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Conduction electrons localized by charged magnetoacceptors A2− in GaAs/GaAlAs quantum wells
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A variational theory is presented of A1− and A2− centers, i.e., of a negative acceptor ion localizing one and two
conduction electrons, respectively, in a GaAs/GaAlAs quantum well in the presence of a magnetic field parallel
to the growth direction. A combined effect of the well and magnetic field confines conduction electrons to the
proximity of the ion, resulting in discrete repulsive energies above the corresponding Landau levels. The theory
is motivated by our experimental magnetotransport results which indicate that, in a heterostructure doped in the
GaAs well with Be acceptors, one observes a boil-off effect in which the conduction electrons in the crossed-field
configuration are pushed by the Hall electric field from the delocalized Landau states to the localized acceptor
states and cease to conduct. A detailed analysis of the transport data shows that, at high magnetic fields, there are
almost no conducting electrons left in the sample. It is concluded that one negative acceptor ion localizes up to
four conduction electrons.
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I. INTRODUCTION

It is well known that, in bulk semiconductors, donors
produce bound electron states below the bottom of the
conduction band, while acceptors produce bound electron
states above the top of the valence band. This is related to the
sign of potential energy, which is negative for donor ions and
positive for acceptor ions. A conduction electron is attracted
to the positive charge of the donor ion and repulsed by the
negative charge of the acceptor ion. Thus, ionized acceptors
participate in the scattering of conduction electrons but do
not form bound electron states in the conduction band. In
two-dimensional (2D) structures the situation may be different.
Let us consider a GaAs/GaAlAs heterojunction doped in the
GaAlAs barrier with donors and in the GaAs well with a
considerably smaller density of acceptors. Electrons from the
donors go into the well and ionize the acceptors. An ionizing
electron is near the acceptor nucleus since the Bohr radius
is small, because it is determined by the heavy-hole mass.
As a consequence, one deals with negative acceptor ions
that interact in the well with the remaining 2D conduction
electrons. It is known that, in the presence of a magnetic field
parallel to the growth direction, negative potential fluctuations
broaden the Landau levels (LLs) on the lower energy sides,
whereas positive potential fluctuations broaden LLs on the
higher energy sides. Kubisa and Zawadzki [1,2] went a step
further by observing that, in this situation, a combined effect
of quantum well and magnetic field keeps the conduction
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electron in the proximity of negative repulsive acceptor ion,
forming a system which we call A1−. The electron cannot
run away from the negative acceptor ion along the growth
direction z because of the well or along the x-y plane because
of the Lorentz force induced by the magnetic field that keeps
it on the cyclotron orbit around the ion. More specifically,
a localized electron is in a toroidal confining potential in
which the inner wall arises from the repulsive Coulomb
potential and the attractive outer wall is due to the parabolic
magnetic confinement. It was shown with the use of variational
calculations that this confinement results in discrete repulsive
energies of the conduction electrons above the corresponding
LLs, see also Refs. [3] and [4]. The discrete energies of A1−
centers in the conduction band of acceptor-doped heterostruc-
tures were observed experimentally, first in photo-magneto-
luminescence [5], then in cyclotron resonance [6], and finally
in quantum magnetotransport [7]. In the quantum transport, the
discrete states of A1− centers are manifested by the so-called
rain-down and boil-off effects in which the electrons fall down
from the localized A1− states to the delocalized Landau states
(rain-down effect) or are transferred back at higher electric
fields from the Landau states to the A1− states (boil-off
effect).

When performing the quantum-transport experiments on
Be-doped GaAs/GaAlAs heterostructures it was found that,
in sufficiently high Hall fields, one can reach a situation in
which a negative ion can localize two or more conduction
electrons. Motivated by the above results we undertake in
the present paper a theoretical and experimental analysis
of this situation. More specifically, we develop a theory of
two conduction electrons kept in the proximity of a negative
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acceptor ion by a combined effect of the quantum well and
external magnetic field, calling this system A2− center. This
theory presents a generalization of the theory for A1− centers
given in Refs. [1,2]. Further, we provide experimental evidence
that, in the Hall configuration at high Hall fields, there remain
in the acceptor-doped heterostructures almost no conducting
electrons, and we explain this phenomenon.

