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Tunable spin and charge transport in silicene nanoribbons
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Using the tight-binding formalism, we study spin and charge transport through a zigzag silicene ribbon subject
to an external electric field Ez. The effect of an exchange field Mz is also taken into account and its consequences
on the band structure as well as spin transport are evaluated. We show that the band structure lacks spin inversion
symmetry in the presence of intrinsic spin-orbit interaction in combination of Ez and Mz fields. Our quantum
transport calculations indicate that for certain energy ranges of the incoming electrons the silicene ribbon can
act as a controllable high-efficiency spin polarizer. The polarization maxima occur simultaneously with the van
Hove singularities of the local density of states. In this case, the combination of electric and exchange fields is
the key to achieving nearly perfect spin polarization, which also leads to the appearance of additional narrow
plateaus in the quantum conductance. Moreover, we demonstrate that the output current still remains completely
spin-polarized for low-energy carriers even when a few edge vacancies are present.
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I. INTRODUCTION

Spintronics in ultrathin two-dimensional (2D) materials has
recently attracted a lot of attention. In particular, graphene
has recently been considered as a pioneering 2D crystal with
very interesting spin and valley properties [1]. Graphene is
a highly desirable material for coherent spin transport [2]
because its spin-orbit interaction (SOI) is very weak [3,4].
However, it is known that the entanglement between spin
and orbital degrees of freedom can be exploited to polarize
the output current in a controllable way. This idea was first
proposed for application in spin field-effect transistors [5,6].
Another 2D material that has a relatively strong SOI is
graphene’s silicon counterpart, called silicene. More recently, a
field-effect silicene device has experimentally been realized by
transferring silicene on a SiO2/p

++ substrate using a specific
growth-transfer-fabrication process [7]. Moreover, silicene can
be synthesized on Ag(111) and MoS2 surfaces [8,9] and the
stability of its free-standing-like version has been predicted
by a number of theoretical studies [10]. The band structure of
silicene is similar to that of graphene and the conduction and
valence band edges are located at the corners of the Brillouin
zone around the K and K ′ points. Contrary to graphene,
silicene has a buckled structure and its intrinsic SOI opens
a gap between the conduction and valence bands. Facilitated
by this buckling, the band-gap edges of silicene are split by an
external perpendicular electric field [11]. More interestingly,
this splitting is of spin type—which is opposite for the two
valleys—and can be tuned by varying the strength of the
electric field [12].

Silicene’s compatibility with silicon-based technology ac-
companied by the tunability of its structural band gap [12]
further distinguishes it from other analogous 2D crystals
such as MoS2, which has a very strong spin-valley cou-
pling. Thus far, these properties have stimulated extensive
research such as the spin- and valley-polarized anomalous Hall
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effect [11,13], room-temperature field-effect transistor [7],
giant magnetoresistance [14], and photo-induced topological
phase transition [15], etc. Furthermore, recent studies proposed
silicene as a potential candidate for application in spintronics
and valleytronics devices [16–19].

In order to step beyond these works, here we investigate
novel features of silicene and propose a versatile device whose
working principle is based on an out-of-plane electric field. We
consider a silicene ribbon with zigzag-terminated edges [see
Fig. 1(a)]—in the presence of an exchange field—and show
that this system can act as a high-efficiency spin polarizer. It
is found that the application of a perpendicular electric field
plays a key role not only for band-structure splitting but also
in controlling the spin degree of freedom. Here we propose
silicene ribbon as a field-effect spin device in which the process
of manipulating spin is preformed electrically without any
need to use external magnetic fields. We first address the effect
of the electric and exchange fields on the band structure and
show that the interplay of both fields induces spin asymmetry
in the split energy subbands. Then, using the tight-binding
Green’s function (TBGF) formalism, we focus on ballistic
spin and charge transport by evaluating the low-temperature
quantum conductance. It is shown that a fully polarized spin
current can be created by electrical gating of the silicene
ribbon if an exchange field is simultaneously present. In this
case, the maxima of spin polarization coincide with the van
Hove singularities of the local density of states (LDOS). We
also demonstrate that the induced spin polarization is highly
resistant against the effect of a few edge vacancies.

The organization of the paper is as follows. In Sec. II,
we give details of our model and formulate the strategies
used to treat the problem of spin transport. The results of
the calculations are summarized in Sec. III. We conclude with
a summary in Sec. IV.

