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Scroll configurations of carbon nanoribbons
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The carbon nanoscroll is a unique topologically open configuration of graphene nanoribbons possessing
outstanding properties and application perspectives due to its morphology. However, the molecular dynamics
study of nanoscrolls with more than a few coils is limited by computational power. Here, we propose a simple
model of the molecular chain moving in the plane, allowing us to describe the folded and rolled packaging of long
graphene nanoribbons. The model is used to describe a set of possible stationary states and the low-frequency
oscillation modes of isolated single-layer nanoribbon scrolls as a function of the nanoribbon length. Possible
conformational changes of scrolls due to thermal fluctuations are analyzed and their thermal stability is examined.
Using the full-atomic model, the frequency spectrum of thermal vibrations is calculated for the scroll and
compared to that of the flat nanoribbon. It is shown that the density of phonon states of the scroll differs from the
one of the flat nanoribbon only in the low (ω < 100 cm−1) and high (ω > 1450 cm−1) frequency ranges. Finally,
the linear thermal expansion coefficient for the scroll outer radius is calculated from the long-term dynamics
with the help of the developed planar chain model. The scrolls demonstrate an anomalously high coefficient of
thermal expansion and this property can find new applications.
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I. INTRODUCTION

During the last decades, various carbon nanostructures
have attracted increasing attention of researchers, due to
their unique electronic, mechanical, and chemical properties,
as well as many potential applications. Numerous studies
of single-layer graphene sheets and graphene nanoribbons
(GNRs) have started to take place in recent years [1–6].
Secondary graphene structures such as folds or scrolls can be
placed in a separate class of carbon nanomaterials whose exis-
tence is ensured by the action of relatively weak van der Waals
bonds between sp2-bonded monatomic carbon layers. The
observation of scrolled graphite plates under surface rubbing
was first reported in 1960 [7]. The authors of this work have
suggested that the lubricating properties of graphite are due
essentially to the rolling up of packets of layers, which then act
like roller bearings provided a low coefficient of friction. The
thickness of the scrolls was estimated as of order 100 planes.

The spiral shape and geometric parameters of carbon
nanoscrolls (CNSs) are determined by the balance of energy
gain due to increase of the number of atoms involved in van
der Waals interactions with the energy loss due to graphene
bending. Several experimental techniques for obtaining and the
study of CNSs have been reported [8–21]. CNSs can self-scroll
on nanowire templates [22]. The low-frequency interlayer
shear modes between graphene layers in few-layer graphene
and in graphene scrolls have been investigated experimentally
[23,24]. Properties of CNSs have also been studied in a
series of theoretical investigations. Electrical, optical, and
mechanical properties of short CNSs have been described
from ab initio calculations [25–27]. The effect of geometry
on the band structure of CNSs has been analyzed [28]. Carbon
nanoscrolls at the edges of suspended and substrate-deposited
graphene have been analyzed theoretically taking into ac-
count the competition between elastic energy, van der Waals
bonds, and electrostatic energy [29]. Mechanical properties

of CNSs and various scenarios of their self-assembly have
been described by means of the molecular dynamics method
[30–43]. At elevated temperatures unfolding of CNSs or folded
graphene takes place [44]. Graphene scrolling can be initiated
by one-sided hydrogenation [45].

Mechanical properties and the lowest vibration frequency
of long CNSs have been described in the framework of
the continuum model of a spiral elastic rod [31,36,46,47],
where the bending energy of the rod is compensated by the
energy gain from the interaction of adjoining walls. CNS
bundles can demonstrate enhanced mechanical properties [48].
Modification of mechanical properties of carbon nanotubes
and CNSs is possible via hybrid sp2-sp3 bonding [49].

The resonant oscillation of a CNS near its fundamental
frequency might be useful for molecular loading/release in
gene and drug delivery systems [31]. The internal hollow core
is one of the main structural features of carbon nanoscrolls.
Due to this cavity the system of coils at low temperatures can
serve as an effective storage of hydrogen atoms [6,50–54],
whereas a separate scroll can be used as an ion channel [55].
CNSs can demonstrate specific capacity better than graphene
sheets [56].

Under lateral compression the hollow-cored configuration
of the scroll demonstrates a weak resistance and the core
can collapse at a moderate load. This feature opens the
perspective for application of parallel-stacked CNSs as an
efficient device sensitive to pressure, which may be used as
nanosized pumps and filters [47,57]. CNSs are promising
in biosensor applications [58]. Simulations of buckling and
the postcritical behavior of CNSs under axial compression,
torsion, and bending have revealed the occurrence of kinks
and folds [59].

The molecular dynamics technique has proved to be a very
powerful tool for simulation of mechanical properties and
deformation mechanisms of CNSs. However, the full-atomic
models are very demanding in computational power making
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consideration of long-term dynamics of CNSs with a large
number of coils almost impossible.

Addressing these challenges, in this paper we propose
a simple model of the planar molecular chain capable of
describing the longitudinal and flexural motion of GNRs and
allowing the study of folded and/or scrolled GNRs.

In Sec. II the chain model of the carbon nanoribbon
is introduced and the parameters of the model are fitted
to some results in framework of the full-atomic model. In
Sec. III the chain model is applied to simulate the secondary
structures of single-layer nanoribbons, such as folded and
scrolled configurations. Then graphene nanoribbon scrolls are
analyzed in more details in Sec. IV. Frequency spectra of the
flat nanoribbon and nanoribbon scroll are calculated in Sec.
V using the full-atomic model. Thermal expansion of scrolls
is analyzed in Sec. VI using the chain model. Section VII
concludes the paper.

II. CHAIN MODEL OF THE CARBON NANORIBBON

The graphene nanoribbon is a narrow, straight-edged strip
of graphene. It is well known that graphene is an elastically
isotropic material and thus its longitudinal and flexural rigidity
depend weakly on chirality. For definiteness, GNRs with the
zigzag orientation will be considered as shown in Fig. 1(a).

