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We study the relation between the models commonly used to describe the dynamics of nonresonantly pumped
exciton-polariton condensates, namely the ones described by the complex Ginzburg-Landau equation, and
by the open-dissipative Gross-Pitaevskii equation including a separate equation for the reservoir density. In
particular, we focus on the validity of the adiabatic approximation and small density fluctuations approximation
that allow one to reduce the coupled condensate-reservoir dynamics to a single partial differential equation.
We find that the adiabatic approximation consists of three independent analytical conditions that have to be
fulfilled simultaneously. By investigating stochastic versions of the two corresponding models, we verify that
the breakdown of these approximations can lead to discrepancies in correlation lengths and distributions of
fluctuations. Additionally, we consider the phase diffusion and number fluctuations of a condensate in a box, and
show that self-consistent description requires treatment beyond the typical Bogoliubov approximation.
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I. INTRODUCTION

Exciton-polaritons are coherent superpositions of quantum
well excitons and microcavity photons, resulting from strong
coupling of the two modes at resonance [1-3]. The mixed
nature of these quasiparticles is attractive from the point of
view of fundamental and applied research in many ways.
The matter component provides strong interactions, while the
photonic component yields very light effective mass and allows
for straightforward detection. Condensation and supefluidity
of polaritons or polariton lasing has been demonstrated in
many laboratories, even at room temperature [4—11].

In the case of nonresonant pumping, polaritons can be
created either using a beam at frequency above the polariton
resonance or using electrical carrier injection [12]. Free
carriers and high-energy excitons undergo energy relaxation
towards the polariton ground state, where they can condense
[7]. Theoretical description of this complicated process,
involving scattering with phonons and other polaritons is a
formidable task, and several approaches have been proposed
in the past with various approximations involved [13—18].
Among these, phenomenological models based on various
generalizations of the Gross-Pitaevskii equation [19-21] have
been particularly useful thanks to their simplicity and limited
number of external parameters. The most commonly used are
the complex Ginzburg-Landau equation (CGLE; also termed
the generalized GP equation in some works), with a single
equation for the condensate evolution, and the open-dissipative
Gross-Pitaevskii equation (ODGPE; other names are also used
in the literature) [20], which attempts to describe the full
system dynamics using a pair of coupled condensate-reservoir
equations. It has been pointed out in several places [22—24] that
the ODGPE model can be reduced to the CGLE model under
the adiabatic (quickly responding reservoir) approximation,
but the validity of this approximation has not been investigated
in detail.

In the first part of the paper, we investigate systematically
the relation between the the CGLE the ODGPE models.
We establish precisely conditions under which the reduction
to the CGLE model is justified; contrary to the common
belief, we show that the fast reservoir relaxation alone
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is not a sufficient condition. We show that adiabaticity
requires three independent analytical conditions to be fulfilled
simultaneously. Additionally, the condensate must remain
close to the steady state, since large fluctuations may lead
to complete breakdown of the correspondence between the
models. Such large fluctuations occur in particular close to the
condensation/stability limits of the condensate phase diagram.

In the second part of the paper, we investigate how the
breakdown of the above approxiamtions influences the steady
state solutions of the corresponding stochastic CGLE/ODGPE
models. Recently, fluctuations of nonequilibrium quantum
fluids became a very active area of research. Spatial [25,26]
and temporal [27,28] correlations have been investigated in
the small fluctuations regime, and the critical scaling proper-
ties have been established using the renormalization group
[28-30]. Dynamics of the polariton condensation phase
transition have been shown to display similarities with the
Kibble-Zurek theory of universal dynamics [31,32]. Here, we
show how the spectrum of fluctuations and spatial correlations
are modified in the nonadiabatic regime as well as in the
large fluctuations regime. In particular, we demonstrate the
appearance of dark solitonlike structures and chaotic bistable
steady states close to the limits of condensate stability in
parameter space in the ODGPE model.