II. BASIC FORMALISM

A. Tight-binding description of silicene

The electronic properties of monolayer silicene near the
K and K ′ points are described by a four-band tight-binding
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FIG. 1. (Color online) (a) The schematics of the transport channel consisting of a buckled silicene device connected to two semi-infinite
silicene nanoribbons as the left and right leads. The system is similar to an iterative chain whose unit cell includes N silicon atoms. The silicene
ribbon is subject to a perpendicular electric field Ez. (b) The band structure of an infinite silicene nanoribbon with zigzag-terminated edges for
N = 12, and Ez = Mz = 0.

Hamiltonian that has previously been derived using first-
principles calculations [11,17,20]. The symmetry arguments
made in Ref. [20] show that the nearest-neighbor (NN)
hopping terms do not contribute to the SOI, whereas the
second-nearest-neighbor (SNN) ones create a SOI due to the
buckled nature of the silicene structure. Such a buckling further
separates vertically the A and B sublattices by a distance
2� = 0.46 Å [11,16]. As a result, when a perpendicular electric
field Ez is applied, a voltage difference of 2�Ez is created
between the two sublattices, resulting in a staggered potential
that an electron experiences while jumping between two NN
sites. The strength of the first and second Rashba SOIs,
arising from the NN and SNN hopping terms, respectively,
are negligible compared to the intrinsic SOI λso and therefore
we omit them in our calculations (the strength of the first
and second Rashba SOIs are about 10 μeV and 0.7 meV,
respectively [11]). In this case, taking only the intrinsic SOI
into account, one can cast the Hamiltonian of silicene into a
tight-binding expression,

H = −t
∑

〈i,j〉,α
c
†
iαcjα + i

λso

3
√

3

∑
〈〈i,j〉〉,α,β

vij c
†
iα(σz)αβcjβ

+Mz

∑
i,α

c
†
iασzciα + e�Ez

∑
i,α

ξic
†
iαciα + H.c., (1)

where t is the hopping energy between the NN sites, 〈i,j 〉
and 〈〈i,j 〉〉 denote the sum over NN and SNN hopping sites,
respectively, α and β represent the spin quantum number, and
the operator c

†
iα (ciα) creates (annihilates) an electron with spin

α at site i. The rest of the parameters in Eq. (1) are defined
as follows: �σ is the vector of Pauli’s spin matrices, vij = −1
(+1) the clockwise (counterclockwise) hopping index with
respect to the z axis, Mz is the exchange field and ξ = ±1 the
valley index. Notice that the second term in Eq. (1) accounts
for the intrinsic SOI due to the SNN contributions. The third
term which involves the effect of an exchange field can be
created on account of, e.g., the proximity with a ferromagnetic
material [11,17,21]. The fourth term accounts for the effect
of an electric field and critically distinguishes silicene from
graphene.

By performing Fourier transformations and substituting
the Pauli matrices σi , the discrete Hamiltonian (1) renders

an effective Hamiltonian which is block diagonal in the spin
degree of freedom. In the basis of [|A〉, |B〉]T ⊗ [↑,↓]T , with
T denoting the transpose, the explicit form of the effective
Hamiltonian near the K valley is given by [22]

H =
[
h+(k) 0

0 h−(k)

]
, hα(k) =

[
αMz + �α

z �vF k−
�vF k+ αMz − �α

z

]
,

(2)

where h+ (h−) is for spin-up (spin-down), k± = kx ± iky ,
�α

z = αλso − e�Ez acts like a mass term in gapped graphene
which determines the gap size between electron and hole
energy surfaces, and vF is the Fermi velocity. As is evident
from Eq. (2), the band gap is closed for spin α upon
canceling the intrinsic SOI term by applying an appropriate
perpendicular electric field; i.e., �α

z vanishes if Ez = αλso/e�.
For this reason and for the sake of inducing a large spin splitting
we consider electric fields larger than this critical value.