In the flat configuration the nanoribbon is supposed to lie
in the xz plane of three-dimensional space. The nanoribbon
can be described as a periodic structure with the step a =
r0 cos(π/6), where r0 = 0.1418 nm is the C-C equilibrium
valence bond length. Let us consider such modes of the
nanoribbon motion in which the carbon atoms in the atomic
rows parallel to the z axis move as the rigid units only in the
xy plane. Under this assumption, tensile and flexural GNR
dynamics can be described by the chain of pointwise particles

n n+1 n+2n−1

(a)

(b)

x

z

FIG. 1. (Color online) A scheme for constructing the chain
model of the carbon nanoribbon. (a) Full-atomic model of the GNR
with zigzag orientation. (b) The chain model. Atomic rows of the
nanoribbon oriented along the z axis are numbered by the index n.

V(r)
U(θ)

n n+1 n+2n−1n−2
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y

FIG. 2. (Color online) Chain of particles numbered by the index
n in the xy plane, modeling tensile and bending motion of graphene
nanoribbon. Potentials V and U describe the longitudinal and bending
stiffness of the chain, respectively. The potential W (not shown here)
describes the weak van der Waals bonds acting between layers of the
chain in the folded or rolled conformations.

moving in the xy plane. Atomic rows of the nanoribbon
oriented along the z axis are numbered by the index n as
shown in Fig. 1(b).

The chain model of GNRs schematically shown in Fig. 2
can be described by the following Hamiltonian:

H =
N∑

n=1

1

2
M

(
ẋ2

n + ẏ2
n

) +
N−1∑
n=1

V (rn)

+
N−1∑
n=2

U (θn) +
N−4∑
n=1

N∑
k=n+4

Wi(rnk), (1)

where xn, yn are the coordinates of nth particle, rn = |vn|
is the distance between particles n and n + 1, with vector
vn = (xn+1 − xn,yn+1 − yn) connecting these particles, θn is
the angle between vectors vn and −vn−1, and rnk is the distance
between particles n and k (index i = 1 if the difference k − n

is an odd number and i = 2 if k − n is an even number).
The first term in Eq. (1) gives the kinetic energy of the

chain with M = 12mp being the mass of the carbon atom
(mp = 1.6603 × 10−27 kg is the proton mass) and the dot
denotes differentiation with respect to time t . The harmonic
potential

V (r) = 1
2K(r − a)2 (2)

describes the longitudinal stiffness of the chain.
The angular anharmonic potential in Eq. (1),

U (θ ) = ε[cos(θ ) + 1], (3)

stands for the flexural rigidity of the chain with cos(θn) =
−(vn−1,vn)/rn−1rn being the cosine of the nth “valent” angle.

The potential Wi(rnk) (i = 1,2) in Eq. (1) describes the
weak van der Waals interactions between particles n and k,
located at the distance rnk =

√
(xk − xn)2 + (yk − yn)2. These

interactions, acting between nanoribbon layers, must be taken
into account to describe folded or scrolled conformations of
GNRs. Without these interactions the only stable configuration
of a nanoribbon is the flat one. Graphene nanoribbon has a
very high tensile rigidity and a much weaker bending rigidity,
so the effect of the weak van der Waals interactions can
be seen only during nanoribbon bending. Sharp creases are
impossible due to finite nanoribbon flexural rigidity. Therefore,
the nearest-neighbor van der Waals interactions can be ignored
in comparison with the valence interactions. For this reason,
in the last term of the Hamiltonian (1) we consider the van der
Waals interactions starting from the fourth neighbor.
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Parameters of the Hamiltonian K and ε are determined to fit
the dispersion curves of the flat carbon nanoribbon presented
in Fig. 1(a) to the dispersion curves of the straight chain
model shown in Fig. 2. To do so, we consider dynamics of
the flat nanoribbon, in line with the chain model, assuming
that the atoms can move only in the xy plane with all atoms in
the rows along the z axis displaced equally. Let us denote the
coordinates of the nth atomic row as xn and yn and introduce
the notation for the vector un = (xn,yn). For the flat nanoribbon
the weak van der Waals interactions do not contribute to the
dynamics and can be neglected. Then the Hamiltonian for the
nanoribbon can be written in the form

H =
+∞∑

n=−∞

[
1

2
M(u̇n,u̇n) + P (un−1,un,un+1,un+2)

]
. (4)

The first term in Eq. (4) describes the kinetic energy, while
the second one stands for the potential energy of interatomic
interactions, both per one carbon atom of the nth atomic row,
located far from the nanoribbon edges. Thus, the effect of
nanoribbon edges is not taken into account or, in other words,
the nanoribbon width effect is not taken into account.

To describe the carbon-carbon valence interactions let us
use a standard set of molecular dynamics potentials [60]. The
valence bond between two neighboring carbon atoms α and β

can be described by the Morse potential

U1(uα,uβ) = ε1{exp[−α0(r − r0)] − 1}2, r = |uα − uβ |,
(5)

where ε1 = 4.9632 eV is the valence bond energy and r0 =
0.1418 nm is the equilibrium valence bond length. Valence
angle deformation energy between three adjacent carbon atoms
α, β, and γ can be described by the potential

U2(uα,uβ,uγ ) = ε2(cos ϕ − cos ϕ0)2, (6)

where cos ϕ = (uγ − uβ,uα − uβ)/(|uγ − uβ | · |uβ − uα|),
and ϕ0 = 2π/3 is the equilibrium valent angle. Parameters
α0 = 17.889 nm−1 and ε2 = 1.3143 eV can be found from the
small-amplitude oscillations spectrum of the graphene sheet
[61]. Valence bonds between four adjacent carbon atoms α,
β, γ , and δ constitute torsion angles, the potential energy of
which can be defined as

U3(φ) = ε3(1 − cos φ), (7)

where φ is the corresponding torsion angle (φ = 0 is the
equilibrium value of the angle) and ε3 = 0.499 eV.