In addition, we consider a model of a condensate in a box,
in which case condensation may occur despite the absence
of true long-range order at low dimensions [25,33,34]. We
show that a self-consistent description requires treatment
beyond the typical Bogoliubov approximation, and demon-
strate how the zero-momentum singularity of the momentum
distribution spectrum [25] can be avoided by an appropriate
generalization of the Bogoliubov ansatz. This allows for the
determination of the number fluctuations and condensate phase
diffusion equation.

The paper is organized as follows. In Sec. II we introduce
the CGLE and ODGPE models as well as their stochastic
versions, in particular the stochastic Gross-Pitaevskii (SGPE)
model being a generalization of the CGLE. In Sec. Il we derive
carefully the conditions under which the adiabatic reduction of
the ODGPE to the CGLE model is justified. In Sec. IV we recall
briefly the main analytical results concerning the fluctuations
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and spatial correlations of the condensate. We also present the
analysis of the fluctuations and phase diffusion of a condensate
confined in abox. In Sec. V we present numerical investigation
of the properties of stochastic steady states in various regimes.
Section VI concludes the paper.

II. MODELS

In this section, we define the theoretical models that will
be the subject of our study. The models were chosen for
to their simplicity and widespread use. A number of more
sophisticated descriptions exist in the literature, many of
them being generalizations of the ones considered here. These
include, in particular, the ones which treat the kinetics of the
reservoir or polariton scattering in a more detailed way, or
describe the energy relaxation of polaritons [15,21,35], which
can be introduced at least in two different ways [15]. While
these effects are certainly important in some experiments,
the simple models described below were successfully used
to explain a large number of experiments in exciton-polariton
condensates.

A. Complex Ginzburg-Landau equation

The simplest dissipative model to describe one-dimensional
exciton-polariton condensates is the complex-Ginzburg-
Landau equation (CGLE)

idp =[A— BV>+Clo|> +i(D — Elp|P)pdt
+dWeaL, (D

where for future reference we additionally included the
stochastic term d WcgLe(X,t) which vanishes in the classical
limit. The real parameters of the equation describe the
energy offset (A), the dispersion coefficient (B), nonlinear
interactions (C), external pumping (D), and nonlinear losses
(E). In the case of interest the parameters B, C, D, and
E are positive, which guarantees the existence of a stable
homogeneous solution ¢(x,t) = ¢oe "* = /D/Ee~"* with
w = A+ Clpo|*> [36]. Compared to the most general form
of the CGLE, we assume no diffusive term (as B is real),
although models including the diffusive term have also been
employed [19,29]. Such term can be used to describe the
energy relaxation processes in the condensate. It is, however,
not crucial to our considerations. We note that the coefficient
A can be removed simply by moving to a rotating frame
where ¢'(x,1) = ¢(x,t)e'4’, provided that the noise is not
time-correlated.

A generalized form of the CGLE, or the stochastic Gross-
Pitaevskii equation (SGPE), has been used in several works
which investigated spatial correlations of the condensate
[20,25]

. h s 24 Po
id¢ = |wy — V" + gloI" +i| — 5 —w | |odt
2mg 1+T
+ dWscpe, 2

where ¢(x,?) is the wave function, m{ is the effective mass
of lower polaritons, gy is the interaction coefficient, wy is the
oscillation frequency, Py is the pumping rate, yy is the polariton
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loss rate, ny is the saturation density, and d Wsgpg(X,?) is the
complex stochastic noise.

As in the second part of the manuscript we will focus
on the spatial correlations; we will compare our results to
the above model (2), which was used in [20,25], rather than
the standard CGLE (1). These two models are, however,
completely equivalent as long as one is interested in a state with
small density fluctuations around the homogeneous solution.
To show this consider the solution for which the density can
be written as |¢(x,1)|? = |¢o|> + 8n, where 8n/|¢o|> < 1. The
fraction in Eq. (2) can be expanded in Taylor series, and by
neglecting second- and higher-order terms in én we obtain
Eq. (1) with the correspondence A = wy, B = h/2m{, C =
g0, D=y — ¢/ Po), E=yi/n;Py, dWcoLe = dWscpE,
which yields the steady state density |¢o|> = ny(Po — ¥0)/ %o
for P() > 0.