Description of the transport channel. The setup of our
system is illustrated in Fig. 1(a). The middle part consists
of a zigzag silicene dot that is connected to two lateral
homogeneous leads. The overall configuration of this system
can be considered as a linear chain of iterative cells whose unit
cell is an armchair strip of N silicon atoms [e.g., the structure
shown in Fig. 1(a) has N = 12 atoms per unit cell]. The
cells forming the left lead are located at sites −∞, . . . ,−1,0
of the chain; likewise, those for the silicene dot are placed
at 1, . . . ,M−1 and for the right lead at M,M + 1, . . . ,∞.
If the bulk periodicity parallel to these armchair cells is
preserved, then the electron wave vector along the ribbon,
k, is a good quantum number. This assumption provides a
straightforward way to calculate the band structure within
the tight-binding model. By applying Bloch’s theorem, the
k-dependent Hamiltonian can be written as

Hk = H00 + H01e
ika + H−10e

−ika. (3)

Here, H00 is the Hamiltonian matrix for a unit cell at site
0 of the chain, H01 and H−10 describe the coupling with
the right- and left-hand adjacent cells, respectively, and a =
3.89 Å is the lattice constant. The Hamiltonian (3) can readily
be diagonalized in order to yield the energy dispersion as
Hkψnk = Enkψnk , where the Bloch state ψnk is a column
vector in which the elements are a linear combination of

035413-2



TUNABLE SPIN AND CHARGE TRANSPORT IN SILICENE . . . PHYSICAL REVIEW B 92, 035413 (2015)

atomic orbitals at the lattice points. Furthermore, we obtain
the site-resolved LDOS, along the width of the silicene
ribbon, by evaluating ρj (E) = ∑

nk |ψj

nk|2δ(E − Enk), where
n = 1,2, . . . ,N is the subband index and j labels the atoms
inside the unit cell.

B. Preliminaries for TBGF

Owing to the fact that the number of discrete sites goes
to infinity in semi-infinite ribbons, we adopt an iterative
algorithm [23–26] for the transport problem that allows for
a very fast convergence. This technique was first introduced
by Sancho et al. [23] to calculate transfer matrices and spectral
density of states at the surface of semi-infinite crystals with
stacked layers. A similar approach is simply applicable to an
array of iterative cells building, e.g., the structure shown in
Fig. 1(a) [24]. By implementing the algorithm one can easily
determine the surface retarded Green’s functions of the left
and right leads which we denote by gL

00 and gR
MM , respectively.

Assuming that the isolated left and right leads are alike, which
consequently confirms HMM = H00 and HMM+1 = H−10, the
surface Green’s functions, using the transfer matrix approach,
take the form [24,26]

gL
00(E) = [(E + iη)I − H00 − H

†
−10T̃ ]−1, (4)

and

gR
MM (E) = [(E + iη)I − H00 − H−10T ]−1, (5)

where I is the identity matrix, and the infinitesimal imaginary
iη moves the poles of the Green’s function off the real axis
and results in a retarded response. In Eqs. (4) and (5), the
transfer matrices T and T̃ can be calculated with the help of
the expansions

T = t0 + t̃0t1 + t̃0̃t1t2 + · · · + t̃0̃t1̃t2 · · · t�, (6)

T̃ = t̃0 + t0̃t1 + t0t1̃t2 + · · · + t0t1t2 · · · t̃�, (7)

where t0 and t̃0 are defined as

t0 = [(E + iη)I − H00]−1H
†
−10, (8)

t̃0 = [(E + iη)I − H00]−1H−10, (9)

and ti and t̃i obey the following recursion relations

ti = (I − t̃i−1ti−1 − ti−1̃ti−1)−1t2
i−1, (10)

t̃i = (I − t̃i−1ti−1 − ti−1̃ti−1)−1̃t2
i−1. (11)

The additive terms in Eqs. (6) and (7) have to be taken into
account as long as t� and t̃� tend to zero with arbitrary precision.
As discussed in Ref. [23], with the help of this technique, a
large set of 2� unit cells are incorporated in the calculations
after � iterations. The main advantage of this approach is that
the number of iterations does not need an exponential increase,
in particular, close to singularities of the Green’s function.

Now, the next step is to calculate the surface Green’s func-
tion inside the transport channel; i.e., inside the distinguished
region from the lateral leads. To this end, we merge the sample
with the right lead and return, layer by layer, back to obtain

gR
22 by using the following recursion formula [26]:

gR
mm = [

(E + iη)I − Hmm − Hmm+1gR
m+1m+1H

†
mm+1

]−1
.