The problem of A2− center is reminiscent of a positive
donor ion binding two conduction electrons in the presence of
a magnetic field, which was called D− center. The D− centers
were extensively investigated theoretically and experimentally
in three-dimensional and two-dimensional systems, see for
example Refs. [8–12]. However, it turns out that, in spite of
an apparent similarity of the two situations, the physics of a
negative acceptor ion with two conduction electrons is quite
different from that of the D− center.

Our paper is organized as follows. In Sec. II we present
the theory of a negative screened acceptor ion localizing one
and two conduction electrons and give results for the corre-
sponding repulsive energies. In Sec. III we report and analyze
experimental magnetotransport data obtained on acceptor-
doped GaAs/GaAlAs heterostructures at high magnetic fields.
Section IV contains discussion of the results, and the paper is
concluded by a summary.

II. THEORY

In the following section we describe a possibility to localize
two conduction electrons on a negative acceptor ion in a
heterojunction in the presence of an external magnetic field.
This theory generalizes the description of a single electron in
the same conditions, as described in Refs. [1,2]. We do not aim
here at a high precision of calculated energies. Our purpose
is to show that, since it is a combined effect of potential well
and magnetic field that keeps the electrons in the proximity
of a negative ion, the number of conduction electrons is not
essential, and one obtains discrete repulsive energies above the
conduction Landau levels also for more than one electron.

We consider a pair of conduction electrons at positions
rj = (xj ,yj ,zj ) = (ρj ,zj ), where j = 1,2, in a heterojunction
described by the potential U (z). The electrons move in the
presence of a magnetic field B||z and interact with an ionized
acceptor located at ro = (0,0,zo). The initial Hamiltonian for
the problem reads

H =
∑
j=1,2

[
1

2m∗
(

pj + e

c
Aj

)2
+ e2

ε|rj − ro| + U (zj )

]

+ e2

ε|r1 − r2| , (1)

where m∗ is the effective mass, ε is the dielectric constant, and
Aj = [− 1

2Byj ,
1
2Bxj ,0] is the vector potential of the magnetic

field. Using the center of mass coordinate R and relative
coordinate r of the electron pair in the x-y plane:

R = ρ1 + ρ2

2
= [R cos �,R sin �], (2a)

r = ρ1 − ρ2 = [r cos φ,r sin φ], (2b)

and expressing the energy in effective Rydbergs Ry∗ =
m∗e4/2ε2

�
2 and lengths in the effective Bohr radii

a∗
B = ε�

2/m∗e2, one obtains

H = − 1

2R

∂

∂R

(
R

∂

∂R

)
− 1

2R2

∂2

∂�2
− iγ

∂

∂�
+ γ 2R2

2

− 2

r

∂

∂r

(
r

∂

∂r

)
− 2

r2

∂2

∂φ2
− iγ

∂

∂φ
+ γ 2r2

8

+ 2√
R2 + r2/4 + Rr cos(� − φ) + (z1 − zo)2

+ 2√
R2 + r2/4 − Rr cos(� − φ) + (z2 − zo)2

+ 2√
r2 + (z1 − z2)2

− ∂2

∂z2
1

+ U (z1)

− ∂2

∂z2
2

+ U (z2). (3)

Here γ = �ωc/2Ry∗, where ωc = eB/m∗c is the cyclotron
frequency. We reduce our 3D problem to an effective 2D
problem [2,13] by seeking the wave function in the form of a
product

�(R,r,z1,z2) = F (R,r)fo(z1)fo(z2). (4)

The function fo(z) is the normalized eigenfunction of the
electron in the lowest electric subband. It satisfies the equation