For completeness, we note that in [20,25] the stochastic
noise was assumed to be Gaussian with the correlations

(dWSGPE(X)dngPE(X/» = 2Dypd(x — x)dt,
(dWscpe(x)d Wsgpe(x')) = 0

and the amplitude Dgg ~ yp, which is an estimate of the
quantum noise due to the dissipative coupling. Since the
above white noise d Wsgpg has a diverging norm, in practice
an appropriate UV cutoff must be employed, e.g., through
frequency dependence of the amplification term [25]. Alter-
natively, one may model the process on a discretized mesh
with lattice constant Ax, where the Dirac delta is replaced
as §(x — x') = Sy x/ (Ax)?. We note that an alternative form
of stochastic noise was derived from a quantum model of
condensation in a cavity interacting with two-level emitters
[37].

3

B. Open-dissipative Gross-Pitaevskii equation

A more realistic model of the polariton condensate, called
the open-dissipative Gross-Pitaevskii equation (ODGPE),
includes coupling of the condensate wave function to the
reservoir described by a density field ng(x,7) [14,20]

) h i
idy = [_ o V2 +gcl¥ | + grng + 5 (Rng — Vc)]
xydt +dW, C))
3}’1R 2
= = P~ et RIYOne, &)

where the complex stochastic noise can be obtained within the
truncated Wigner approximation [14]

s dt
(dW)dW* (X)) = m(RnR + ¥c)dxx's (6)
(dWx)dW(x')) =0, @)

where we assumed a constant scattering rate R which gives
noise correlations analogous as in Eq. (3). Here P is the exciton
creation rate determined by the pumping profile, yc and yr
are the polariton and reservoir loss rates, and R is the rate
of stimulated scattering from the reservoir to the condensate,
and gc, gr are the rates of repulsive polariton-polariton and
reservoir-polariton interactions, respectively.
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In the absence of noise, a spatially uniform solution is
given by ¥(x,t) = Yoe "M and ng(x,t) = n%. Above the
threshold pumping P > Py = ycyr/R a stable condensate
exists with the condensate density |o|> = (P/yc) — (y&r/R),
n% = yc/R,and o = gclvol?> + grn%. We note that formally
similar models were also used to describe nonlinear effects
in semiconductor microcavities at weak coupling [38] and
atom lasers [39]. The above phenomenological model has
been successful in describing a number of different experi-
mental situations in exciton-polariton condensates, although
various values of parameters have been used in the literature
[35,40-42].

III. CORRESPONDENCE BETWEEN THE MODELS
A. Adiabatic and small fluctuations limit

The open-dissipative Gross-Pitaevskii model Eqgs. (4) and
(5) can be reduced to the simpler and more tractable CGLE
model Eq. (1) under the assumption that the reservoir density
nr(x,t) adiabatically follows the change of | (x,1)|%. With the
use of Eq. (5) we can express ng as

P
vr + RIYx,0P2

Note that the above relation is valid also in the case of
a stationary state ng(x,t) = ng(x) and ¥ (x,t) = ¥ (x)e ',
regardless of the adiabatic assumption. However, in this work
we are interested in dynamical processes and the limits of
validity of the adiabatic approximation. Equation (4) now takes
the form of a generalized CGLE

®)

nr(x,t) =

h gRP
idy = | — —V>+ T
v [ g W R e

i RP
"2 (yR + Ry (x, )P ”)}M a0

Again, this equation is equivalent to Eqgs. (1) and (2),
provided that the condensate density | (x,t)|? is close to
the homogeneous solution [¥ol? = (P /vc) — (yYr/R) which
allows for expansion of the right-hand side in Taylor series
to the first order. We emphasize that the expansion is done
around the steady state density, and not zero density of the
condensate. As will be shown in Sec. VC, at low density
(pumping slightly above threshold) the results of the two
models disagree qualitatively due to large fluctuations. The
full correspondence between the three models is given by