(12)
Finally, we can obtain the total Green’s function g11 by taking
into account the probability of scattering into the leads via the
concept of self-energy [27,28]

g11 = [(E + iη)I − H11 − 
L − 
R]−1, (13)

where


L = H
†
01gL

00H01, (14)


R = H12gR
22H

†
12. (15)

Furthermore, the broadening matrices including the coupling
between transport channel with source and drain leads can be
written as

�L(R) = i(
L(R) − 

†
L(R)). (16)

The important point to note is that the presence of an external
electric field Ez, and/or of exchange term Mz, gives rise to a
block-diagonal Green’s function with spin-up and spin-down
states:

g11 =
[

g↑
11 0
0 g↓

11

]
. (17)

Therefore, the transmission probability is given by

T α(E) = Tr
[
�α

Lgα
11�

α
R(gα

11)†
]
, α = ↑,↓. (18)

Eventually, using the Landauer formula, the spin-resolved
conductance through the silicene ribbon can be calculated as
follows:

Gα(E) = e2

h
T α(E). (19)

The main advantage of the above notation is that one can easily
calculate the spin polarization of the output current as follows:

ps = G↑ − G↓∑
α=↑,↓ Gα

. (20)

For 0 < ps � 1 the dominant spin polarization corresponds to
the spin-up state while for −1 � ps < 0 the spin direction is
reversed.

III. NUMERICAL RESULTS

We now address our main results obtained by assessing
Eqs. (1) and (3), and also by implementing the TBGF method
as detailed above. Subsequently, it will be shown that a zigzag
silicene ribbon can act as a field-effect device that is tunable
for both spin and charge transport. In order to elucidate the
influence of an external electric field, and/or of exchange field,
we first turn Ez and Mz off and then contrast the results with
those obtained in the presence of them.

Band structure for Ez = Mz = 0. In the absence of any
perpendicular electric and exchange fields, a zigzag silicene
ribbon has the same energy dispersion as its graphene
counterpart. This similarity has been illustrated in Fig. 1(b)
for an infinite zigzag ribbon with width of N = 12 atoms.
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TABLE I. Material parameters used in the calculations (see
Ref. [20]).

Quantity (unit)

t (eV) λso (meV) a (Å) vF (105 m/s)

Magnitude 1.6 3.9 3.86 5.52

Other fixed parameters used in the calculations are given
in Table I. At the extreme left and right points, k = ±π/a,
the lowest two bands intersect the energy axis E = 0 and
close the middle wide band gap between electron (E > 0)
and hole (E < 0) states. This means that the band structure
exhibits a metallic dispersion near the two corners of the
Brillouin zone at k = ±π/a. Similar to graphene-based zigzag
ribbons, the low-lying energy bands are almost flat near these
points revealing that the group velocity vg = �

−1∂E/∂k is
vanishingly small and the associated charge density is localized
on the zigzag edges; see Ref. [29] and also the inset in Fig. 2 for
ka = π . Since the energy scale shown in Fig. 1(b) is in units of
electronvolts, the term due to the intrinsic spin-orbit coupling
λso has no perceptible consequences for the band structure.
We therefore switch to group velocity vg and compare the
results of the case λso = 0 (graphenelike case) with those for
λso = 3.9 meV. The results are depicted in Fig. 2. The group
velocity without the intrinsic term λso vanishes at k = ±π/a,
whereas the presence of λso induces a finite group velocity
even for those electrons residing on the edges of the ribbon.
Nevertheless, the induced velocity is very small compared to
vF . Notice also that the intrinsic SOI does not affect the charge
density distribution along the armchair unit cell, as shown in
the inset of Fig. 2, which can be deduced by the fact that
λso � t .

