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Coherent revival of tunneling
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We introduce a tunneling effect by a driving field, referred to as coherent revival of tunneling (CRT),
corresponding to complete tunneling (transmission coefficient = 1) that is revived from the circumstance of
total reflection (transmission coefficient & 0) through application of an appropriate perpendicular high-frequency
ac field. To illustrate CRT, we simulate electron transport through fish-bone-like quantum-dot arrays by using
single-particle Green’s functions along with Floquet theory, and we explore the corresponding current-field
amplitude characteristics as well as current-polarization characteristics. In regard to the two characteristics, we
show that CRT exhibits entirely different features than coherent destruction of tunneling and photon-assisted
tunneling. We also discuss two practical conditions for experimental realization of CRT.
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I. INTRODUCTION

Tunneling in a time-dependent field is a fundamental
subject in quantum mechanics and has been investigated
for more than 50 years [1-10]. Tunneling phenomena by a
driving field have been considered in many different contexts
in chemistry [3,4,11] and physics, including photon-assisted
tunneling (PAT) [1,2,5,10,12-22], coherent destruction of
tunneling (CDT) [6,23,24], dynamical localization [9], and
coherent quantum ratchets [25,26]. For example, PAT has been
widely explored in superconductor-insulator-superconductor
tunnel junctions [1,12], semiconductor nanostructures [13,14],
quantum dots [15,16], superlattices [17], and molecular junc-
tions [10,18-22]. CDT has been experimentally observed in an
Er:Yb-doped glass [7] and in cold atoms within a double-well
potential [8].

In this paper, we introduce a phenomenon called coherent
revival of tunneling (CRT), in which total transmission can
be achieved by an appropriate perpendicular high-frequency
ac field. In addition, we show that CRT exhibits current-
polarization characteristics completely different from those of
PAT as well as current-field amplitude characteristics distinct
from those of CDT. To demonstrate CRT, we consider the
following device setup, as shown in Fig. 1(a): a quantum-dot
array coupled to two electrodes (the source and the drain) and
exposed to a laser field. We will analyze light-driven electron
transport through quantum-dot arrays based on four different
configurations, labeled I-IV in Fig. 1(b). Configuration I is
used to demonstrate CDT, while configurations II-1V are used
to demonstrate CRT.

II. MODEL AND METHOD

In order to develop the model Hamiltonian, we adopted sev-
eral approximations, including (i) the lead-dot model, (ii) the
nearest-neighbor tight-binding model and the electric dipole
approximation for the quantum-dot arrays in a laser field, (iii) a
noninteracting electron model for the electrodes, (iv) thermal
equilibrium for the electrons in the electrodes, and (v) the
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wideband limit approximation for the coupling function. These
approximations have been extensively employed in previous
studies [10,21,23-25,27-30].

In the lead-dot model, the total system Hamiltonian
H(t) is decomposed into the dot Hamiltonian Hgy(?), the
lead Hamiltonian Heag, and the dot-lead couplings Hgot-lead>
i.e., H(t) = Hyoi(t) + Hicag + Hyot-1eaa- For the quantum-dot
arrays, we assume that each dot is placed in the x-y plane, the
distance between two nearest-neighbor dots is d, and the laser
field propagates along the z direction in Fig. 1. Moreover,
the dot Hamiltonian is treated within the nearest-neighbor
tight-binding model and the electric dipole approximation, i.e.,

Hoo(t) = Y _[Eo — ex, - EOlln)(n] + Y Apwln)(n'], (1)

nn’

where e is an elementary charge, |n) stands for the orbital
on the nth quantum dot at position r,, Ej is the on-site
energy, Ay, is the coupling between two nearest-neighbor
dots, and E(t) =E(f +T) is a monochromatic linearly
polarized electric field with a period T and angular
frequency @ =2n/T. In a practical experimental setup,
it is difficult to obtain the same couplings between dots.
To model the fluctuation of dot couplings, we assume that
A = Ay = Ao+ Ay, where Ag is a constant and A; is
a random variable which describes the variation of coupling
strength. The linearly polarized electric field E(¢) has
amplitude E and a polarization angle § in the x-y plane, i.e.,

E(t) = E(cos Bé, + sin f&,) cos wt, 2)

where &, and &, stand for unit vectors in the x and y directions,
respectively.