A detailed discussion of the choice of the interatomic
potential parameters can be found in [60]. The same set of
potentials has been successfully used to simulate the heat
transfer along the carbon nanotubes and nanoribbons [62] for
the analysis of spatially localized oscillations [63–65] and also
for the investigation of theoretical strength and postcritical
behavior of deformed graphene [66,67].

Hamiltonian Eq. (4) generates the following set of the
equations of motion:

− Mün = F1(un,un+1,un+2,un+3)

+F2(un−1,un,un+1,un+2) + F3(un−2,un−1,

× un,un+1) + F4(un−3,un−2,un−1,un), (8)

where vector function

Fk = ∂

∂uk

P (u1,u2,u3,u4), k = 1,2,3,4.

It is convenient to use the relative coordinates of atoms
wn(t) = un(t) − u0

n, where u0
n are the equilibrium coordinates.

For the analysis of small-amplitude vibrations (|wn| � r0) we
use the following linearized equations of motion:

− Mẅn = B1wn + B2(wn−1 + wn+1)

+B3(wn−2 + wn+2) + B4(wn−3 + wn+3), (9)

where matrices B1 = F11 + F22 + F33 + F44, B2 = F12 +
F23 + F34, B3 = F13 + F24, B4 = F14, and matrix

Fkl = ∂

∂wk∂wl

P (0,0,0,0).

We seek the solution of the linear system Eq. (9) in the form
of the wave

wn(t) = A exp[i(qn − ωt)], (10)

where ω is the frequency of the wave, A is the amplitude vector,
and q ∈ [0,π ] is the dimensionless wave number. Substituting
Eq. (10) into the linear system Eq. (9) we obtain the dispersion
relation

|B1 + 2 cos(q)B2 + 2 cos(2q)B3 + 2 cos(3q)B4 − ω2E| = 0,

(11)
where E is the unity matrix.

The dispersion relation Eq. (11) is the second-order polyno-
mial with respect to the squared frequency ω2. The correspond-
ing dispersion relation has two branches 0 � ωy(q) � ωx(q)
as plotted in Fig. 3 by the solid lines. The low-frequency
branch ω = ωy(q) describes the dispersion of the transverse
plane waves when lattice nodes leave the nanoribbon plane and
move along the y axis (bending nanoribbon vibrations). The
high-frequency branch ω = ωx(q) represents the dispersion of
the longitudinal plane waves when the nodes move along the
x axis (longitudinal nanoribbon vibrations).

The velocity of the long-wavelength plane phonons corre-
sponds to the velocity of sound which is

vx = a lim
q→0

ωx(q)/q = 17 510 m/s

for the longitudinal phonons and

vy = a lim
q→0

ωy(q)/q = 0

for bending phonons.
Similarly, we can obtain the dispersion curves for the chain

model. In this case, potential energy in the Hamiltonian Eq. (4)
is defined as

P (un−1,un,un+1) = V (rn) + U (θn).

Potential parameters K of Eq. (2) and ε of Eq. (3) should be
chosen in a way to achieve the best fit of the dispersion curves
obtained for the full-atomic model. We are interested in the
long-wavelength modes of the nanoribbon motion, and thus
the best fit should be achieved in the range of small values of
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FIG. 3. (Color online) Dispersion curves of the wide car-
bon nanoribbon. Curve 1 stands for the longitudinal (tension-
compression) and curve 2 for the transversal (bending) phonons.
Solid lines correspond to the full-atomic model, while dashed lines
to the chain model with appropriately chosen parameters.

q. The choice

K = 405 N/m, ε = 3.50 eV (12)

assures the coincidence of the longitudinal and flexural rigidity
of the chain model and the nanoribbon, as can be seen in
Fig. 3, where the result for the chain model is plotted by the
dashed lines.

The van der Waals interactions between carbon atoms are
described by the pairwise Lennard-Jones potential [68]

W0(r) = 4ε0[(σ/r)12 − (σ/r)6], (13)

where r is the distance between two carbon atoms. The
parameters of the Lennard-Jones potential ε0 = 0.002757 eV
and σ = 0.3393 nm were fitted to reproduce the interlayer
binding energy [69], interlayer spacing [70,71], and c-axis
compressibility [72] of graphite. The potential Eq. (13) with
these parameters is shown in Fig. 4 by the curve 1.

The long-range interaction between the chain nodes n

and k is described by the van der Waals interactions of the
atoms belonging to nth and kth atomic row of the nanoribbon.
Therefore, the interaction energy can be expressed as

W1(r) =
∞∑

j=−∞
[W0(rj,1) + W0(rj,2)],

rj,1 = [r2 + (−0.5r0 + 3jr0)2]1/2, (14)

rj,2 = [r2 + (−1.5r0 + 3jr0)2]1/2,

3 4 5 6 7 8 9
−0.01
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0.02

r (A)
o

W
 (
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W
0
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W
2
(r)

W
1
(r)

FIG. 4. (Color online) The pairwise Lennard-Jones potential
W0(r) describing the van der Waals interaction between two carbon
atoms (curve 1). Solid lines 2 and 3 show the potentials W1(r)
and W2(r) (see text), while their approximation by the modified
Lennard-Jones potentials Eq. (16) are shown by the dashed lines
2 and 3.

if the difference k − n is an odd number, and

W2(r) =
∞∑

j=−∞
[W0(rj,3) + W0(rj,4)],

rj,3 = [r2 + (3jr0)2]1/2, (15)

rj,4 = [r2 + (−r0 + 3jr0)2]1/2,

if k − n is an even number.
Interaction potentials Eq. (14) and Eq. (15) are well

approximated by the modified Lennard-Jones potential

Wi(r) = 4εi{[σi/f (r)]12 − [σi/f (r)]6},
(16)

f (r) = ri(r/ri)
αi , ri = 21/6σi.