−d2fo(z)

dz2
+ U (z)fo(z) = Eofo(z), (5)

where Eo is the energy of the subband edge. By multiplying the
eigenenergy equation H� = E� by the product fo(z1)fo(z2)
and integrating over z1 and z2, one obtains the equation for
F(R,r) in the form H2DF = (E − 2Eo)F , where

H2D = HR + Hr + V1 + V2 + V12 (6a)

is the effective 2D Hamiltonian for the pair of electrons. Here

HR = − 1

2R

∂

∂R

(
R

∂

∂R

)
− 1

2R2

∂2

∂�2
− iγ

∂

∂�
+ γ 2R2

2

(6b)

and

Hr = −2

r

∂

∂r

(
r

∂

∂r

)
− 2

r2

∂2

∂φ2
− iγ

∂

∂φ
+ γ 2r2

8
(6c)

represent the kinetic energies of the center of mass and
relative motions,

V1 =
∫ ∞

−∞

2f 2
o (z1)dz1√

R2 + r2/4 + Rr cos(� − φ) + (z1 − zo)2

(6d)

and

V2 =
∫ ∞

−∞

2f 2
o (z2)dz2√

R2 + r2/4 − Rr cos(� − φ) + (z2 − zo)2
(6e)

are the effective 2D impurity potentials, and finally

V12 =
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

2f 2
o (z1)f 2

o (z2)√
r2 + (z1 − zo)2

(6f)

is the effective 2D potential of electron-electron interaction.
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Energy E2e of the ground state of the Hamiltonian (6) is
evaluated by the variational method. We use the following
two-parameter trial function

F2e(r,R) = 1

2παβ
exp

(
− R2

2α2
− r2

8β2

)
. (7)

The variational parameters α and β have simple physical
meanings: α is the radius of the center-of-mass motion
around the acceptor, while β is the average distance between
two electrons. Since the electrons are indistinguishable, the
total wave function must change sign under the permutation
of particles. To satisfy this condition, the ground state (7)
corresponds to the singlet state having electron spins in
opposite directions. Our trial function is less refined than
that of the Chandrasekhar type used in the studies of D−
centers [14]. As we mentioned above, our main goal is to
show that a negative charged acceptor can localize a pair of 2D
electrons. This does not require sophisticated trial functions.

The expectation value of H2D can be evaluated as

〈F2e|HR|F2e〉 = γ 2α2

2
+ 1

2α2
, (8a)

〈F2e|Hr |F2e〉 = 1

2β2
+ 1

2
γ 2β2, (8b)

〈F2e|V1|F2e〉 = 〈F2e|V2|F2e〉 = 2
∫ ∞

0
R(q,zo)Lo

(
β2q2

4

)

× exp

(
−α2 + β2

4
q2

)
dq, (8c)

〈F2e|V12|F2e〉 = 2
∫ ∞

0
H (q)Lo(β2q2) exp(−β2q2)dq, (8d)

where

R(q,z) =
∫ ∞

−∞
f 2

o (z
′
) exp(−q|z′ − z|)dz′, (9a)

H (q) =
∫ ∞

−∞
f 2

o (z)R(q,z)dz, (9b)

and Lo(x) is the Laguerre polynomial. The formulas presented
above apply to the case of unscreened Coulomb potential. It
can be shown that, in order to account for the screening by 2D
electrons in the manner described in Ref. [15] the expectation
values of Coulomb terms in Eqs. (8) should be replaced by

〈F2e|V1|F2e〉 = 〈F2e|V2|F2e〉 = 2
∫ ∞

0

R(q,zo)

1 − �(q)H (q)
Lo

×
(

β2q2

4

)
exp

(
−α2 + β2

4
q2

)
dq, (10a)

〈F2e|V12|F2e〉 = 2
∫ ∞

0

[
H (q) + R(q,0)�(q)G(q)

1 − �(q)H (q)

]
Lo(β2q2)

× exp(−β2q2)dq, (10b)

where

G(q) = 2
∫ ∞

−∞
dz1f

2
o (z1)

∫ ∞

−∞
dz2f

2
o (z2)R(q,z1 − z2). (11)

Function �(q) describes the polarization. We take [16]

�(q) =
⎧⎨
⎩

− 2
q

(q < 2kF )

− 2
q

[
1 −

√
1 − ( 2kF

q

)2
]

(q > 2kF )
, (12)

where kF = (2πNa2
B)1/2 is the Fermi wave vector and N is the

density of 2D electrons. Formula (12) is valid for the complete
degeneracy of the 2D electron gas at T ≈ 0, and it neglects the
influence of magnetic field on the screening, see Ref. [17].

