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Tunable spin-polaron state in a singly clamped semiconducting carbon nanotube
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We consider a semiconducting carbon nanotube (CNT) lying on a ferromagnetic insulating substrate with
one end passing the substrate and suspended over a metallic gate. We assume that the polarized substrate
induces an exchange interaction acting as a local magnetic field for the electrons in the nonsuspended CNT side.
Generalizing the approach of I. Snyman and Yu.V. Nazarov [Phys. Rev. Lett. 108, 076805 (2012)], we show
that one can generate electrostatically a tunable spin-polarized polaronic state localized at the bending end of
the CNT. We argue that at low temperatures manipulation and detection of the localized quantum spin state are
possible.
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I. INTRODUCTION

Nanoelectromechanics with suspended carbon nanotubes
has evolved rapidly in last few years [1–7]. Recently, Snyman
and Nazarov [8] considered a semiconducting carbon nanotube
(CNT) lying on an insulating substrate with one end of it
suspended. A metallic gate below both the insulating substrate
and the suspended part of the CNT generates a homogeneous
electric field (see Fig. 1 of Ref. [8]). The mechanical bending
of the suspended part of the nanotube then induces a spatial
inhomogeneity of the electrostatic potential along the CNT,
forming a minimum at the deformable end of the wire. The
competition between such an electrostatic bending and both
the elastic potential of the CNT and the quantum rigidity of the
electronic wave function makes the mechanical bending and
the formation of the localized polaronic state at the movable
end of the CNT occur as a first-order phase transition as a
function of the electric field. The estimate for the critical field
for a realistic experimental setup was predicted in Ref. [8] to
be 0.01 V/μm.

An impressive effort of the nanoelectronics community is
currently underway to manipulate and exploit the electronic
spin degrees of freedom in transport devices (spintronics) [9].
In this context the possibility of magnetic gating, i.e., the
use of ferromagnetic leads inducing magnetic exchange fields
Eex/μB (with μB being the Bohr magneton), on the electronic
spin is currently being actively investigated [10–13]. More
surprisingly, such exchange fields can also have remarkable
consequences on the dynamics of a nanomechanical system for
which dynamical (shuttle) instabilities, strong spin-polarized
currents, and cooling have been predicted [14–16].

In this paper we show that the system discussed by Snyman
and Nazarov [8] in the presence of a magnetic dielectric
substrate allows the formation of a localized fully polarized
polaronic state. The experimentally observed exchange energy
Eex (see Refs. [13,14]) turns out to be as large as tens of K, thus
being the same order of magnitude as the localization energy
for an electron in a CNT on the scale of the micrometer. This
allows for a high tunability of the polaronic state by means of
two electric gates below the suspended and nonsuspended parts

of the CNT (see Fig. 1). As a result, a continuous electrostatic
tuning of the localization length and the bound-state energy
can be achieved, forming a stability diagram of spin-up and
spin-down polaronic states. Detection of the state of the system
can be envisaged by use of a nearby single-electron transistor,
for which the CNT tip acts as a gate [17]. Fully electric
manipulation of the mechanical and electronic spin states of
the CNT is thus possible in this system.

This paper is organized as follows: Section II describes
the system considered, with the approximations performed to
arrive at the Hamiltonian used in the remainder of the paper.
Section III considers the case in which the nanotube cannot
deflect or the deflection is negligible. The conditions for the
formation of a bound state are studied. Section IV deals with
the nanomechanical effects by including the deflection of the
carbon nanotube in the calculation of the bound-state energy.
Section V discuss the typical scale for the mechanical fluctu-
ations and thus the observability of the energy splitting of the
electronic bound state. Finally, Sec. VI gives our conclusions.

II. THE SYSTEM

Following Ref. [8], let us consider a CNT lying on a
substrate with the suspended part protruding out a length L (see
Fig. 1). In Ref. [8] it was shown that the wave function ψ(x) of
the electrons in the valence band of the CNT can be described
by a standard one-dimensional Schrödinger equation with an
effective mass m∗ = 0.6mea0/r , where me is the electronic
mass, a0 is the Bohr radius, and r is the radius of the CNT.
The variable x parametrizes the position along the CNT; its
value is zero at the edge of the substrate and L on the tip of
the suspended part. The length of the CNT on the substrate
is supposed to be much larger than L and is taken as infinity
for simplicity. Then vanishing boundary conditions apply at
x = L and x = −∞. As in Ref. [8], the CNT can bend with a
displacement y(x) (for 0 < x < L) in the direction orthogonal
to the substrate. The elastic energy cost reads