For i = 1, the modified potential parameters are ε1 =
0.008652 eV, σ1 = 0.31636 nm, and α1 = 0.86. For i = 2,
parameters are ε2 = 0.008029 eV, σ2 = 0.32607 nm, and
α2 = 0.90. The interaction potentials of nanoribbon atomic
rows Eq. (14) and Eq. (15) together with the corresponding
modified Lennard-Jones approximations Eq. (16) are shown
in Fig. 4 by the solid and dashed lines, respectively. Practically
perfect coincidence of these potentials can be observed.

Summing up, for the GNR shown in Fig. 1(a), we have
developed the chain model depicted in Fig. 2 and described by
the Hamiltonian Eq. (1) with the parameters fitted to reproduce
the long-wavelength phonon spectrum of GNRs (see Fig. 3)
and the van der Waals interactions acting between carbon
atoms in folded or scrolled conformations of the nanoribbon
(see Fig. 4). The chain model describes only such modes
of GNR deformation in which the atomic rows parallel to
z axis move as rigid units only in the xy plane but not in
the z direction. The nanoribbon width effect is not taken into
account.
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III. SECONDARY STRUCTURES OF SINGLE-LAYER
NANORIBBON

To find stable structures of a one-layer carbon nanoribbon
the following minimization problem should be considered:

E =
N−1∑
n=1

V (rn) +
N−1∑
n=2

U (θn) +
N−4∑
n=1

N∑
k=n+4

Wi(rnk)

→ min : {un}Nn=1, (17)

where the minimization of potential energy of the chain model
having N nodes is performed with respect to the coordinates
of the nodes un = (xn,yn), n = 1,2, . . . ,N . The nanoribbon
length is defined by the number of nodes, L = (N − 1)a.

The energy minimization was carried out numerically using
the conjugate gradient method. In order to check the stability of
the resulting stationary configuration {u0

n}Nn=1 we calculate the
eigenvalues of the 2N × 2N matrix of the second derivatives

B =
(

∂E

∂un,i∂uk,j

∣∣∣∣
{u0

m}Nm=1

) N, 2, N, 2

n=1,i=1,k=1,j=1

. (18)

The stationary chain configuration is stable only if all eigen-
values of a symmetric matrix B are nonnegative: λi � 0,
i = 1,2, . . . ,2N . Note that for stable configuration the first
three eigenvalues are always zero λ1 = λ2 = λ3 = 0. These
eigenvalues correspond to the rigid motion of the chain
in the xy plane, with two translational and one rotational
degrees of freedom. The remaining positive eigenvalues λi > 0
correspond to the oscillation eigenmodes with frequencies
ωi = √

λi/M,i = 4, . . . ,2N .
The stationary structure of the chain depends on the

initial configuration used to solve the minimization problem
Eq. (17). Changing the initial configuration, a variety of stable
configurations can be found. The linear chain configuration,
representing flat nanoribbons, is always stable. The weak van
der Waals interactions between nodes give rise to the existence
of other, more advantageous in energy, stationary states of the
chain in the two-dimensional space. As exemplified in Fig. 5,
the chain consisting of N = 140 nodes and having length
L = (N − 1)a = 17.070 nm, in addition to the flat state, can
be stable in (a) rolled, (b) double-folded, (c) triple-folded,
and (d) rolled-collapsed conformations. Potential energy per
node, E0 = E/N , is used to compare the energy of different
chain conformations. In the case of N = 140, the flat structure
has E0 = −0.00453 eV. For the other forms one has E0 =
−0.01395 eV for the rolled state, −0.01214 eV for the double-
folded, −0.00352 eV for the triple-folded, and −0.00662 eV
for the rolled-collapsed state. To understand these figures, one
should keep in mind that formation of van der Waals bonds
lowers the structure total energy, while the large-curvature
regions increase the energy. The rolled packing is the most
energetically favorable among the studied conformations of
the nanoribbon. All the studied nonflat structures have energy
lower than the flat one, except for the triple-folded one. This is
explained by the fact that the triple-folded structure possesses
two loops with large curvature having no van der Waals bonds,
and such loops have relatively large energy.

The dependence of the normalized energy E0 for different
stationary nanoribbon packings on its length L is shown in

(d)

(c)

(b)

(a)

-0.01395 eV

-0.01214 eV

-0.00662 eV

-0.00352 eV

FIG. 5. Stable stationary conformations of the chain model
with N = 140 nodes representing the nanoribbon of length
L = 17.070 nm: (a) rolled, (b) double-folded, (c) triple-folded,
and (d) rolled-collapsed. Not shown here is the straight stable
configuration (flat nanoribbon).

Fig. 6. In the range L < 5.77 nm the planar structure is the
only stable configuration of the nanoribbon. For L � 5.77 nm,
stable rolled structures exist. Chains with L � 6.02 nm (L �
10.19 nm) can support stable double-folded (triple-folded)
structures. The rolled-collapsed structure requires the chain
length L � 10.19 nm.