Results for a perpendicular field Ez. Now the terms
distinguishing the Hamiltonian of the silicene ribbon from
that of the graphene-based ones become important, in par-

λ

λ

π

π

π

π

FIG. 2. (Color online) The group velocity of the edge states near
k = π/a for λso = 0 (dashed curve) and λso = 3.9 meV (solid curve).
The inset shows the charge density distribution over an armchair unit
cell, comprising of N = 12 atoms, for three different Bloch wave
vectors k.

ticular, for low energies. Consequently, we focus our main
attention on low-lying states around the k = ±π/a points. The
band energy dispersion of a silicene ribbon with zigzag-
terminated edges, consisting of N = 48 atoms per unit cell,
is depicted in Figs. 3(a)–3(c) for three different Ez setups as
specified by the small insets. The typical strength of the electric
field considered in Figs. 3(b) and 3(c), i.e., Ez = 40 mV/�, is
of the order of V/nm, which is experimentally attainable [30].
By gating the silicene ribbon, an insulating gap opens between
the electron and hole bands provided that the strength Ez

is large compared to λso/e� (as discussed above and also
demonstrated in Ref. [11], the band gap is closed for the
critical value Ez = λso/e� and converts the material into
a spin-valley-polarized metallic system). In Fig. 3(c), it is
evident that the application of an asymmetric perpendicular
electric field Ez ∝ �(y − w/2)—here, � is the Heaviside
step function and w the ribbon width—halves the energy gap
asymmetrically. Moreover, as seen in Figs. 3(b) and 3(c), the
electric field lifts the spin degeneracy of all electronic states
so that the spin-split bands have spin inversion symmetry with
respect to the boundary of the Brillouin zone at k = π/a.
Based on this symmetry we conclude that E

↑
k = E

↓
−k because

any k wave vector larger than π/a can be translated into the
first zone by the lattice vector Ka = −2π/a. However, we
show next that the Ez-induced spin splitting does not suffice,
on its own, to create a spin-polarized current. Figures 3(d)–3(f)
show the charge conductance through the silicene ribbon,
G = (e2/h)

∑
α=↑,↓ T α , in terms of the chemical potential

of the left lead, for the same electric fields as in Figs. 3(a)–
3(c), respectively. On the right side, the chemical potential
is assumed to be zero μR = 0. The quantized conductance
plateaus as well as the successive transitions with height 4e2/h

(the factor 4 is responsible for spin and sublattice pseudospin
indexes) are clearly observable [26,31,32]. By applying an
external electric field, the induced band gap between electron
and hole states suppresses the transmission of low-energy
carriers with |μL| < e�Ez. Therefore, in Fig. 3(b), the width of
the region depleted from conducting carriers is about 2e�Ez.
The remarkable feature of this kind of transport suppression
is that the charge carriers respond to an out-of-plane electric
field which creates an intrasublattice barrier between vertically
separated A and B sublattices. The number of interplateau
transitions appearing in G is locked to the width of the zigzag
ribbon, i.e., the number of atoms that constitute a unit cell.
The reason stems from the fact that an increase of N adds
more subbands (transverse modes) into the band structure,
whereas the spacing between furthest bands at E ≈ ±4.8
eV [see Fig. 1(b)] remains unchanged. Indeed, the bottom
of these subbands coincide with the peaks of the DOS as
well as with the transition regions between two successive
plateaus as is obvious in Fig. 4 (similar reasoning is presented
in Ref. [32] for a graphene ribbon). It is noteworthy that this
effect can also be interpreted on the basis of physical concepts
describing the quantization of the conductance through point
contacts [28,33]. Therefore, with the assumption that the
transport regime of the point contact and leads is ballistic,
the conductance directly depends on the number of channels
that contribute to transport. The decline of G which is seen in
Fig. 4 occurs due to inversion of the sign of the effective mass
m∗ ∝ ∂2E/∂k2, where the electron-type bands are replaced
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π π π

μ μ μ

FIG. 3. (Color online) The band structure of a silicene nanoribbon with zigzag-terminated edges subject to the following perpendicular
electric fields: (a) Ez = 0, (b) Ez = 40 mV/�, and (c) a steplike electric field with Ez = 40�(y − w/2) mV/�. The electric field Ez � λso/e�

opens a sizable gap between electron and hole states. Panels (d), (e), and (f) show the charge conductance of incoming electrons vs μL for the
same electric fields as in (a), (b), and (c), respectively.

by hole-type ones. In this case, the conductance plateaus are
accompanied by maxima of energy subbands. Using a similar
analysis, one finds that the subbands with opposite spins,

π

FIG. 4. (Color online) (a) The band structure of a zigzag silicene
ribbon with N = 48 near the boundary of the Brillouin zone. (b) The
quantum conductance G (the red curve referred to the bottom axis)
and the density of states (the green curve referred to the top axis)
as function of the energy. The subbands coincide with the transition
regions between the plateaus of G.

shown in Figs. 3(b) and 3(c), have equal contributions in spin
transport. The reason can be attributed to the fact that the
spin-split subbands are qualitatively alike and their minima
occur at the same energy.