Considering a heterojunction GaAs/Ga1−xAlxAs, we deal
with a potential well U (z) which takes into account the band
offset, the depletion charge, and the electron charge in the
well. We take the Ando trial function fo(z) for the lowest
electric subband [18]. This function includes the penetration
of confined electrons into the Ga1−xAlxAs region due to a
finite height of the barrier. This penetration is of importance
for impurities located near the interface. We perform the
calculations for the Al content x = 0.33, which corresponds
to the barrier height (offset) V0 = 0.257 eV, and the effec-
tive masses m∗(GaAs) = 0.066 mo and m∗(Ga0.67Al0.33As) =
0.073 mo. The dielectric constant ε = 12.9 is assumed to
be the same throughout the entire structure. For the 2D
electron density and the depletion density we take typical
values of N = 1.36 × 1011 cm−2 and Ndepl = 6 × 1010 cm−2,
respectively. Functions R(q,z), H (q), and G(q), defined by
Eqs. (9) and (11), can be evaluated analytically. However,
the corresponding formulas are rather lengthy and they are
not shown here. Due to the simple form of the trial function
(7), the variational calculations require computation of only
one-dimensional integrals [cf. Eqs. (8) and (10)].

We want to compare results for two-electron energies with
those of one-electron ones. To this end we also calculated the
ground state energy E1e of the one-electron state localized by
a negatively charged acceptor. We used the trial function

F1e(ρ) = 1

λ
√

2π
exp

(
− ρ2

4λ2

)
, (13)

where λ is a single variational parameter. This function is
simpler than that used in Ref. [2], and it is expected to give good
results at high magnetic fields. In analogy to the one-electron
binding energies of Do and D− centers [14], we define

Er (1e) = E1e − γ (14a)

as the energy required to localize the first electron on a negative
acceptor ion and

Er (2e) = E2e − (E1e + γ ) (14b)

as the energy required to add the second electron to the
acceptor already occupied by one electron. Here E2e is the
energy of the two-electron ground state while E1e is
the corresponding energy of the one-electron state. These are
evaluated using the trial functions (7) and (13), respectively.
The quantity γ is equal to the lowest energy of the free electron
on the ground Landau level.

In Fig. 1 we show the main results of our theory for
a GaAs/GaAlAs heterostructure. It is seen that both one-
electron and two-electron energies vanish at B = 0, which
reflects the fact that at a vanishing magnetic field there
are no localized electron states. One can also see that the
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FIG. 1. Calculated one-electron and second-electron repulsive
energies of conduction electrons confined to the proximity of a
negatively charged acceptor ion by a combined effect of the quantum
well and a magnetic field in a GaAs/GaAlAs heterostructure, see text.
Width of GaAs layer is 25 nm, and the acceptor layer is 2.5 nm from
the interface with the donor-doped GaAlAs barrier.

screening considerably diminishes the repulsive energies. One
should mention that the calculated one-electron energies are
noticeably smaller than those obtained in Ref. [2]. The reason
is that, as we mentioned above, the presently used trial
functions are simpler.