The flat nanoribbon has the lowest energy for L <

10.93 nm. For the nanoribbon length in the range 10.93 � L <

13.39 nm the lowest energy is observed for the double-folded

10
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 triple−folded

 rolled−collapsed
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FIG. 6. (Color online) Potential energy per node, E0 = E/N , as
the function of the chain length L for flat nanoribbon (curve 1),
double-folded (curve 2), triple-folded (curve 3), rolled-collapsed
(curve 4), and for the rolled structures with one-coil (curve 5), two-coil
(curve 6), three-coil (curve 7), four-coil (curve 8), and more coiled
(curve 9) structures of the nanoribbon.
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FIG. 7. Examples of the stable, equilibrium scroll structures
of the nanoribbon: (a) single-coil scroll (nanoribbon length L =
7.00 nm, energy per node E0 = 0.00881 eV, number of coils Nc =
0.96, inner and outer radii R1 = R2 = 1.11 nm); (b) double-coil scroll
(L = 7.25 nm, E0 = 0.0123 eV, Nc = 1.19, R1 = 0.97 nm, R2 =
1.021 nm); (c) double-coil scroll (L = 19.53 nm, E0 = −0.01684
eV, Nc = 1.98, R1 = 1.40 nm, R2 = 1.73 nm); (d) three-coil scroll
(L = 19.53 nm, E0 = −0.01692 eV, Nc = 2.19, R1 = 1.24 nm,
R2 = 1.63 nm); (e) three-coil scroll (L = 34.26 nm, E0 = −0.02815
eV, Nc = 2.96, R1 = 1.51 nm, R2 = 2.17 nm); (f) four-coil scroll
(L = 34.26 nm, E0 = −0.02816 eV, Nc = 3.14, R1 = 1.38 nm,
R2 = 2.10 nm); (g) four-coil scroll (L = 51.45 nm, E0 = −0.03432
eV, Nc = 3.94, R1 = 1.58 nm, R2 = 2.57 nm); (h) five-coil scroll
(L = 51.45 nm, E0 = −0.03429 eV, Nc = 4.05, R1 = 1.51 nm,
R2 = 2.54 nm).

configuration and for L � 13.39 nm the most energetically
favorable is the rolled structure (nanoribbon scroll).

IV. GRAPHENE NANORIBBON SCROLLS

In the preceding section it was shown that GNRs having
length L � 13.39 nm have the lowest energy in the rolled
conformation among the other studied configurations. That is
why here we focus on the study of nanoribbon scrolls. The
cross-sectional view of the minimum energy scroll structures
for nanoribbons of increasing length can be seen in Fig. 7.
The scroll cross section appears in the form of the truncated
Archimedes spiral always having an inner cavity. The scroll
structure is determined by the balance of energy gain caused by
increasing the number of atoms having van der Waals bonds

with the others and the energy loss due to the increase of
nanoribbon curvature.

The center of mass can be considered as the center of the
scroll:

u0 = 1

N

N∑
n=1

u0
n,

where u0
n = (x0

n,y
0
n) is the two-dimensional radius vectors of

the nth chain node of the equilibrium scroll. In the polar
coordinate system it can be written as

x0
n = x0 + R0

n cos
(
φ0

n

)
, y0

n = y0 + R0
n sin

(
φ0

n

)
, (19)

where R0
n = √

(x0
n − x0)2 + (y0

n − y0)2 and the discrete angle
φ0

n monotonically increases with increasing node number n =
1,2, . . . ,N . The spiral can be characterized by the number of
coils

Nc = (φN − φ1)/2π.

It is also convenient to define the integer number of coils
m = [Nc] + 1, where [x] is the integer part of x. Let us define
the inner radius of the scroll by its first coil:

R1 = 1

n1

n1∑
n=1

R0
n,

where n1 is the maximal value of index n wherein φn < φ1 +
2π . The outer radius of the scroll can be defined by its last coil
as

R2 = 1

N − n2 + 1

N∑
n=N−n2

R0
n,

where n2 is the minimal value of n where φn > φN − 2π .
The twisting rigidity of the scroll is characterized by

the lowest natural frequency ω1 = √
λ4/M . This frequency

corresponds to the periodic twisting/untwisting oscillations of
the scroll. In the approximation of a continuous elastic rod this
oscillation motion has been studied in [31,46].

Let us describe how the scroll structure and the lowest
natural frequency depend on the chain length (see Fig. 7 and
Fig. 8). Various conformations can be naturally characterized
by the number of coils Nc, energy per node E0, and inner and
outer radii R1, R2.

The single-coil configuration is only possible in the chain
length range 5.772 � L � 7.000 nm [Fig. 7(a)]. The double-
coil configuration is stable in the case of 7.245 � L �
20.508 nm [Figs. 7(b), 7(c)]. The chain length range 18.052 �
L � 36.718 nm corresponds to stable three-coil scrolls [Figs.
7(d), 7(e)]. For the case of 33.771 � L � 51.542 nm the
four-coiled scrolls are observed [Figs. 7(f), 7(g)]. If nanoribbon
length L � 51.0 nm, the scrolls with five or more coils exist
[Fig. 7(h)].

One can see that for nanoribbons with the same length two
stable configurations are possible. For example, in the length
range 18.052 � L � 20.508 nm stable two- or three-coil
scrolls exist [Figs. 7(c) and 7(d)]. Nanoribbons of length
33.771 � L � 36.718 nm can be packed in three- or four-coil
scrolls [Figs. 7(e) and 7(f)]. The reason for bistability is the
result of the interaction of the nanoribbon ends. One stable

035412-6



SCROLL CONFIGURATIONS OF CARBON NANORIBBONS PHYSICAL REVIEW B 92, 035412 (2015)

10
1

10
2

1

2

3

4

5

6

7

8

9

N
c

(a)

1
4

8

12

16

 single−coil scroll

 two−coil scroll

 three−coil scroll

 four−coil scroll

 five and more

 coil scrolls

10
1

10
2

0

1

2

3

4

R
 (

nm
)

(b)

2

6
5 9

10

13

14

17

18

R
1

R
2

10
1

10
2

1

2

3

4

5

ω
 (

cm
−

1 )

L (nm)

(c)

3
7

11

15

19

ω
1

ω
2

FIG. 8. (Color online) Effect of the nanoribbon length L on (a)
the number of coils of the stationary scroll Nc, (b) inner R1 (lower
curve) and outer R2 (upper curve) radii of the scroll, (c) the lowest
natural vibration frequencies of the scroll, ω1 and ω2. The curves 1,
2, and 3 correspond to a single-coil scroll; curves 4–7 to the two-coil
scroll; 8–11 to the three-coil scroll; 12–15 to four-coil scroll; curves
16–19 to the case of five and more layered structure of the nanoribbon
scroll. The dashed lines are the fitting curves: (a) Nc = 0.33L0.63, (b)
R1 = 0.67L0.2, R2 = 0.4L0.47, and (c) ω1 = 36/L, with L, R1, and
R2 given in nanometers.

configuration is when the ends are close to each other and
another one is for somewhat overlapped ends. The degree
of overlapping decreases with increasing nanoribbon length,
as can be seen in Fig. 7. Increase of the chain length leads
to weakening of the interaction between ends and thus to
weakening of the bistability of the scroll packing.