The two leads are described by a noninteracting electron
model, i.e., Hjy = qu €i4llq)(lq|, where |lg) stands for
the orbital with energy ¢, in lead / with mode ¢, and
I =S and D denote the source and the drain, respectively.
In addition, assuming that the electrons in the leads are in
thermal equilibrium, their average occupation number can be
expressed as the Fermi function fi(e) = (1 + el¢~#)/ks0)=1
with chemical potential u; in lead ! at temperature 6. The
dot-lead couplings are modeled as

Haotead = Y Vsq.u|Sq)(ul + Vbgo[Dg) (v] + He.,  (3)
q
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FIG. 1. (Color online) (a) A quantum-dot array coupled to two
electrodes (the source and drain electrodes) is exposed to a laser
field propagating along the z direction with polarization angle B
and frequency w. Quantum-dot arrays are placed in the x-y plane,
and the blue double-headed arrow stands for laser polarization. (b)
Quantum-dot arrays I-IV. The distance between two nearest-neighbor
quantum dots is d, and the coupling is A,,,.

where |u) (Jv)) represents dot u# (v) coupled to the source
(drain) and the element of the coupling function can be ex-
pressed as I‘l.m(E) =2 Zq |qu,m|28(6 - qu), (,m) = (S,u)
and (D,v). Consider the symmetric coupling and the wide-
band limit approximation, which corresponds to I's ,(€) =
I'p y(€) = I = const. That is, we keep only the imaginary part
of the self-energy and set ¥ = _Ti(lu)F(u| + |v)T"(v]) since
the real part of the self-energy does not play a crucial role in
the analysis.

In a time-periodic field, the time-averaged current can be
computed using [10,21,24,25,27-29,31]

_ 2e =
=5 /dé{Tlglé)(f)fs(f)—Ts(ﬁ)(e)fn(e)}, @)
k=—00

where T,\(€) = I'p (€ + khiw)s . (€)|GX(e)[*> reads the
transmission of the tunneling electron from the source to
the drain with energy € accompanied by k-photon absorption
(k > 0) or emission (k < 0). The kth component of the
retarded Green’s function G*)(¢) can be derived from the time-
independent infinite-dimensional Floquet eigenvalue matrix
equation [10,21,22]. We let Tsp(e) = Y00 T(e) and
Tps(€) = Y e o Tg;)(e); Eq. (4) becomes

_ 2 o0
=% / de[Tps(€) fs(e) — Top() fo@)l.  (5)

In arrays I-IV, the generalized parity symmetry Sgp : (r,¢) —
(—r,t + 7 /w) is satisfied [32], so we have Tsp(e) = Tps(€),
and the transmission coefficient can be defined as T'(¢) =
Tsp(e) [21]. Equation (5) reduces to a Landauer-type formula.

III. RESULTS AND DISCUSSIONS

Consider the following conditions in the experimental
setup. We assume a small applied voltage (eVsp = 0.05A¢)
and symmetric chemical potentials (us = Eo + eVsp/2,
up = Ey — eVsp/2,and Ey = 0). Figure 2 shows current-field
amplitude characteristics of the triple quantum dots I and the
fish-bone-like quantum-dot arrays II-IV. Note that in Figs. 2,
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FIG. 2. (Color online) Current-field amplitude characteristics for
VSD = 0.0SA(), kBQ = 0, Al = 0, how = 10|A0|, and T = 0.]A0,
where A = ed E is proportional to the field amplitude E. Red solid
(dashed) lines show the current through array I in a laser field with
a polarization angle 8 = 0° (90°). Green, blue, and black solid lines
correspond to currents through arrays II-IV, respectively, in a laser
field with a polarization angle 8 = 90°.