For the unscreened energies there is Er (2e) ≈ 2 · Er (1e),
which can be easily understood: For the first electron the repul-
sive charge is −e while for the second electron the repulsive
charge is −2e (one immobile and one mobile electron). The
difference between Er (1e) and Er (2e) becomes smaller with
the screening. It is because the Coulomb interaction between
two mobile charges is screened more strongly [see Eq. (10a)]
than that between a mobile and an immobile charge [see
Eq. (10b)]. All in all, it follows from Fig. 1 that the total
energy necessary to localize the second conduction electron by
an acceptor is higher than that necessary for the first electron.
As a consequence, one expects that, in an experiment, one first
populates all available acceptor ions with single electrons and
only then begins to populate them with second electrons. We
show in the experimental part that this is what indeed happens.

III. EXPERIMENT

Our magnetotransport experiments were carried out on
GaAs/Ga0.73Al0.27As heterostructures delta doped in the
GaAlAs barrier with Si donors and in the GaAs well with
Be acceptors. Preliminary results of these experiments were
reported in Ref. [7], but we show them here for completeness.
The experiments were performed on symmetric double-cross
samples with the current imposed and the voltage drop
measured across the sample. This was done with a dc current
source Keithley 220 and HP 33401 volt meters to measure the
Hall voltage (Vxy) and the Shubnikov-de Hass voltage (Vxx)
within a current intensity range 10 nA–10 μA.

In samples not doped with acceptors the quantized Hall
breakdown was observed when the current was sufficiently
high, in agreement with the observations of other authors.
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FIG. 2. Magnetotransport characteristics of sample 35A55 doped
in the well with acceptors, as measured in dc experiments. At higher
currents a sharp increase of both ρxx and ρxy is observed in the ultra
quantum limit of magnetic field ν < 1.

However, for samples doped with acceptors and particularly
for the sample 35A55, in which the density of Be atoms
Na = 4×1010 cm−2 was nearly equal to one third of the
2D electron density N , well before the breakdown a very
strong increase was observed for both ρxx and ρxy at high
magnetic field (for the filling factor ν < 1). This is shown
in Fig. 2. The large increase of resistivity components is
interpreted as a consequence of a strong decrease of 2D
electron density N caused by an increasing Hall electric field
Fy . In our experiments the Hall field is always stronger than
the applied driving field Fx . It was demonstrated theoretically
in Ref. [7] that a sufficiently high Hall field induces transitions
of electrons into empty localized magnetoacceptor states
(the boil-off effect). This effect diminishes the density of
conducting electrons. The existence of empty acceptor states
implies that the Fermi level is below the acceptor level, which
occurs in the ultra quantum limit. In the dc conditions with
a stabilized current, the boil-off process has an avalanche
character because the increase of resistivity at a constant
current induces a higher driving field. This results in a higher
Hall field driving more electrons to the localized acceptor
levels which in turn increases the resistivity even further and
so on. If experiments are carried in the conditions stabilizing
the driving voltage rather than the current, the boil-off effect
is still observed, but it does not have an avalanche character,
see Ref. [7].

The phonon and impurity mechanisms causing electron
transitions between the free electron states and the A1− states
were described and discussed in Ref. [7]. Here we will
indicate the transfer processes schematically. The free electron
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FIG. 3. (a) Free electron and magnetoacceptor energies in the
sample in crossed electric and magnetic fields in the homogeneous
electric field approximation (schematically). (b) Corresponding den-
sity of states (DOS). The boil-off process takes place when the Landau
level at the right sample edge and the A1− level at the left sample edge
begin to overlap.

energies in crossed electric and magnetic fields are (assuming
a homogeneous Hall field Fy)

E = �ωc

(
n + 1

2

)
+ eFyyo − 1

2
m∗c2

F 2
y

B2
, (15)

where yo = kx(�c/eB) is the center of the magnetic motion if
one chooses the asymmetric gauge for the magnetic potential:
A = [−By,0,0]. It is seen that in the presence of electric
field the electron energy depends on its position yo in the
sample. In the following we consider the lowest Landau
level 0+ and omit the shift of all levels given by the last
term in Eq. (15). As shown above, the localized An− states
have their energies above the free Landau energies. Figure 3
shows schematically the energy levels across the sample in
the model of uniform electric field and the corresponding
density of states. Measuring ρxx and ρxy resistivities it is
possible to determine the free electron density N in the sample.
Elementary considerations for the transport in a magnetic field
lead to the formula (see Ref. [19])

N = Bρxy

e
(
ρ2

xy + ρ2
xx

) . (16)

We intend to show the electron density N (B) determined from
the data given in Fig. 2 with the use of formula (16) for the
acceptor-doped sample.