Increase in the nanoribbon length L results in the monotonic
increase in the number of coils Nc according to the power
law Nc ≈ 0.33L0.63; see Fig. 8(a). The inner scroll radius R1

increases much slower with L than the outer radius R2: R1 ≈
0.67L0.2, R2 ≈ 0.4L0.47; see Fig. 8(b). Here L, R1, and R2 are
given in nanometers.

The eigenmode having lowest positive frequency ω1 is
the twisting-untwisting mode when the atoms move along
the Archimedes spiral. The second and the third lowest
eigenfrequencies correspond to lateral compression-extension
of the scroll. For the visualization of the five lowest natural
vibration frequencies of the scroll containing N = 800 nodes
see the Supplemental Material [73]. The scroll symmetry is
lowered by the nanoribbon ends and for this reason the lateral
compression in the two orthogonal directions is characterized
by the close (but not equal) frequencies ω2 and ω3. These
frequencies depend on L nonmonotonically; see Fig. 8(c). For
ω1 the general trend is the reduction of the frequency with the
growth in L according to the law ω1 ≈ 36/L for L → ∞. This
is in line with the asymptotic behavior obtained analytically in
Refs. [31,46].

V. FREQUENCY SPECTRUM OF THE NANORIBBON
AND NANORIBBON SCROLL

Let us perform the full-atomic three-dimensional modeling
of the dynamics of the nanoribbon scrolls to verify the two-
dimensional chain model.

Let the set of two-dimensional vectors {u0
n =

(u0
n,1,u

0
n,2)}Nn=1 be the solution of the minimization problem

Eq. (17), describing a scroll packing of the nanoribbon
of length Lx = (N − 1)a. For the nanoribbon of width
Lz = 3Kr0 (the translational cell consists of 4K carbon
atoms), the three coordinates of the j th atom in the nth cell,
(xn,j,1,xn,j,2,xn,j,3), are

xn,4(k−1)+1,1 = u0
2n−1,1,xn,4(k−1)+1,2 = u0

2n−1,2,

xn,4(k−1)+1,3 = 3(k − 1)r0,

xn,4(k−1)+2,1 = u0
2n,1, xn,4(k−1)+2,2 = u0

2n,2,

xn,4(k−1)+2,3 = r0/2 + 3(k − 1)r0,

xn,4(k−1)+3,1 = u0
2n,1, xn,4(k−1)+3,2 = u0

2n,2, (20)

xn,4(k−1)+3,3 = 3r0/2 + 3(k − 1)r0,

xn,4(k−1)+4,1 = u0
2n−1,1,xn,4(k−1)+4,2 = u0

2n−1,2,

xn,4(k−1)+4,3 = 2r0 + 3(k − 1)r0,

k = 1,2, . . . ,K, n = 1,2, . . . ,N/2,

where, as above, r0 is the equilibrium C-C valence bond
length. In the case of an odd number of cells, N , the
nanoribbon consists of Nall = 2NK carbon atoms. The two-
dimensional chain model and the full-atomic nanoribbon scroll
are presented in Fig. 9 for the nanoribbon length Lx = 36.84
nm and width Lz = 2.55 nm (N = 301, K = 6, number of
atoms Nall = 2NK = 3612).

A set of interaction potentials (5), (6), (7), (13) was used for
modeling of the nanoribbon dynamics. Valence bonds between
neighboring atoms in the graphene plane are described by the
Morse potential (5), valence and torsional angles by the po-
tentials (6) and (7). Weak van der Waals interactions between
scroll coils are described by the Lennard-Jones potential (13).
Let us consider the edge carbon atoms chemically modified by
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FIG. 9. (a) Two-dimensional chain model and (b) corresponding
three-dimensional full-atomic model of the nanoribbon scroll with
the nanoribbon length Lx = 36.84 nm and width Lz = 2.55 nm (N =
301, K = 6, number of atoms Nall = 2NK = 3612).

hydrogen atoms and thus having mass of M0 = 13mp, under
the assumption that the interaction potentials for edge and
internal atoms are the same.

The dynamics of the nanoribbon having size Lx × Lz =
(N − 1)a × 3Kr0 is described by the Langevin equations

Mn,l ün,l = − ∂H

∂un,l

− �Mn,l u̇n,l + �n,l, (21)

n = 1,2, . . . ,N, l = 1,2, . . . ,4K,

where un,l = (xn,l,1,xn,l,2,xn,l,3) is the three-dimensional ra-
dius vector of the (n,l)th atom, and Mn,l is the atom mass
(Mn,l = 12mp for the internal atoms and Mn,l = 13mp for
the edge atoms). Here H is the nanoribbon Hamiltonian,
� = 1/tr is the friction coefficient, and random forces vectors
�n,l = (ξn,l,1,ξn,l,2,ξn,l,3) are normalized as follows:

〈ξn,l,i(t1)ξm,k,j (t2)〉 = 2M�kBT δnmδlkδij δ(t1 − t2).

The set of equations of motion Eq. (21) is integrated
numerically. Initial conditions corresponding to the stationary
scroll packing of the two-dimensional chain model Eq. (20)
were used. To avoid fast relaxation of low-frequency vibra-
tional modes we take sufficiently large value for the velocity
relaxation time tr = 5 ps, i.e., the thermal vibrations of the
nanoribbon of width Lz = 3Kr0 = 2.5524 nm (K = 6) and
length Lx = (N − 1)a = 12.28, 24.56, 36.84 nm (N = 101,
201, 301) will be modeled at very weak damping.