3, and 5, we do not consider variation of coupling strength and
set A} = 0. In array I, the current is strongly suppressed at
A~ 2.4,5.5, and 8.6hw [corresponding to the roots of Bessel
functions of the first kind, i.e., Jo(%) = 0] in a laser field
with 8 = 0°, where A is proportional to the field amplitude
E (A = edFE). This phenomenon is the so-called coherent
destruction of tunneling, which has been extensively studied
[27,30]. On the other hand, the current does not change with
A in a laser field with 8 = 90° because er, - E(r) = 0. In
addition, T'(¢) ~ 1 between us and up due to one of the
conduction channels at € = 0. Consequently, the magnitude
of the current can be estimated as 7 = % fde T(e) fs(e) —

fp(e)] = %VSD = 0.leAy/h, which is very close to the
numerical result (the red dashed line in Fig. 2).

On the other hand, the fish-bone-like quantum-dot arrays
II-IV in a perpendicular laser field (8 = 90°) exhibit entirely
different current-field amplitude characteristics; for example,
the current reaches the maximum at the roots of the Bessel
function, which is in complete contrast to the CDT observed
in array I in a parallel laser field (8 = 0°). To understand
this feature, we consider the transmission spectra of array
Il and the corresponding energy levels of the quasistates.
The upper and lower bright lines in Fig. 3(a) correspond
to the energies of quasistates in Fig. 3(b), indicating that
the quasistates provide conduction channels for tunneling
electrons. However, the intensity of the transmission spectra
along € = 0 changes with the field amplitude A and shows
strong transmission suppression at small A. It is intriguing
that the quasistates exist but they do not assist in tunneling.
The transmission suppression is a manifestation of tunneling
with destructive quantum interference (DQI) due to the
synergistic effect of resonant states (conduction channels).
The synergistic effect of resonant states caused by specific
structures in the absence of a driving field has been extensively
discussed in the domain of molecular electronics [33-39].
However, as A reaches the roots of the Bessel function,
the strong transmission suppression vanishes, and the total
transmission is revived (the synergistic effect of the conduction
channels disappears, and the conduction channel is revived),
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FIG. 3. (Color online) (a) Transmission spectra of array II under laser fields for Ey = 0, hiw = 10]Ag|, 8 =90°, Ay =0, and I" = 0.1A,,
where the color denotes the magnitude of transmission on a linear scale. (b) The energies of the quasistates of array Il in the first Brillouin zone

(—hw/2 < € < hw/2).

indicating that the current reaches the local maximum.
As a result, we call this phenomenon coherent revival of
tunneling.

It is interesting that the patterns of quasistate energies
in CRT and CDT are completely different (see Fig. 7 in
Appendix A). For array II, the energies of the five quasistates in
the first Brillouin zone can be solved in the high-frequency ap-
proximation (fiw > A), and they are — Agv/2 + 2|J0(h—:w[ )2,0
(three degenerate states), and Agv/2 + 2| Jo(h—zwi )|? (the details
can be found in Appendix B). Numerical results also show that
the energies of the three degenerate states are insensitive to the
field amplitude and the upper and lower lines never intersect
at € = 0. In Fig. 3, the suppression and revival of tunneling
are independent from the quasistate energies of the three
degenerate states. On the contrary, CDT results from the fact
that the quasistate energies of array I intersect with each other
at the roots of the Bessel function. In addition to numerical
results, for the CRT effect, the closed-form expression of the
Green’s functions also indicates that 7(0) ~ 1 at Jo(%) =0,
while T(0) ~ 0 at Jo(%) =1 (see Appendix B). CRT and
CDT show extremely different characteristics in the quasistate
energy plot.

The mechanism of CRT can be also understood by the
time-averaged effective Hamiltonian in the high-frequency
approximation. In a high-frequency field (hw > A(), we can
make a transformation of the Hamiltonian of array II to a
rotating frame [40], and the effective coupling in the three dots
indicated by the red box in Fig. 4 becomes A = A,y Jo(%).
As J()(%) =0, array II is nearly equivalent to array I, so
the tunneling with DQI vanishes, and the current reaches
the maximum. In addition, Fig. 2 shows that the maximum
current through array II (the green line) almost coincides with
the current through array I, which also indicates that array II
reduces to array I when JO(%) = 0. Based on this assessment,
in a high-frequency laser field with 8 = 90° and Jo(hiw) =0,
arrays III and IV are equivalent to five and seven linear
quantum dots, respectively.