2vc VYR
A= = _— s
0 gR(R R?P
_ h _ h
_2mz‘)_2m*’
2
Yc
C=gy= — gp——, 10
80=8c ~8rp (10)
2 2
Y
D:yo——ozy—c—ycyR,
P, 2 2PR
_ N _ ¥
}’lXP() 2P’

Dyy = vo = vc/2.
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Note that there are only six equations while seven parameters
are present in the open-dissipative model. Consequently,
one free parameter can be chosen when calculating seven
parameters of Eqs. (4) and (5) corresponding to six parameters
of Eq. (1) or Eq. (2). In the classical limit (no stochastic
noise) the last equation is absent and there is an additional
free parameter in both Egs. (4) and (5) and Eq. (2).

B. Validity of the approximations

The limits of the validity of the adiabatic approximation
can be estimated by comparing the characteristic time scales
existing in the dynamical system. To this end consider Eqgs.
(4) and (5) and assume that the adiabatic approximation is
fulfilled; the reservoir density ny is able to quickly adjust to the
condensate density |1/ (x,#)|* which changes on a much longer
time scale. Equation (5) has a simple solution if |1/ (x,?)|? is
treated as a constant

P 2
nR(x,f) = —— + Ce*(yk+R|1ﬂ(x,z)| i (11)
N yr + R (x,1)|?

Therefore, the time scale of the reservoir is tgp = (yg +
R|¥(x,1)|*)~!. For the adiabatic assumption to be consistent,
this time scale must be much smaller than the time scales of
the condensate, which are given by all the four terms in Eq. (4).
We obtain four conditions that, if fulfilled simultaneously, give
a sufficient condition for the validity of the adiabatic approxi-

mation; namely, all the terms %, %anR —vel, gc|1p|2, and

grn g must be much smaller than t,gl = yr + R|Y|*. The first
condition means that only the low momentum modes of the
condensate

k* < 2m* /(htg) (12)

may be occupied considerably. The other conditions provide
relations between the system parameters, as we show below.

We now make the same assumption that was used to
compare the different models of the condensate, expressing
the condensate density as a steady state value plus small
fluctuations, |1/ (x,#)|> = |¥o|? + 6n. Under this assumption,
the second of the above conditions is always fulfilled. The third
and fourth conditions take the simple forms

P, — R
thy 82 (13)
P gc

P 8R YC

—_— > ——. (14)
Py, R yg

Equation (13) is always true if g¢ < R, and otherwise it gives
an upper limit for the pumping P. Equation (14) gives a lower
limit for P. Note that the condition (13) is independent of the
reservoir relaxation rate yg.

Finally, we note that while the above conditions are
sufficient, but not necessary, it is unlikely that if one of the
four terms is large, it could be fully compensated by another
term in Eq. (4), since the terms depend very differently on the
fields ng and y. We also emphasize once again that Egs. (13)
and (14) as well as the exact correspondence between the
models are only valid if the condensate density is close to the
steady state value.
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C. Limits of modulational stability

It is well known that the CGLE (1) displays linear modu-
lational instability (also called Benjamin-Feir instability) for
BC < 0, which is a special case of the Benjamin-Feir-Newell
criterion [36,43]. While the dispersion coefficient B is always
positive in our model, it follows from Egs. (10) that not all
choices of the interaction coefficients gc > 0 and gg > 0
correspond to a positive value of C. A simple application of
Egs. (10) yields the criterion for linear stability

P gryc
> —_———

— . (15)
Pn  gc YR

In other words, the violation of the stability condition (15)
corresponds to effectively attractive interactions in the CGLE
or SGPE model, C,gy < 0. The above instability of the
model (4),(5) was first reported in [20], where it was named
the “hole-burning effect,” and the analytical condition for
stability (15) was first derived in [44] by investigation of the
Bogoliubov—de Gennes excitation spectrum. Alternatively, the
same condition can be derived from the analysis of the total
blueshift originating from both g¢ and gg [32].