Nanoribbon structure can be characterized by its cross
section defined by the averaged over width positions of atoms
in three-dimensional space

v2n−1 = 1

2K

K∑
k=1

(un,4(k−1)+2 + un,4(k−1)+3),

v2n = 1

2K

K∑
k=1

(un,4(k−1)+1 + un,4(k−1)+4),

where n = 1,2, . . . ,N/2. This set of points defines a spiral in
three-dimensional space. For this spiral one can determine the
number of coils Nc as well as the inner R1 and outer R2 radii
as described in Sec. IV.

The Langevin set of equations of motion (21) is integrated
for the relaxation time t0 = 5 ps to define the evolution of
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FIG. 10. (Color online) The time dependence of (a) the number
of coils Nc and (b) the outer radius R2 of the scroll of length L = 12.28
(the number of units of nodes N = 101), 24.56 (N = 201), 36.84 nm
(N = 301) given by the curves 1 and 2, 3 and 4, 5 and 6, respectively.
The dashed lines give the values for the steady-state roll (temperature
T = 0 K), blue (darker) lines are for T = 30 K, and the red (light)
lines for T = 300 K.

scroll geometry in time. In Fig. 10 the time dependencies of
the number of coils Nc and outer radius R2 of the scrolls
are shown at different temperatures. At low temperature,
T = 3 K, any noticeable changes in the initial structure
of the scrolls are absent; i.e., the stationary configurations
of the three-dimensional scrolls are well described by the
equilibrium configurations of the two-dimensional chain. At
higher temperatures (T = 30 and 300 K) the initial structure
of the scroll is also preserved. The thermal fluctuations result
only in thermal expansion of the scroll (the average number
of coils and the average value of the outer radius grow with
temperature). These results confirm the high accuracy of the
two-dimensional chain model.

In order to find the phonon density of states for the
full-atomic flat nanoribbon and for the full-atomic scroll, the
Langevin equations Eq. (21) were integrated for 100 ps to
achieve the state of thermal equilibrium at the desired temper-
ature (as seen from Fig. 10 this time is sufficient for complete
thermalization), and then the thermostat was switched off and
free dynamics of atoms was studied. It was demonstrated
numerically that the flat and scrolled nanoribbons of length
Lx = 36.84 nm are both stable in the temperature range
0 � T � 900 K. The use of the full-atomic model allows us
to find the time dependence of the particle velocity on time
u̇n,l(t) and then the density of phonon states p(ω) normalized
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FIG. 11. (Color online) Phonon density of states p(ω) calculated
from thermal vibrations of atoms for the flat nanoribbon (red curves
1 and 3) and for the scroll (blue curves 2 and 4) at temperatures (a)
T = 300 K and (b) T = 900 K. The nanoribbon length and width are
Lx = 36.84 nm and Lz = 2.55 nm, respectively.

such that
∫ ∞

0 p(ω)dω = 1. The density of phonon states was
determined from 600 homogenously distributed atoms and 256
independent realizations of the initial thermalized nanoribbon
state in order to increase the calculation accuracy. The result for
the nanoribbon of length Lx = 36.84 nm and width Lz = 2.55
nm is shown in Fig. 11 for the flat nanoribbon (red curves 1 and
3) and for the scroll (blue curves 2 and 4) at temperatures (a)
T = 300 K and (b) T = 900 K. As one can see, the frequency
spectra of the flat and scrolled nanoribbons are very close.
Certain difference can be observed only in the low ω < 150
cm−1 and high ω > 1450 cm−1 frequency intervals. In the
range ω < 50 cm−1 the scroll has phonon density more than
two times smaller than the flat nanoribbon. This is due to
the fact that the rigidity of the scroll is higher than that
of nanoribbon and the low-frequency bending and torsional
vibration modes are absent in the scroll. At high frequencies
a small blueshift (by 5 cm−1) of the oscillation frequencies
is observed for the scroll. Scrolling of the nanoribbon leads
to a moderate increase of oscillation frequencies in the range
ω > 1450 cm−1 due to the van der Waals interactions of atoms
belonging to adjacent layers of the scroll.

VI. THERMAL EXPANSION OF SCROLLS

The scroll structure is stabilized by the weak van der Waals
bonds acting between coils. Thermal fluctuations weaken such
bonding leading to partial untwisting or full opening of the
scroll. The fully opened scroll transforms to the flat GNR,
while partial untwisting results in a reduction of the number
of coils and in a growth of the scroll diameter.

The full-atomic model does not allow us to simulate the
long-term dynamics of wide multicoiled nanoribbon scrolls
due to the computer capacity limitations. For example, thermal
expansion of the scroll can hardly be treated by the full-atomic
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FIG. 12. (Color online) Time evolution of (a) number of coils
Nc, (b) outer radius R2, and (c) inner radius R1 for the scroll
of the nanoribbon having length L = 110.40 nm, evaluated at the
temperatures T = 30 K (curves 1, 2, and 3), T = 300 K (curves 4, 5,
and 6), and T = 900 K (curves 7, 8, and 9).

model and this problem is addressed here in the framework of
the two-dimensional chain model.

For the simulation of thermal vibrations of the chain the
Langevin equations were used:

Mün = − ∂H

∂un

− �Mu̇n + �n, n = 1,2, . . . ,N, (22)

where un = (xn,yn) is the radius vector of the nth node, H

is the Hamiltonian of the chain Eq. (1), N is the number
of nodes in the chain, � = 1/tr is the friction coefficient
(velocity relaxation time is tr = 5 ps), and �n = (ξn,1,ξn,2)
is the two-dimensional vector of normally distributed random
forces, normalized as

〈ξn,i(t1)ξm,j (t2)〉 = 2M�kBT δnmδij δ(t1 − t2)

(here kB is the Boltzmann constant).

FIG. 13. Typical scroll configurations for the nanoribbon having
length L = 110.40 nm (number of chain nodes N = 900) at temper-
atures (a) T = 30 K, (b) T = 300 K, and (c) T = 900 K.