However, in order to appreciate the effects introduced by the
acceptors, we show first for comparison in Fig. 4 density N (B)
determined by the same procedure for a reference sample not
doped intentionally in the well. It is seen that N (B) in the
quantum Hall regime oscillates a little around the value at
B = 0. The linear increases of N (B) correspond to quantum
Hall plateaus. We believe that these small oscillations are due
to an electron transfer between the GaAs quantum well and an
outside reservoir, as discussed in detail in Ref. [20].

In contrast, the electron density for the acceptor-doped
sample 35A55, as given in Fig. 5, presents a completely
different picture. This figure, showing N (B) at different fixed
driving currents Ix , is our main experimental result. At low
magnetic fields, which correspond to weak driving and Hall
electric fields, N (B) oscillates around the density value N (0) at
B = 0. The linear increase of N around B = 3 T corresponds

FIG. 4. Conduction electron density N versus magnetic field
measured for a reference GaAs/GaAlAs heterostructure not doped
intentionally in the well. The density N (B) oscillates slightly around
its value N (0).

to the quantum Hall plateau at ν = 2. At fields higher than 4 T
the density is higher than N (0) which, we believe, is due to the
rain-down effect of electrons falling from the localized A1−
states to the conducting free electron Landau states. Finally,
for the filling factor ν < 1 and sufficiently large currents,
a decrease of the density is observed (stronger for higher
currents), corresponding to the boil off of conduction electrons
transferred from the free Landau states to the consecutive
localized An− states. One should bear in mind that, as we
explained above, higher magnetic fields result in stronger
Hall fields, so the boil-off regime corresponds to much higher
electric fields than the rain-down regime. Also, higher driving
currents result in higher Hall fields; as a consequence the strong

FIG. 5. Conduction electron density N versus magnetic field at
different constant currents, as determined from Fig. 2 and Eq. (16) for
the GaAs/GaAlAs sample 35A55 doped in the well with Be acceptors.
As the field B increases, the 2D electrons participate consecutively in
the quantized Hall effect, the rain-down effect and the boil-off effect,
see text.
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decrease of electron density due to the boil off occurs at lower
magnetic fields.

One can try to estimate experimentally the repulsive energy
Er (ne) corresponding to the offset of boil off for consecutive
electrons if one assumes that the electric field in the sample is
homogeneous, see Fig. 3. One can read ρxy directly from Fig. 2.
On the other hand, it follows from Fig. 3 that UH = eVH =
eIxρxy = Er (ne). For Ix = 0.2 μA the onset of the decrease
of N is at B = 7.6 T. One reads in Fig. 2 ρxy = 27.7 k� for
the above current and field, which gives Er (1e) ≈ 5 meV in
a reasonable agreement with the theoretical result shown in
Fig. 1 for the unscreened regime. However, we do not attach
too much importance to this estimation since the Hall electric
field in the sample is probably nonhomogeneous, see, e.g.,
Ref. [21]. It is remarkable that all the incidents seen in Fig. 5
on the curves for various currents occur for the density intervals
�N ≈ 4 × 1010 cm−2, equal to the number of acceptors. This
strongly indicates that the decrease of N as a function of B is
related to the acceptors. It is seen that at sufficiently strong
magnetic fields the free electron density falls almost to zero.
In our interpretation this indicates that almost all electrons are
localized by magnetoacceptors. In the sample of our interest
the highest electron density is N (0) ≈ 1.36 × 1011 cm−2,
while the acceptor density is Na = 4 × 1010 cm−2. This means
that at high fields one acceptor localizes roughly four electrons.
As mentioned in the introduction, this result motivated us to
undertake the two-electron calculation presented above. Since
two localized electrons have a higher repulsive energy than
one electron, their localization occurs at a higher magnetic
field and the resulting higher Hall electric field. Thus, as both
fields increase, the electrons first populate one-electron states
of all acceptors, then begin to populate two-electron states, etc.
In Fig. 5 one can see slope discontinuities which occur on the
N (B) curves for the currents 0.8 μA and 1 μA around N =
6 × 1010 cm−2. In our interpretation, these accidents indicate
that the electrons begin to populate four-electron states.