IV. FLUCTUATIONS AND SPATIAL CORRELATIONS

In the rest of the paper, we investigate how the breakdown of
the adiabatic approximation or the small density fluctuations
approximation influences the fluctuations around the steady
state and spatial correlation functions. We first recall the
relevant results of [25] and [26] corresponding to the SGPE
case. We also derive self-consistently analytical formulas for
the number fluctuations and phase diffusion of a condensate
in a finite box. In the last section we present numerical results
of both the SGPE and ODGPE models in various parameter
regimes.

A. Previous analytical results

In [25] Bogoliubov—de Gennes equations for the small
fluctuations around the condensate in the form ¢(x,7) =
[¢o + Sp(x,t)]e” " were used to determine the momentum
distribution of the particles in the SGPE model (2). The number
of particles in each mode in the steady state was calculated as
Dy [M2 +1?

ny = Q@) *8 (k) + L5 =
Ek

T + 1}, (16)

where I' = y9(Po — o)/ Po is the effective damping rate, . =
gol¢o)? > 0 is the energy of interactions between particles,
and Eﬁ = ex(ex + 2u1) with e = hk2/2m* is the Bogoliubov
dispersion. The first term on the right hand side corresponds
to the condensate, and the second term to the noncondensed
cloud.

The formula (16) must be used with caution. It displays both
the IR divergence in the £} 2 term and the UV divergence in the
constant term. While the UV divergence can be healed in the
case of frequency-dependent pumping [25] or discretization of
the system on a lattice, the IR divergence poses a problem for
the interpretation of the above formula at the k = 0 point. We
show below how this problem can be solved by an appropriate
generalization of the Bogoliubov approximation.
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Notice also that in the infinite system (“thermodynamic”
limit with V — oo at constant pumping) the fraction of
particles in the condensate vanishes in the relevant one-
and two-dimensional cases [25], invalidating the Bogoli-
ubov approximation. However, the long-range correlations
are mostly influenced by the phase fluctuations, which are
much less energetically costly than the amplitude fluctua-
tions due to the existence of a Goldstone mode of phase
twists [33,34]. The correlations are accurately described us-
ing the density-phase generalized Bogoliubov approximation
d(X,1) = /g + on e/®D=I which yields the long-range
correlations in one dimension falling exponentially as [25,26]

_ 2noh,uF
© mDyy(u? +T2)
(17

g(l)(x)~exp(—x/ll), where [

B. Condensate in a box

In a finite system where k is discretized, the fraction of
particles in the condensate £ = 0O can be large, and we will
consider this case in this subsection. In the following we
consider a condensate in a box of length L and periodic
boundary conditions with Ak =2z /L, for which we have
the correspondence 8 (k) — (L/(27))? 8. The first term
on the right hand side of (16) can be written simply as
Q)| go|*6 (k) = |¢0|2Ld8k,0 = Nodk,0- To cope with the
IR divergence due to the singularity at k = 0 we introduce
a generalized density-phase Bogoliubov ansatz which takes
into account the diffusion of the condensate phase ¢(¢)

