hole Hamiltonian Ĥ2d in Eq. (4) and the spherical Hamiltonian
Ĥsphere in Eq. (9). To first order, the splittings are due only to the
effect of the V̂2d invariants since the cubic corrections can be
neglected, as explained above. Using Eqs. (12), (19), and (5)
we find the fine structure of the even and odd energy states
as a perturbation associated with the deviation from cubic
symmetry and spin-orbit coupling.

Let us first consider the effect of �cI
2
z term on these two

levels. Both states are split into two sublevels with angular
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TABLE II. Parameters for energy shifts.

Invariant C M x x0 x2 x20

±1 3/5 2/3 11/15 2
√

2/15
H1 γ1⊥ + 4γ2⊥ 0 4/5 2/3 8/15 −4

√
2/15

±1 18/5 2 83/35 −4
√

2/5
H2 −γ2⊥ 0 3 4 58/35 −8

√
2/5

±1 0 0 1 7/
√

2
H3 γ3⊥ 0 −6/5 0 18/35 0

±1 3 2 107/35 8
√

2/5
H4 −γ4⊥ 0 6/5 4 94/35 −8

√
2/5

momentum projections M = ±1 and M = 0. For the odd state,
we have

E−
±1 = 0.5�c, E−

0 = �c. (24)

For the even states, the energy shifts are reversed:

E+
±1 = �c[1 − 0.3N (β)], E+

0 = 0.6�cN (β), (25)

where the function N (β) = ∫ a

0 [R+
2 (r)]2r2 dr is shown in

Fig. 5(b) and N (0.21) = 0.04 in CuInS2 NCs.
All other terms in V2d are quadratic in the momentum

projections px , py , and pz. According to Eq. (5), four quadratic
invariants are H1 = (γ1⊥ + 4γ2⊥)(p2

x + p2
y)/(2m0), H2 =

−6γ2⊥(p2
xI

2
x + p2

yI
2
y )/(2m0), H3 = −12γ3⊥{px,py}{Ix,Iy}/

(2m0), and H4 = −6γ4⊥(p2
xI

2
y + p2

yI
2
x )/(2m0). For angular

momentum projection M = 0, ±1, the corresponding energy
shifts can be written as

E−
M = Cx(M)ξ 2

1 Ea (26)

for the odd states and

E+
M = C[x2(M)D2(β) + x0(M)D0(β) + x20(M)D20(β)]Ea

(27)

for the even states, where D2(β) = −a2
∫ a

0 R+
2 �2R

+
2 r2 dr ,

D0(β) = −a2
∫ a

0 R+
0 �0R

+
0 r2 dr and D20(β) = a2

∫ a

0 R+
2 A+

1

A+
0 R+

0 r2 dr , and the coefficients C, x, x2, x0, and x20 are
shown in Table II for all four invariants. The functions D0(β),
D2(β), and D20(β) are shown in Fig. 5(c) and in CuInS2 NCs
where β = 0.21, D2 = 1.34, D0 = 10.4, and D20 = 2.19.

The total splitting of odd and even states can be found by
taking a sum of all energies obtained in Eqs. (24)–(27). For
the CuInS2 Luttinger parameters and β = 0.21, the result can
be written as

E+T
0 = 0.02�c + 0.06Ea(γ1 − 2γ )φ2

1 ,

E+T
±1 = 0.99�c + 0.18Ea(γ1 − 2γ )φ2

1 ,
(28)

E−T
0 = �c − 0.31Ea(γ1 − 2γ )ξ 2

1 ,

E−T
±1 = 0.5�c + 0.08Ea(γ1 − 2γ )ξ 2

1 .

The splitting between the lowest odd and even states is E+T
0 −

E−T
0 ≈ −0.98�c + 0.37Ea(γ1 − 2γ )ξ 2

1 . This splitting, which
lifts the accidental degeneracy of odd and even states, substan-
tially increases with decrease of the NC size.

Up to this point we have neglected the spin-orbit coupling
V̂so. Without it, all levels are doubly degenerate in spin
projection. With spin-orbit coupling included, each of the odd
and even manifolds is split in three Kramer’s doublets, one with
the momentum projections ±3/2 and two with the momentum
projections ±1/2. The corresponding splittings are given by

E±T
±3/2 = 1

3�±
s + E±T

±1 ,

E±T
±1/2+ = 1

6

(
3E±T

±1 + 3E±T
0 − �±

s

) + 1
6

√
9
(
�±

s

)2 + 6�±
s

(
E±T

0 − E±T
±1

) + 9
(
E±T

0 − E±T
±1

)2
, (29)

E±T
±1/2− = 1

6

(
3E±T

±1 + 3E±T
0 − �±

s

) − 1
6

√
9
(
�±

s

)2 + 6�±
s

(
E±T

0 − E±T
±1

) + 9
(
E±T

0 − E±T
±1

)2
,

where �−
s = �s/2 and �+

s = �s[1 − 3N (β)/2]. The size
dependence of the energy levels fine structure is shown in
Fig. 6(b). One can see that the splitting of the lowest optically
passive, E−T

±1/2−, and the lowest optically active, E+T
±1/2−, states

increases with decrease of NC size, and it is significantly larger
than room temperature. This should result in a large Stock’s
shift and a long radiative decay time of the band-edge PL.