035412-9



SAVIN, KORZNIKOVA, AND DMITRIEV PHYSICAL REVIEW B 92, 035412 (2015)

0 300 600 900

5

5.5

6

6.5

N
c

(a)

0 300 600 900
3.6

3.8

4

4.2

R
2 (

nm
)

(b)

0 300 600 900

2

2.4

2.8

T (K)

R
1 (

nm
)

(c)

FIG. 14. (Color online) The temperature dependence of (a) the
average number of coils Nc, (b) the outer radius R2, and (c) the
inner radius R1 of the scroll of the nanoribbon having length L =
110.40 nm. Dotted lines present the linear approximations.

The set of equations of motion Eq. (22) was integrated
numerically. The stationary state of the scroll was used as an
initial configuration.

Thermal stability of the scroll depends on the nanoribbon
length L. The longer the nanoribbon, the larger the energy of
van der Waals bonds per atom and the higher the thermosta-
bility. From simulations, it was found that the single-coiled
scroll of the nanoribbon having L = (N − 1)a = 12.28 nm
(number of nodes N = 101) is stable only for T � 330 K and
at higher temperatures it fully opens in less than t = 10 ns. The
two-coil scroll with L = 24.56 nm (N = 201) was found to be
stable within the whole studied temperature range T � 960 K.
Only partial untwisting is observed for the scrolls with this and
higher values of L in this temperature range.

Let us take the scroll of the nanoribbon of length L =
110.40 nm (number of nodes N = 900) for the study of its
dynamics in the range of temperature 30 � T � 960 K. The
dependence of the number of coils Nc and inner and outer radii
R1, R2 of the scroll on time is shown in Fig. 12. As one can
see from the graph, thermal vibrations lead to decrease of the
number of coils Nc and growth of the radii R1 and R2.

Typical scroll configurations at different temperatures are
shown in Fig. 13. At elevated temperatures the spiral structure
is maintained and the inner and outer radii of the scroll increase
with temperature.

In about 1 ns thermalization of the scroll is complete and
it obtains its equilibrium configuration. Further integration of
the equations of atomic motion allows us to determine the

averaged values of the coil number N̄c and inner and outer
radii of the scroll, R̄1 and R̄2, corresponding to the given
temperature. These values, as the functions of temperature,
are plotted in Fig. 14. It can be seen that the number of coils
decreases linearly, while the radii demonstrate a linear increase
with temperature as N̄c(T ) ≈ 6.52 − 0.00142T , R̄i(T ) ≈
R0

i + c1T , where i = 1,2, R0
1 = 1.782 nm, R0

2 = 3.63 nm,
c1 = 0.00075 nm/K, and c2 = 0.00047 nm/K. The relative
increase in the outer radius of the scroll of the nanoribbon
having length L = 110.40 nm is R̄2(T )/R0

2 ≈ 1 + cT , where
the coefficient of linear thermal expansion is equal to c =
c2/R

0
2 = 1.3 × 10−4 K−1. It was found that c depends on

L such that c is higher for smaller L. For example, for
L = 73.56 nm one has c = 1.4 × 10−4 K−1; for L = 36.84
nm c = 1.8 × 10−4 K−1; and for L = 25.56 nm c = 3.7 ×
10−4 K−1.

Note that the coefficient of linear thermal expansion
calculated for the graphene scroll outer radius is two (one)
orders of magnitude larger than that for graphite in the a (c)
direction (see Ref. [74] and references therein reporting on the
experimental data) and two orders of magnitude larger than
that for diamond [75].

VII. CONCLUSIONS

In this paper, the two-dimensional chain model (see Fig. 2)
was developed to accurately and effectively describe the
dynamics of folded and rolled conformations of graphene
nanoribbons. Parameters of the chain model, Eq. (1), were
fitted to reproduce the low-frequency part of the phonon
dispersion curves of the flat graphene nanoribbon (see Fig.
3). The van der Waals interactions were fitted by the modified
Lennard-Jones potentials (see Fig. 4). The validity of the chain
model was demonstrated by comparison of the structure of the
stationary nanoribbon scrolls with the results of full-atomic
simulations.

Potential energy per atom was calculated for flat, rolled,
double-folded, triple-folded, and rolled-collapsed conforma-
tions of nanoribbon as the function of its length L (see
Fig. 5 and Fig. 6). The minimal nanoribbon length needed
for stability of each structure was found. Particularly, it was
found that for L � 13.39 nm the most energetically favorable
is the rolled structure (nanoribbon scroll) and this structure
was studied in detail (see Fig. 7 and Fig. 8). It was found
that the increase in the nanoribbon length L results in the
monotonic increase in the number of coils Nc and the inner R1

and outer R2 scroll radii. The twisting-untwisting eigenmode
having lowest frequency ω1 was calculated as the function of
nanoribbon length. For long nanoribbons the asymptotic law
was found ω1 ≈ 36/L for L → ∞, which is in line with the
earlier theoretical studies [31,46].

The full-atomic model was used to calculate the phonon
density of states for flat and scrolled nanoribbons (see Fig. 11).
It was shown that the phonon spectra for the two conformations
are very close in the entire frequency range.

One of the most important findings of the present study has
emerged from the application of the developed chain model to
the simulation of the long-term dynamics of nanoribbon scrolls
at different temperatures. It was found that the relative increase
in the outer radius of the scroll of the nanoribbon having length
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L = 110.40 nm is characterized by the coefficient of linear
thermal expansion of c = 1.3 × 10−4 K−1, which is two (one)
orders of magnitude larger than that for graphite in the a (c)
direction [74] and two orders of magnitude larger than that
for diamond [75]. Such anomaly in the coefficient of thermal
expansion can be used in the design of nanosensors or other
nanodevices.

The developed planar chain model can help to address
problems related to the dynamics of open graphene structures
not treatable by the full-atomic simulations. The results
obtained in framework of the chain model could provide a
better understanding of the mechanical properties of CNS-
based nanodevices. This model can be especially efficient
in the study of the kinetics of structural transformations of

graphene nanoribbons. This work is in progress and the results
of the study will be reported elsewhere.
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