To summarize, we present here two important results. First
is the striking contrast between the reference sample and the
acceptor-doped sample shown in Figs. 4 and 5, indicating
that the difference is due to acceptors. Second is the fact
that at higher Hall fields there are practically no conducting
electrons left in the sample, as seen in Fig. 5. This feature
is in complete opposition to the donor-doped samples in
which a high electric field delocalizes the electrons, while
in our acceptor-doped sample a high electric field localizes the
electrons.

IV. DISCUSSION

Our work confirms the existence of discrete magnetoac-
ceptor energies in the conduction band above the free-electron
Landau levels, related to electron confinement in the vicinity
of ionized acceptors by the joint effect of quantum well and
external magnetic field. The presented theory of two electrons
localized by a charged acceptor supports the experimental
findings indicating that an ionized acceptor can localize
more than one electron. The presented magnetotransport
data on the electron rain-down and boil-off effects concur
with the evidence provided by photo-magneto-luminescence

and cyclotron resonance experiments carried on Be-doped
GaAs/GaAlAs heterostructures, see Refs. [5–7].

On the basis of the presented theory it is qualitatively
clear that an ionized acceptor can also localize three or more
electrons. The ground states for the third and higher electrons
will have higher energies than that for two electrons so that, in
order to be populated, they will require higher electric fields
in the crossed field configuration. In our arrangement it means
that they will be populated at higher magnetic fields. This is
what one observes.

In our treatment we did not consider electron scattering. In
the absence of the acceptor potential all magnetic orbits are
equivalent; they have the same energy and the latter does not
depend on the position of the orbit center. As a consequence,
such an electron can be easily scattered by an impurity or a
low-energy phonon. If, on the other hand, an electron circles
around the acceptor on the cyclotron orbit, a scattering event,
changing its orbit, changes also its energy. Such an event may
not take place for the elastic process caused by an impurity. At
low temperatures there are no phonons, so the latter can only
be emitted if the energy conservation is satisfied. If the emitted
acoustic phonon has a small energy, the electron falls down
from the ground (highest) state to a lower one, corresponding
to one of the negative quantum numbers M . In this situation the
electron is still localized on a larger orbit. Only if the phonon
energy is equal to the repulsive energy of the ground state can
the electron become free. As a consequence, the electrons
localized by acceptors can hardly become conductive also
in the presence of low-temperature scattering. As mentioned
above, the calculation of probabilities for transitions between
free and localized states in crossed electric and magnetic fields
was given in Ref. [7].

We emphasize that the analysis of the electron density
behavior N (B), presented in Fig. 5, is based on the classical
formula (16) which follows from the Drude formulation of
magnetotransport phenomena. This formula should be valid
for our purposes since we operate mostly in the nonquantum
range of electron behavior, while the quantum Hall effect is
seen only for magnetic fields B < 4 T. The validity of formulas
of the type [Eq. (16)] in the quantum range was reviewed in
some detail in Ref. [20].

It should be mentioned that the increase of conductive
electron density, which we attribute to the rain-down effect,
was observed also in experiments of other authors, see
Refs. [22–24]. In addition, Buth et al. [23] in their magne-
totransport experiments on acceptor-doped heterostructures
found at higher magnetic fields a strong decrease of conducting
electron density N , which the authors ascribed to “localization
of the electrons into the droplet phase.” This observation is
similar to ours, but we interpret it above as the localization by
acceptor ions. The localized states due to repulsive potentials
in quantum wires in the presence of a magnetic field were
described by Gudmundsson et al. [25]. Instead of the term
“repulsive energy” employed in our paper, the authors used
the term “negative binding energy.” An indication that we deal
with the localization of consecutive electrons by acceptors
is that one observes accidents, at least on some of the N (B)
curves, in intervals equal to the number of acceptors, see Fig. 5.