IY

∫
dx[y ′′(x)]2/2, (1)
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FIG. 1. (Color online) Schematic of the system considered: a
CNT lying on a magnetic substrate (M) and protruding out a length L.
Two independently adjustable gates (VG1 and VG2) are shown, with a
contact (C) on the substrate side. The potential for spin up and down
(U+ and U−) is also sketched above.

where I = 6.4πa0r
2 is the second moment of area of the tube

cross section and Y is the CNT Young’s modulus (of the order
of 1.2 TPa). Single clamping implies that y(0) = y ′(0) = 0 and
y ′′(L) = y ′′′(L) = 0. In this paper we will restrict ourselves to
the classical description of the deflection. The tip of the CNT
on the substrate is in tunneling contact with a metal whose
chemical potential can be tuned close to the valence band of
the CNT by adjusting the electric potential. Up to now, the
description has closely followed Ref. [8]. We now introduce
the main difference: We will assume that the substrate is a
magnetic insulator that induces an exchange interaction term

−Eex

∫ 0

−∞
dxσ |ψσ (x)|2 (2)

for the electrons in the CNT over the substrate (x < 0). The
variable σ indicates the spin projection in the z direction. This
creates a spin-dependent potential, so that the spin-up electrons
(σ = +) are attracted in the x < 0 region. In order to tune
the potential we assume that two different gates are present,
one below the magnetic substrate and another one under the
suspended part. By changing independently the potentials
on the two gates it is possible to modify the electrostatic
potential V and the electric field E acting on the electrons
on the suspended part (taking the nonsuspended region as a
reference for the potential; see Fig. 1). We can then write the
full Hamiltonian for the problem as follows (θx is the Heaviside
function):

H =
∑

σ

∫ L

−∞
dx

{
�

2

2m∗ |∂xψσ (x)|2 + IY

2

[
∂2
x y(x)

]2

− [Eexσθ−x + eV θx − eEy(x)]|ψσ (x)|2
}

. (3)

The first term in Eq. (3) gives the quantum kinetic energy,
the second gives the elastic energy, and the third is a sum of
three parts: the exchange energy, the electrostatic potential, and
its variation induced by the deflection [y(x)] of the CNT. In
Ref. [8], for V = 0 and for Eex = 0, it was shown that a critical
value of the electric field Ec exists for which the ground state

is an electronic localized state on the CNT suspended part. The
formation of the bound state is a first-order transition: The CNT
starts to bend only for E > Ec, and a metastable bound state
exists for Ec1 < E < Ec. At E = Ec the localization length
is thus finite and is typically much shorter than L. In order to
have a tunable bound state it is necessary to have a smooth
transition from the delocalized to the localized state. This is
actually the typical case in quantum mechanics; by decreasing
the depth of a potential well that allows a bound state one can
progressively delocalize the wave function. The bound-state
radius then diverges at the threshold for its appearance. We
will thus see that the presence of V and Eex allows us to create
a spin-dependent tunable bound state that is associated with a
displacement of the CNT tip.

III. ELECTRONIC PROBLEM

Let us begin with the purely electronic problem [y(x) ≡
0 for all x]. The ground state can be found by solving the
Schrödinger equation,[

−�
2∂2

x

2m∗ − Eexσθ−x − eV θx

]
ψσ (x) = εσψσ (x), (4)

for each spin projection. The presence of a bound state is
signaled by the existence of a solution of Eq. (4) with εσ <

−σEex as the bottom of the relative band.
Taking εσ < −σEex as a reference in energy, the problem

for each spin species reduces to that described by Eq. (4) with
Eex → 0 and eV → eV − σEex = U . The solution can then
be found by matching the wave function

ψ(x) = Aeκx for x < 0,
(5)

ψ(x) = Beikx + Ce−ikx for x > 0

at x = 0 by solving for the continuity of the wave function
and of its derivative. The boundary conditions lead to the
eigenvalue equation

e−2ikL = −(ik + κ)/(ik − κ), (6)

with

κL = [−2m∗εb/�
2]1/2 , kL = [2m∗(U + εb)/�

2]1/2, (7)

and εb < 0 being the bound-state energy. At the threshold
εb → 0−, κ vanishes, and the eigenvalue equation reduces to
e−2ikL = −1. This gives kL = π/2, and the threshold value
for the potential