VI. ACTIVATION OF THE OPTICALLY PASSIVE
GROUND HOLE STATE IN NCS

As shown above, the odd levels are the optically passive
ground states. For PL from the ground state to be possible, the
ground state needs to be admixed with an optically active state.
The odd and even states, however, remain decoupled under
both the tetragonal, V2d , and spin-orbit, V̂so, interactions. We
will now show that the linear invariants V̂ ′

2d and V̂ ′′
2d in Eq. (6)

result in a mixture of the odd states with the optically active

even states leading to a radiative recombination of the ground
exciton state.

The nonzero matrix components of the V̂ ′
2d invariant are

〈+
1,∓1

∣∣V̂ ′
2d

∣∣−
1,±1〉 = − i√

6

[
D01(β) + 2

√
2

5
D21(β)

]
�uI

a
,

〈+
1,±1

∣∣V̂ ′
2d

∣∣−
1,±1〉 = 1√

6
[D01(β) +

√
2D21(β)]

�ūI

a
, (30)

where D01(β) = a
∫ a

0 R+
0 A−

1 R−
1 r2 dr and D21(β) = a

∫ a

0 R+
2

A+
1 R−

1 r2 dr are shown in Fig. 5(d) and D01(0.21) = 3.19,
D21(0.21) = 0.82 for β = 0.21 in CuInS2. The V̂ ′

2d interaction
is independent of the spin of hole and the matrix components
in Eq.(30) are diagonal in the hole spin projections sz = ±1/2.
The V̂ ′′

2d invariant does not conserve the spin projections ±1/2,
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and its matrix elements are

〈+
1,0(∓1/2)|V̂ ′′

2d |−
1,±1(±1/2)〉

= 〈+
1,∓1(∓1/2)|V̂ ′′

2d |−
1,0(±1/2)〉

= − i

2
√

3
[D01(β) −

√
2D21(β)]

�uσ

a
,

±〈+
1,0(∓1/2)|V̂ ′′

2d |−
1,∓1(±1/2)〉 (31)

= ±〈+
1,±1(∓1/2)|V̂ ′′

2d |−
1,0(±1/2)〉

= − 1

2
√

3
[D01(β) −

√
2D21(β)]

�ūσ

a
.

All these matrix elements are inversely proportional to the NC
radius, a. The admixture of the lowest odd and even states is
defined as the matrix element divided by the energy difference
between these states, which varies as ∼a−2 [see Fig. 6(b). As
a result the admixture is proportional to a, and therefore the
radiative decay rate increases with radius as a2.

VII. DISCUSSION

Our calculations of the band-edge level structure and optical
properties show that PL should have a large Stock shift in
CuInS2 NCs. The band-edge absorption line in these NCs is
connected with transition between the 1Se electron level and
the even hole level with the total momentum F = 1, while
PL is connected with the odd hole level with total momentum
F = 1. In the smallest NCs, the energy difference between
these levels can be as large as 300 meV. The lowest odd hole
level is slightly activated optically by its admixture to the
optically active even hole level. This effect should result in
the long infrared tail of NC band-edge absorption. The tail
becomes weaker in small NCs.

The symmetry of the lowest odd hole level suggests that the
two-photon absorption band edge in these NCs is smaller than
the single-photon absorption band edge. These properties are
very unusual for semiconductor NCs.

The calculations of the electron and hole levels take into
account the conduction band nonparabolicity and the complex
six-band structure of the valence band. The effective band
parameters are extracted from the results of our first principle
calculations are as following. For the conduction band they are
the contribution of the remote bands α = 0.48, Kane energy
parameter Ep = 7.95 eV, and the effective mass me = 0.16m0.
For the valence band they are Luttinger parameters γ1 =
2.63, γ1⊥ − 0.03, γ2 = 0.63, γ2⊥ = 0.12 γ3 = 0.8, γ3⊥ = 0.3,
γ4⊥ = −0.06, and the crystal field splitting �c = −2.7 meV.
Our bulk results for the electron and hole masses and crystal-
field splitting are in agreement with experiments [29,30].
According to our calculation, the hole mass is heavy in the
[110] direction, in agreement with experimental measurements
[29].

To summarize: We have conducted first principle calcula-
tions of the energy band structure of CuInS2. Using the result
of these calculations we obtained the effective band parameters
which describe the conduction and valence band-edge energy
spectra within the multiband effective mass approximation.
The latter allow us to calculate the electron and hole energy
levels and optical selection rules for spherical CuInS2 NCs.
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