As mentioned in the introduction, a positive donor ion with
two conduction electrons, i.e., the D− center, bears some
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similarity to the negative acceptor ion with two conduction
electrons, i.e., the A2− center, considered above. However, the
physics of the two systems is different. The positive donor ion
truly binds the first electron and becomes neutral. The second
electron is only bound because the spatial charge distributions
of the positive ion and the negative first electron are different.
Binding of the second electron is weak and the corresponding
binding energy small. As to the negative acceptor ion, since the
conduction electrons are kept in its proximity only due to the
combined effect of the well and magnetic field, the number of
such electrons is in principle not limited. The discrete energy
of the first electron above the Landau level is determined by the
repulsive force of two elementary charges. The energy of the
second electron is roughly determined by the repulsive force
between the negative ion plus the first electron and the second
electron. As a consequence, this energy is larger than that of
the first electron, as confirmed by the calculation. The above
reasoning can be generalized to further conduction electrons
localized by the negative acceptor ion.

Finally, we want to briefly discuss the meaning of words
used in the description of A1− and A2− centers, since they
were often a source of confusion in the past. In contrast to the
donor case, in which the conduction electrons are truly bound
by the positive donor ion, the negative acceptor ion does not
confine and does not bind the conduction electrons, so that
in this case one can not talk about the binding energy. Here
the confinement also takes place, but it is a consequence of
the quantum well and an external magnetic field. Thus, in the
acceptor case one can only talk about the discrete repulsive
electron energies above the free-electron Landau levels. The
electron (cyclotron) orbits encompass the negative ion and
their wave functions are localized in space, as it was explicitly
shown in Refs. [1,2]. The quantum variational theory shows
that one deals with discrete repulsive electron energies for
the negative ions located not only in the well but also in the
barrier [2].

As far as future possibilities are concerned, on the the-
oretical side one can construct a theory for three or more

conduction electrons localized by a negative acceptor ion.
According to our interpretation, such centers are already
observed in the experiments reported above, see Fig. 5. On
the experimental side, one should certainly try to investigate
other heterostructures than GaAs/GaAlAs doped with other
acceptors, for example C atoms. One could also completely
reverse the situation by investigating p-type heterostructures
doped additionally in the well by donors.

V. SUMMARY

We study, both theoretically and experimentally, new
discrete quantum states in GaAs/GaAlAs heterostructures
created by two conduction electrons localized by a negative
acceptor ion, the GaAs quantum well. Such a system, which
we call the A2− center, is kept together by a combined effect
of the well and an external magnetic field B parallel to
the growth direction. The latter provides the Lorentz force
keeping the electrons on cyclotron orbits near the negative
ion. A variational theory of A2− is presented, showing that
the second electron has a considerably higher discrete repulsive
energy above the Landau level than the first one. The An−
centers are also studied experimentally with the use of quantum
magnetotransport phenomena. Free 2D electron density N (B)
is determined in acceptor doped heterostructures and it is
shown that in one experimental run one observes the quantum
Hall effect, the rain-down effect in which electrons fall down
from the localized acceptor states to the delocalized Landau
states, and the boil-off effect in which the electrons are pushed
back by a high Hall electric field from the Landau states to
the acceptor states. The repulsive energy for one electron
is estimated from the incidents on the N (B) dependence
using the homogeneous approximation for the Hall field and
shown to be in reasonable agreement with our variational
calculations. At sufficiently high magnetic fields there are
almost no conducting electrons left in the sample, which
provides the evidence that one negative acceptor ion may
localize up to four conduction electrons.
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