Ut = (π/2)2EK, (8)

with EK = �
2/(2m∗L2) being the kinetic energy scale. For

U − Ut � EK the localization length

κ−1 = 2LEK/(U − Ut ) (9)

diverges as anticipated. By changing U it is then possible
to adjust the spread of the wave function on the magnetic
substrate. Since the two spin species feel a different potential
only on the substrate, we can continuously change the energy
difference of the up and down bound states. The bound-state
energy for each spin state reads

εσ = −σEex + εb(eV − σEex), (10)
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FIG. 2. (Color online) Dependence on the gate voltage V of the
two spin-projection bound-state energies εσ for Eex/EK = 0.5, α = 0
(i.e., E = 0, dashed lines) and α = 50 (solid lines). The bottom of
the lower electronic band (spin up) is shown as a short-dashed line.

with the threshold value for V :

eVσ = Ut + σEex . (11)

A typical picture of the eV dependence of the two bound states
for E = 0 is shown as dashed lines in Fig. 2. For V− < V < V+
a unique bound state exists for spin down. Let’s define Vc as
the value for which the spin-down energy crosses the spin-up
bottom band:

ε−(V = Vc) = −Eex . (12)

For V+ < V < Vc two bound states exist, but only the lowest
one (spin up) is stable since the spin down lies above the
bottom of the spin-up band, and any spin-flip perturbation
allows its decay into the spin-up continuum. Finally, for V >

Vc two stable bound states exist. Their energy splitting has a
maximum at Vc and then monotonically decreases as a function
of V . This is due to the reduction of the localization length
reducing the effect of the exchange interaction that acts only for
x < 0. Although both spin-up and spin-down polaronic states
are stable at V > Vc, only one of them can be occupied due
to the Coulomb blockade, whose repulsion energy turns out to
be much larger than the polaronic bound-state energy (∼EK )
at L 	 1 nm. This fact allows the formation of a controllable
single-electron fully spin polarized state at the protruding part
of the CNT.

IV. NANOMECHANICAL EFFECTS

We now consider how the system behaves when we let the
CNT bend. It is no longer possible to find the ground-state
energy analytically; we will thus closely follow the variational
method used in Ref. [8], to which we refer for more details.
We introduce the dimensionless variables

z = x/L, h = H/EK, f = yYI/eEL3, φσ = ψσ

√
L

(13)

and the coupling parameter

α = (eE)2L3/(YIEK ). (14)

The problem can then be completely determined by giving
only three independent coupling parameters: α, μ = Eex/EK ,

and ν = eV/EK . The functional to be minimized reads

h =
∫ 1

−∞
dz

[
φσ ′′ 2 + α

(
f φ2

σ + f ′′2

2

)
− (μσθ−z + νθz)φ

2
σ

]
.

(15)

By writing

φ(z) =
{∑M

n=1 an(1 − z)n for z > 0,∑M
n=1 anz

neκz for z < 0,
(16)

and

f (z) =
M∑

n=1

bnz
n+1, (17)

one can enforce the boundary conditions and numerically
minimize the functional in order to find the parameters
{an,bn,κ} and thus the ground-state energy εσ with explicit
expressions for the bending and the wave function. The charge
accumulated on the suspended part of the CNT in the presence
of an electric field induces a force that bends the tip of the
CNT. The effective electronic potential deepens, and bending
lowers the bound-state energy. In particular, the exchange
interaction favors a stronger localization of the wave function
on the tip (measured by κ−1). For Eex = eV = 0 in Ref. [8]
it is shown that the bound state forms with a first-order phase
transition for α > αc = 312.03. In order to keep a smooth
transition we will consider the case α < αc and investigate
the dependence of the bound-state energy and wave function
on eV/EK for given values of Eex/EK .

Before considering the results of the numerical calculation
it is useful to estimate analytically the typical range of the
displacement of the CNT tip induced by the localization
of the charge. Let us assume that the fraction n < 1 of an
electron charge is accumulated on the CNT tip uniformly. A
simple ansatz for the displacement is f (z) = az2. It satisfies
both the boundary conditions and the Euler equation f ′′′′ = 0.
Substituting it in Eq. (15), one has for the part proportional
to α

hα = α

(
2a2 + n

a

3

)
; (18)

this functional has a minimum at a = −n/12 = f (1). It gives
a rough estimate of the dimensionless displacement of the
tip by taking into account only the competition between the
electric field and the elastic stiffness. The effect of the other
two parameters is hidden in the value of n, which cannot be
larger than 1.