P(x,1) = [P0 + o)’V + Spso(x,1),  (18)

where ¢(t) and d¢—(¢) are real functions describing the phase
and amplitude fluctuations of the condensate, and S¢po(X,t)
is a complex function describing the fluctuations in the out-
of-condensate modes. In contrast to the standard Bogoliubov
approach, we treat the fluctuations of the k = 0 mode in a
special way. We do not assume that the phase ¢(¢) is a small
quantity, but allow it to undergo a Brownian-like motion under
the action of the stochastic noise [45]. Substituting the above
into Eq. (2) and going into Fourier space, the fluctuations
8<ﬁk¢0(k,t) separate from 8—_o(¢) and ¢(t) in the linearized
limit. One gets a set of equations

d d¢y—o 1 dW =0

= —2I' §¢hy— —_— , 19
r dr=0 + XIERT (19)

do 1 dWg k=0
L = 2L §¢p— —, 20
T —NC( i Pr=0 + It (20)

where N,(t) = LY|¢po + S¢r—o|*> and we split the noise into
the real and imaginary part with (dWg jx=0dWg ;,1_o) =
Dyydt. Equation (19) corresponds to the Ornstein-Uhlenbeck
process while Eq. (20) describes phase diffusion. By stochastic
integration of the first equation [46] we calculate the number
fluctuations in the condensate

_ [{86i0) _ [DaopNo
Al’lk:() = 2N0 ¢5 = F . (21)

As usual for an interacting condensate, the number fluctuations
scale with the square root of Ny. The mean number of particles
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in the condensate and out-of-condensate modes is given by
(recall that Ny = |¢o|>L9)
No + 222 for k = 0,
ny =

D;:‘b[“ o +1] fork #0,

(22)

which should be compared with Eq. (16). The singularity at
k = 0 has been removed in Eq. (22), but an additional term
Dy, /4T indicates that on average the noise slightly increases
the number of particles in the condensate.

For consistency, the size of the box must be sufficiently
small so that the fraction of particles in the kK = 0 mode is
considerable. The number of particles in out-of- condensate
modes can be estimated by replacing the sum of n;’ over k by
an integral over the modes from Ak t0 kpax = 7 / Ax. From
this estimate we get the self-consistency “small box” condition

4?hlgol? T V-mL
to 2be I; <= Doy T2 in the 1D case and L In <
87 hlgol” _Tpw -
mDgy T4y 1 the 2D case.

V. NUMERICAL RESULTS

In this section we investigate in detail the effects of the
breakdown of the adiabatic approximation and the small
density fluctuations approximation on the momentum distri-
bution and spatial correlation functions of a one-dimensional
condensate. To this end we investigate numerically the steady
states of the system using both the 1D version of the SGPE
model (2) and the open-dissipative Gross-Pitaevskii model
(4),(5) with the fluctuations included. We compare these
numerical results with the analytical predictions given by (16),
(17), and (22).

To investigate the breakdown of adiabaticity we consider
various values of parameters for which the adiabaticity
conditions (13) and (14) are either fulfilled or not. We clearly
observe that the two models lead to the same results only in the
adiabatic regime. We also find that the discrepancy between
the SGPE and ODGPE models may be caused by large density
fluctuations, which also invalidate the correspondence between
the models. This behavior is observed close to the limits of
condensate stability (15) and P = Py,.
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Note that in the one-dimensional case the nonlinear coeffi-
cients scale with the confinement strength, e.g., (R'P,g/P) =

(RZD,giZD)/\/erdZ, if we assume a Gaussian transverse
profile of |¢|> and ng of width d. In the case of a
one-dimensional microwire [47], the profile width d is
of the order of the microwire thickness. For convenience
we also introduce dimensionless parameters in the system
(4),(5) which allows us to describe the system using a
limited set of parameters. By rescaling time, space, wave
function amplitude, and material coefficients as ¢ = rt
X = Ex ¥ = ER)PY, ng = (EP) 'R R'D = (EB/DIR,
(g¢°.88°) = (h&B/T)@c.8r), (ve,vr) =T~ (Fe.¥k), P =
(I/S,BT)P where & = /ht/2m*, while T and 8 are arbitrary
scaling parameters, we can rewrite the above equation in the
dimensionless form (from now on we omit the tildes for
convenience)