The tunneling effect in a time-dependent field can be
also investigated by current-polarization characteristics. For

example, one-photon-assisted tunneling exhibits 7 o cos®
[22]; that is, the current reaches the maximum at 8 = 0° and
the minimum at 8 = 90°. It can be understood that electron
tunneling driven by electric-field oscillation is most efficient
when the directions of electron tunneling and electric-field
oscillation are the same. However, the fish-bone-like quantum-
dot arrays show different features in current-polarization
amplitude characteristics. Figure 5 shows that the maximum
current through arrays II-IV occurs at § = 90° (the directions
of current and polarization are perpendicular), while the nearly
zero current occurs at B = 0°. The nearly zero current at
B = 0° originates from CDT, while the maximum current at
B = 90° results from CRT. Moreover, the width of the current
peak in Fig. 5 becomes narrower as the length of the fish-bone
structure increases. This feature results from tunneling with
DQI enhanced by the repeated cross structures.

In practice, various experimental conditions need to be
considered. Here we discuss two of these experimental
conditions: (i) variation of coupling strength between the dots
and (ii) leakage currents caused by a breakdown electric field.
First, it is extremely difficult to obtain the same couplings
between dots. In order to model the variation of coupling
strength between dots, we assume that A is a random variable
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FIG. 4. (Color online) Mechanism of coherent revival of tunnel-
ing. Electron transport through array II in a laser field with 8 = 90°
(the green double-headed arrow denotes laser polarization). In a high-
frequency field, the coupling A, in the three dots indicated by the
red box can transform into the effective coupling Ay = A,y Jo(%}),
where Jo(£) is a Bessel function of the first kind. As Jo(;2) = 0,
array II is nearly equivalent to array I, and destructive quantum
interference caused by the fish-bone-like structure vanishes.
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FIG. 5. (Color online) Current-polarization characteristics of ar-
rays [I-IV under laser fields for iw = 10| A¢|, A = 2.405hw, A = 0,
and I = 0.1A,.

and |A;] < 0.3A. Figure 6 shows current through array IV
with uniform couplings (the red line) and with six sets of
random couplings (the black lines). We find that even in
the intermediate-frequency regime (hw = 4|A¢l), the peaks
of the red and black lines all still occur close to the roots
of the Bessel function, indicating that the feature of CRT
is not sensitive to variation of coupling strength, and CRT
can be observed in the fish-bone-like quantum-dot arrays with
imperfect fabrication. Note that variation of coupling strength
may enhance the maximum current due to the breaking of
the generalized parity symmetry. As the generalized parity
symmetry no longer holds, zero-bias current can be driven
by a time-periodic field, leading to current enhancement
or suppression [32]. Second, when the strong electric-field
oscillation is parallel to the direction of tunneling current, a
source-to-drain leakage current may occur due to electric-field
breakdown of the quantum dots. (The breakdown electric field
of excellent insulators such as Al,O3 is about 1 V/nm [41].)
However, for CRT, a source-to-drain leakage current can be
avoided because the electric-field oscillation is perpendicular
to the direction of the source-to-drain current.
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FIG. 6. (Color online) Current-field amplitude characteristics of
array IV for Vsp = 0.05A¢, k@ = 0, hw = 4|Ag|, and T" = 0.1A,.
The red line corresponds to current through array IV with uni-
form couplings (A; = 0), while the black lines correspond to
current through array IV with six sets of random couplings
(1A1] < 0.3A0).
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IV. CONCLUSION