We present in Fig. 3 the numerical results for α = 175 and
μ = 1. One can see that the energy splitting of the two spin
states is of the order of EK = Eex (top left panel). Defining

nσ =
∫ 1

0
dzφ2

σ (19)

as the fraction of charge (and spin) localized on the suspended
part of the CNT, one finds that for V = Vc both bound
states present a finite value of nσ and n− − n+ ≈ 0.17. The
difference is slowly reduced for larger values of the gate
voltage. The same can be said for the deflection of the tip
of the CNT [fσ = f (1) for each spin state; bottom left panel].
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FIG. 3. (Color online) For Eex = EK and α = 175 gate voltage
dependence of (top left) the bound-state energies, (top right) the
fraction of localized charge or spin, (bottom left) deflection of the tip,
and (bottom right) the ratio of deflection to localized charge.

Finally, the bottom right panel shows that the ratio f±/n± is
actually close to the rough estimate of 1/12.

Figure 3 shows that a particularly important quantity is
the value of the physical parameters (εσ , nσ , and fσ ) at the
threshold Vc. The dependence on V is always monotonic, and
the maximum or minimum values are observed at Vc. In view
of manipulating the spin state, the value at Vc thus gives a
very good indication of the range in which the state can be
accessible. We thus show in Fig. 4, as a function of α and
for different values of μ, the threshold Vc, the energy splitting
ε− − ε+, the difference in the occupation n− − n+, and the
difference in the deflection f− − f+. As expected, the critical
voltage Vc decreases as a function of α, and in particular,
for sufficiently small μ, it vanishes when α approaches the
critical value αc. The bound-state energy splitting is monotone
in α since the electric field increases the localization of the
bound state and thus reduces the difference of the two states.
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FIG. 4. (Color online) (top left) The critical gate voltage value
Vc, (top right) the energy splitting of the two bound states ε− −
ε+, (bottom left) the difference in the fraction of localized charge
n+ − n−, and (bottom right) the difference of the CNT tip deflection
f− − f+ as a function of α for μ = 0.1, 1., 10, and 20; the last three
quantities are calculated at V = Vc.

Its α dependence is rather weak. Even for μ 	 1 the energy
splitting remains of the order of EK , which thus sets the main
energy scale of the problem. Quite surprisingly, the difference
in the fraction of localized charge (n− − n+) is not monotonic
for small μ as a function of the electric field. This is due to
the fact that the transition region is approached at different
values of α for each spin state. A similar behavior is observed
in f− − f+. One can conclude that the optimal value of α to
observe a well-defined bound state is between 100 and 200.

V. ESTIMATES

In order to consider the possibility of observing the two
bound states we discuss the typical scales of the problem.
Expressing the radius in nanometers and the length in microns,
EK ≈ 13.9(r/L2) mK. The typical value of L ranges between
0.1 and 1 μm, leading to a range for EK between a few
K and tens of mK, which is thus always accessible with
standard cryogenics. The thermal and quantum fluctuations
of the displacement of the tip also play an important role
since they define the distinguishability of the displacement
of the two bound states. From Eq. (18) one can write an
approximate potential for the tip displacement δf = f (1) − f0

(with f0 = n/12 the equilibrium value):

hα = 2α(δf )2. (20)

The equipartition theorem then gives for the thermal fluctua-
tions

δfT = [kBT /(4αEK )]1/2. (21)

Quantum fluctuations δfQ have the same expression with
kBT → �ωm. Since �ωm/EK = 0.0332 independently of L

or r [8,18], δfQ = 0.09/
√

α. Expressing, as above, T in mK,
L in microns, and r in nanometers,

δfT = 0.13L[T/(rα)]1/2. (22)

Those values have to be compared with f− − f+ that are, at
best, 0.04. fQ is thus 5 times smaller than this value already
for α = 100, while in order to keep δfT small, one needs T �
0.09rα/L2. This is realizable by, for instance, choosing L =
0.5 μm, r = 2 nm, and α = 200 and working at temperatures
T ≈ 20 mK (EK is 111 mK in this case).

VI. CONCLUSIONS

We have shown that by combining electrostatic and mag-
netic gating, the formation of a spin-polaronic state in a
singly clamped CNT becomes possible. Electric, magnetic,
and mechanical tuning provides effective manipulation of such
spin-polaron states offering a controllable magnetoelectrome-
chanical transduction with single-electronic charge and spin
sensitivity involving subnanometer mechanical displacement.
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