2

id1ﬂ=[ Py + gl ® + grng + (RnR_VC)]
xydt +dW,

on

— % =P — (g + RIY Png,
ot
In particular, we may choose the time scaling t in
such a way that yg =1 without loss of generality. The
norms of both fields Ny, = f |¥|%dx and Ni = fanx are
scaled by the factor of ﬂ and the noise correlators become
(dW(x)dW*(x")) = 2Ax 2= (Rng + yc)8, . The parameters of
the SGPE model (2) can be rescaled in an analogous way.
The numerical simulations were performed on a grid
of length L = 600 with spatial step size Ax = 0.133. We
solved the equation (2) and (4),(5) with the corresponding
parameters given by the conditions (10). We compared the
calculated momentum distribution »**(k) and the first-order
correlation function g("(x) in the steady state after long time
evolution, starting from the initial state with ¢(x,t = 0) = ¢
and ng(x,t = 0) = y¢/R. We found that typically the result
does not depend on the initial conditions. However, for certain
values of parameters, close to the stability threshold (15), an
empty initial state ¢(x,0) = 0 led to a qualitatively different
evolution (see the next subsection for details).

(23)

5 10°
4
£ —
@ 3 Radib. =
n_ 1%}
c 101 L
2
unstable
non-adiab.
1 [ R 104

analytical

T rorrTTh 1 T

SGPE °
ODGPE  *

0 1 2 3 4
vd TR

20

FIG. 1. (Color online) Stable and adiabatic regime. Left panel shows the position of the system on the stability-adiabaticity diagram (black
dot). The black line corresponds to the stability condition (15) and the blue line to the adiabaticity condition (14). Middle panel shows

momentum distribution in the steady state n**(k) =

|y (k)|? Ak for both models compared to the analytical prediction from (16), (22). Each data

point was obtained from averaging over 15 realizations of the stochastic noise. In the right panel the first-order correlation functions gV (x)
are displayed together with the analytical long-range fit (17). Parameters in dimensionless ODGPE units (23) are R = 1, g¢c = 0.4, gr = 2gc,

P/Pth:47J/C:1,)/R:1,/3=0.003,andL=600.
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analytical

ODGPE
SGPE

5
s stable | o 107
non-adiab. (a)
O | P
1031
E —_
% 2 unstable T %T/
non-adiab. c 101 L
(b)
1 s e s e 10-1 |
0 1 2 3 0.1

1o 1R

FIG. 2. (Color online) Stable and nonadiabatic regime. Same as in Fig. 1, except for gc = 20, gr = 2gc, P/ Pn = 2.5, and y¢ = 0.5. The
red dashed line in (a) corresponds to the adiabaticity condition (13). The shaded area is the stable region according to (15).

A. Stable-adiabatic regime

InFig. 1 we show the results in the stable-adiabatic case, i.e.,
for parameters fulfilling both the stability (15) and adiabaticity
conditions (13),(14). Corresponding parameters in physical
units are as follows: time unit 7 =y F= YR "' = 10 ps, length
unit £ = 3.4 um, gc = 1.35 peV um?, R = 5.1 x 1073 pum?
psT', L=2mmford =2 um, m* =5 x 107m,, and g =
0.003. The left panel shows the position on the phase
diagram. For the chosen parameters the system lies well in
the Kardar-Parisi-Zhang (KPZ) universality class regime, as
the parameter f of [26] is equal to 1.73. The middle panel
displays the numerically obtained momentum distribution
n*(k) = | (k)|?Ak from 15 simulations of both models,
compared with the analytical prediction of the momentum
“tail” (k > 0) of (16) and (22). While the numerical box size
L is so large that we are in a quasicondensate rather than
condensate regime [25], and the fraction of particles at k = 0
is very small, the momentum tail distribution closely follows
the analytical predictions. This follows from the fact that in
the quasicondensate regime the Bogoliubov approximation
can still be applied to a slice of the system where the
quasicondensate phase is approximately constant.