Taking into account only the exchange field, the band
structure is split again into opposite spin states. However,
unlike the previous case, spin inversion occurs with a reflection
in energy with respect to the E = 0 axis: An electron band
with spin-up corresponds to a hole band with spin-down, i.e.,
E↑(k) = −E↓(k), and vice versa; see the magnified area in
Fig. 5(a). The lowest electron- (solid curves) and hole-type
(dashed-dotted curves) subbands with positive and negative
effective masses, respectively, have a common contact point
at k = π/a. Therefore, each subband is expected to cancel
the other’s contribution in spin transport following the same
analysis as given above. Although this problem does not affect
the upper subbands, the mixing of spin-up and spin-down states
prevents perfect spin polarization. To resolve this drawback we
examine the presence of a uniform Ez field in addition to Mz.
The result of this case is summarized in Fig. 5(b). As seen, the
interplay between Ez and Mz fields creates an asymmetry in
the band structure. Indeed, each of these fields splits the band
structure in a certain way, which results in a spin asymmetry
when both mechanisms of spin splitting are present.

In Fig. 6 we plot the spin-resolved conductance Gα ,
α = ↑,↓, as a function of the chemical potential of incoming
electrons for Ez = 40 mV/� and Mz = 2λso. The asymmetry
of the band structure induces a sizable spin gap (�μL ≈ 18
meV) in quantum conductance transitions and leads to the
separation of opposite spin contributions in the conductance.
Another consequence of the asymmetry of the band structure
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π π

↑

↓

↓

↑

FIG. 5. (Color online) The band structure of a silicene ribbon
with N = 48 for Ez = 0 (a) and Ez = 40 mV/� (b), in the presence
of an exchange field M = 2λso. The purple (orange) curves indicate
energy dispersion of spin-up (spin-down) state. The enlarged area
(bottom figure) reveals that the band structure has spin inversion
symmetry with respect to the E = 0 axis.

is the appearance of narrow plateaus in the charge conductance
(see the inset in Fig. 6), which originates from the superiority
of one spin plateau over another. The width of the transition re-
gions between spin-split plateaus is very small and disappears
with increasing energy of mobile carriers. To better assess the

↑
↓

μ

↑
↓

μ

FIG. 6. (Color online) (a) Spin-resolved conductance, G↑ (red
line) and G↓ (blue line), as a function of the chemical potential of
the incoming electrons. The inset displays the overall (charge) con-
ductance G = G↑ + G↓. Additional narrow plateaus in the quantum
conductance can be traced to the discrepancy of the contribution of
opposite spins.

μ

↑
↑
↓
↓

FIG. 7. (Color online) (a) Contour map of spin polarization ps vs
the energy of incoming carriers as well as applied electric field Ez.
Each unit cell consists of N = 48 atoms. (b) The spin-resolved LDOS
near the zigzag-terminated edges for the two atomic sites specified
by the A and B sublattice indexes.

role of the combination of electric and exchange fields in spin
transport, the contour plot of spin polarization ps is shown
as function of the electric field Ez and the chemical potential
of the incoming electrons μL; see Fig. 7(a). The exchange
field is assumed to be fixed as Mz = 2λso. As seen, a nearly
perfect spin polarization is attainable for low-energy incoming
carriers as long as Ez � 12 mV/�. Conversely, in the absence
of the electric field, the output current does not exhibit any spin
polarization when the value |μL| belongs to the energy range
below 0.28 eV, which corresponds to the onset of the second
energy subband. In addition, the spin direction of the polarized
conductance is opposite for the electron- and hole-type charge
carriers with μL > 0 and μL <0, respectively.

Another important feature of the resonant lines in the
map of spin polarization, shown in Fig. 7(a), is that they
occur precisely accompanied by the sharp peaks (van Hove
singularities) of the LDOS illustrated in Fig. 7(b). The van
Hove singularities, which here reflect the onset of quasi-
1D energy subbands, have been experimentally observed in
similar 1D structures such as for ordered grain boundaries
of graphene [34] or carbon nanotubes [35]. Notice that a
similar result for the LDOS as in Fig. 7(b) can be obtained by
calculating the imaginary part of the surface Green’s function,
i.e., ρj (E) = − 1

π
Im gmm(j,j ).