To summarize, we have presented the concepts of CRT
and discussed the corresponding current-field amplitude and
current-polarization characteristics. The results imply that the
fish-bone-like quantum-dot arrays are good candidates for the
observation of CRT. We would like emphasize the distinctions
between CRT and CDT: (i) CRT and CDT occur in a laser
field with polarization angles 90° and 0°, respectively. (ii)
As Jo(%) = 0, CRT exhibits current enhancement (complete
tunneling), while CDT shows current suppression. (iii) No
energy-level crossing of quasistates occurs in CRT. For
a practical experimental setup, we find that CRT is not
sensitive to reasonable variation of coupling strength between
dots. Moreover, the condition 8 = 90° for CRT can avoid
unexpected tunneling mechanisms such as source-to-drain
leakage currents. Note that the Coulomb interaction and
spin-orbit coupling may influence the CRT effect. In this study,
we explored the CRT effect in the single-electron tunneling
regime (the low-bias condition). In this condition, Coulomb
interaction should not play a crucial role [42,43]. In addition,
according to a previous study [44], the spin-orbit interaction
is much smaller than A( in double quantum dots. As a
result, it is reasonable to neglect the spin-orbit interaction
in order to facilitate the theoretical analysis and provide a
clear explanation of the CRT mechanism. We hope that this
study motivates additional investigations into CRT as well as
other novel tunneling effects driven by time-dependent fields
in various contexts.
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APPENDIX A: TRANSMISSION SPECTRUM
AND QUASI-STATE ENERGY PLOT OF 1

The patterns of transmission functions and quasistate
energies in CRT and CDT are completely different. To compare
the difference between CRT and CDT, we demonstrate the
transmission spectra and the quasistate energies of array I, as
shown in Figs. 7(a) and 7(b). The bright lines in Fig. 7(a)
correspond to the energies of quasistates in Fig. 7(b). When
the three quasistate curves in Fig. 7(b) cross each other, the
effective couplings between dots become zero, leading to zero
transmission in Fig. 7(a). This is the origin of CDT.

APPENDIX B: CLOSED-FORM EXPRESSION
FOR QUASISTATE ENERGY AND GREEN’S
FUNCTION OF ARRAY II

In order to understand the origin of coherent revival of
tunneling (CRT) and the curves of the quasistate energies in
Fig. 3, we solve the time-dependent Schrodinger equation of
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FIG. 7. (Color online) (a) Transmission spectra of array I under laser fields for Ey = 0, iw = 10|Ag|, B8 =0°, A; =0, and I' = 0.1A,,
where the colors denote the magnitude of transmission on a linear scale. (b) The energies of the quasistates of array I in the first Brillouin zone
(—hw/2 < € < hw/2). As JO(%) = 0, the three quasistate energy curves cross each other, and the transmission becomes zero at A ~ 2.40,
5.52, and 8.65hw, leading to coherent destruction of tunneling.

array Il in the high-frequency limit. According to Egs. (1) and (2), the Hamiltonian of system Il in a laser field with the polarization
angle 8 = 90° is

1 12) 13) 4) |5)
(| /Ey Ay O 0 0
2| Ao Eo Ao Ay Ay
Hy(t)= (3| 0 Ay Ep 0 0 , (B1)
4l o A 0 Eo+ Acosr) 0
51\ 0 A, O 0 Eo — A cos(et)

where |n) stands for the orbital on the nth quantum dot (see Fig. 8) and A = ed E. Note that for simplicity we adopt A, ,, = Ay.

System II is coupled to the two electrodes, and the effect of the electrodes can be modeled as the self-energy term ¥ =
_Ti(| 1)I(1] + |3)I"(3]), where I" is a coupling function. To get the closed-form expression of the quasistate energies, we neglect
the contribution of the self-energy since I' < Ay, i.e., set I' = 0, and transform the Hamiltonian in Eq. (B1) into a rotating frame,

H'\(t) = U () Hy()Uror(1) — ihUrtt(I)%
Ey Ay 0 0 0
Ay Ey Ao  Apgexp [—i % sin(a)t)] Ao exp [i % sin(a)t)]
=]0 Ay Ey 0 0 , (B2)
0 A exp [i % sin(a)t)] 0 Ey 0
0 Agexp[—isin(wr)] 0 0 Ey
where
1 0 0 0
0 1 0 0
U@ =10 0 1 0 0 (B3)
0 0 0 exp [—i % sin(a)t)] 0
0 0 O 0 exp [i r:iw sin(a)t)]
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The quasistate energies and their corresponding eigenvectors
can be solved from the effective matrix equation

> ' [Hy 1) bus = G- (BS)

n

From Egs. (B4) and (B5), as Ey = 0, we can derive the
quasistate energies q; = —A¢,/2 + 2|Jo(,§iw)|2,6h=6]3=c14=0

(three degenerate states), and gs = Ag,/2 + 2|Jo(£iw)|2. g1 and
gs correspond to the lower and upper curves in Fig. 3(b),
respectively. ¢», g3, and g4 correspond to the line along
€ =0 in Fig. 3(b). Moreover, as A =0, we can derive
Jo(;%)) = 1l and g; = —g5 = —2Ay. On the other hand, when
A — o0 or % satisfies the roots of the Bessel function

[JO(%) = 0], we can obtain g; = —¢5 = —«/EAO. The two
results are in agreement with the behavior of the curves in
Fig. 3(b).