Effect of lattice vacancy at zigzag edges. A typical defect
that usually influences the edges of 2D honeycomb structures
is the existence of lattice vacancies [36,37]. We simulate
a vacancy by setting the corresponding on-site energy to
infinity [26,38], which impedes the occupation of the vacant
site by mobile carriers. The charge conductance in the presence
of a few vacant sites is depicted in Fig. 8(a) when an atom
with sublattice index A, two atoms with unequal sublattice
indexes, or three nearest atoms with A, B, and A sublattice
indexes are unilaterally removed from one of the zigzag
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μ

μ

FIG. 8. (Color online) (a) The charge conductance of a zigzag
ribbon with one (solid red line), two (dash-dotted blue line), and three
(dotted green line) vacancies. The perpendicular electric field is Ez =
40 mV/�, N = 48, and the exchange field is assumed to be Mz =
2λso. The thin solid line shows the conductance of a perfect ribbon.
The inset shows the charge conductance of a graphenelike system
with λso = Ez = Mz = 0. (b) Spin polarization ps as a function of
the energy of incoming electrons.

edges. To better appreciate the effect of this kind of defect,
the conductance curve of a perfect ribbon is also shown for
reference by a thin solid line. From a detailed comparison
one can find that the main difference between the cases with
and without defect is almost limited to the transition regions
connecting the discontinuous plateaus of the perfect ribbon.
The early calculations [26] that have been performed for
the LDOS demonstrate that the van Hove singularities are
particularly altered around the vacant lattice sites [38]. Noting
that these singular peaks coincide with the step transitions
shown in Fig. 4(b) and Fig. 6, for that reason the main
effect of such defect is observed in these regions. More
importantly, a single vacancy in graphenelike systems without
SOI and Ez- and Mz-dependent terms is expected to create
quasilocalized stats with zero-conductance dips [26]—at the
place of the first transition—which are illustrated in the inset

of Fig. 8(a). However, for a silicene ribbon this is not the
case for two reasons: The conductance transitions and thus the
zero-conductance dip points are split due to the electric and
exchange fields and that the intrinsic SOI results in a finite
group velocity.

Although the edge vacancies affect slightly the step
transitions of the charge conductance, there is still a fully
polarized spin conductance with ps = ±1 for the low-energy
carriers, which is shown in Fig. 8(b). As seen, the oscillations
of ps first start with pronounced peaks but they gradually
damp with increasing carrier energy. The reason can be traced
to the fact that the difference between up and down spin
conductances is always constant near the transition regions,
i.e., G↑ − G↑ = 2e2/h, while both G↑ and G↓ retain their
step increase with energy. In addition, the spacing between
spin-split bands decreases when Mz and e�Ez are both very
small compared to μL. Notice that spin polarization can be
simply inverted by reversing the electric field.

IV. SUMMARY

We have investigated spin and charge transport through a
zigzag silicene nanoribbon in the presence of external electric
and exchange fields. When only one of the aforementioned
fields is present, the band structure of the silicene ribbon is
split symmetrically into opposite spin states; the application
of only an out-of-plane electric field leads to spin inversion
with respect to the k axis, i.e., E↑(k) = E↓(−k), whereas
the presence of the exchange field creates spin inversion
with respect to the energy axis, E↑(k) = −E↓(k). Due to
the opening of energy subbands, ballistic transport results in
quantized conductance with steplike transitions. It was shown
that both spin states contribute identically to spin transport
when Mz = 0, Ez �= 0, while a partially polarized spin current
is attainable for the case of Mz �= 0 and Ez = 0. To compensate
for this drawback, in order to create a perfect spin polarization,
we showed that the simultaneous inclusion of both Ez and Mz

fields is required. In this case, it is found that the interplay
between both fields induces a spin asymmetry in the band
structure. Because of spin asymmetry, additional spin-resolved
plateaus appear in the quantum conductance, which allows the
realization of a high-efficiency spin polarizer. We also have
assessed the effect of a few edge vacancies and showed that
this type of defect has no perceptible consequences for the
induced spin polarization.
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