In the zero-bias limit, the time-averaged current can be
approximated as I~ 2}—1€T(M)VSD = %T(O)VSD, where u =
0 is the chemical potential of the electrodes and Vsp is the
source-drain voltage. The transmission coefficient 7 (¢) and
the retarded Green’s function GR (¢) for a tunneling electron

nn
with energy € can be computed via

T(e) = T*|GR (o), (B6)
¢nv¢n’v
GR(e) = Xv: c—a’ (B7)

©
- @ @ |-
©

FIG. 8. (Color online) Fish-bone-like quantum-dot array II. The
numbers denote the nth quantum dot, e.g., 1 stands for the first
quantum dot.
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Jn(a)e™® and the high-frequency approximation, we can derive the time-averaged effective

0 0
Do) Bod()
0 0 (B4)
Ey 0
0 Ey

(

where n and n’ correspond to the dots connected to the
electrodes. For system II, n and n’ = 1 or 3.

To compute T'(¢) and Gﬁn,(e), the self-energy contributed
from the electrodes has to be considered. ¢, and ¢,,,, in Eq. (B7)
can be solved by

—rot
Z(n/|Hﬁ) + E|n>¢nv = QU¢n’u~

n

(B8)

As T # 0, the closed forms of ¢, and ¢, are very compli-
cated. However, when I' <« A, the quasistate energies can be

approximately expressed as q; ~ —Ag,/2 + 2|J0(%)|2, G =~

g3 ~ q4 ~ 0, and g5 ~ Ag,/2 + 2|Jo(:)|>. The asymptotic

values of g, and ¢, for Jo(%) = 1 and O are listed in Table I.

. . —Trot .
The sum of eigenvalues is equal to the trace of H E’ + X, 1.e.,

—rot

> {n|Hy + X|n) = —il'. Note that in Table I we show only
the real part of ¢,, since Re(¢,,,) > Im(¢,,).
According to Table I, when JO(%) =1, we can derive

¢1v¢3v —iI
G5(0) = = ~ 0,
HO=2 —q,  128A24 2

(B9)

v

which indicates that 7(0) &~ 0 and the time-averaged current
is nearly zero in the absence of a laser field. This result is
intriguing because (i) the state v = 4 has no contribution to
transmission and (ii) the synergistic effect of the states v = 2
and 3 leads to zero transmission. In other words, the existence
of the states in a conductor does not guarantee that they can
act as conduction channels.
For JO(%) = 0, we can derive

z : ¢1v¢3v —il’ i
GR (O) = = = —|— — R
a ~ —q lea}+ 5 T

(B10)

»1|~.

TABLE 1. The asymptotic values of ¢, and ¢,, for I # 0 and
I' K Ag.

J(E) =1 Jo(#£)=0
v v o Pu qv b D3
1 —2A,—il/8 2—;5 2‘ﬁ —V2Ag—iT/4 172 12
2 —il/2 5 % —il/2 5 %
3 —il'/4 1/2 172 0 0 0
4 0 0 0 0 0 0
5 280-il/8 55 55 V200 —iT/4 172 1)2
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Substituting Eq. (B10) into Egs. (B6) and (B7), one can derive
T (0) ~ 1, and the current reaches the maximum. In addition, as
Jo(hiw) = 0, dots |4) and |5) are decoupled from the other dots.

PHYSICAL REVIEW B 92, 035410 (2015)

Consequently, the synergistic effect of the states v = 2 and 3
vanishes, and the state v = 2 becomes an efficient conduction
channel. This is the origin of CRT.
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