The discrepancy between the SGPE and ODGPE models
is visible only at high momenta, where the first (momentum-
dependent) adiabaticity condition (12) breaks down. Indeed,
this condition gives the upper limit k < 8, which coincides
with the value of k at which the ODGPE results start to deviate
from the SGPE and analytical predictions. We note that this
limit corresponds to very high momentum values.

On the other hand, the gV(x) function follows the analyt-
ically predicted long-range trend (17) very closely for both
models. The difference between the two is in the different
value of the constant in front of the exponent in (17), which
can be again attributed to the breakdown of adiabaticity at very
high momenta, related to short distances.

Further, we performed a series of numerical tests in the
stable-adiabatic regime with other values of parameters. With
increasing ratio y¢/yr, moving towards the stability threshold
(15), the differences between analytical and numerical results
become more notable. Beyond the stability threshold, which
corresponds to gy = 0, the comparison is no longer possible
since the analytical formulas are valid only for the case of
repulsive effective interactions, go > 0.

B. Stable-nonadiabatic regime

Figure 2 shows the results in the stable-nonadiabatic case,
when the adiabaticity conditions (13) and (14) are not fulfilled.
In this case we increased the strength of the interactions
gc and gg. There is a visible discrepancy between the
models both in the momentum distribution and the first-order
correlation function, which marks the breakdown of the
adiabatic approximation. Note that the results are presented in
the logarithmic scale, and the actual difference between the cal-
culated averages of n** (k) differ significantly. The SGPE result
still follows the Bogoliubov analytical prediction closely. The
correlation function only slightly differs from the analytical
prediction for both models, as shown in the right panel.

5 : . 10° A 1 ' El

a I SGPE - r E“‘N ]

§ / ( ) (b) ODGPE « 10 B % (C) N

103k analytical > e

Q stable %o 20 0 o %o ﬂ;;xx
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1 -
o ] > 10 20
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FIG. 3. (Color online) Steady state close to the condensation threshold, exhibiting large fluctuations. Same as in Fig. 1, except gc = 2.5,
gr = 2gc, P/ Py = 1.05, and y¢ = 0.1. The three lines and shaded areas show adiabaticity (13),(14) and stability (15) conditions, similar to
Figs. 1 and 2. Note that these conditions are no longer valid once the fluctuations become large and are plotted solely for comparison with

previous cases.
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FIG. 4. (Color online) Density evolution corresponding to Fig. 3,
revealing dark solitons in the dynamical steady state of the ODGPE.

C. Large fluctuations

Importantly, as shown in previous sections, the adiabaticity
conditions (12)-(14) are valid only under the assumption
that the system is in a steady state with small fluctuations.
Moreover, without this assumption the reduction of the
generalized CGLE (9) to the CGLE or SGPE models is not
possible. We illustrate the situation in which the fluctuations
are large in Fig. 3, where the pumping was chosen slightly
above the threshold value P ~ Py. In this case even the
generalized Bogoliubov approximations are not relevant and
the analytical predictions are incorrect. Moreover, the results
provided by the SGPE and ODGPE models are qualitatively
different. The SGPE model predicts momentum distribution
n**(k) that is practically independent of momentum and
negligible spatial correlations. On the other hand, the ODGPE
predicts a nontrivial momentum distribution and decaying
¢ (x) indicating an appearance of a finite spatial correlation
length, not related to the Bogoliubov prediction (17).

We associate this spatial length scale with the spontaneous
appearance of dark structures depicted in Fig. 4. The figure
shows density distribution in one randomly chosen realization
of the truncated Wigner stochastic evolution (4),(5), which
can be interpreted as a single realization of the experiment
[14,31]. The structures appear to be related to dark solitons of
the dissipative model [44,48,49]. We checked that each dark
object corresponds to an approximate m phase jump of the
phase of {(x,t). A detailed investigation of these excitations
will be presented elsewhere. We note that in a two dimensional
case the fluctuations are suppressed, and one can expect the
condensate to be less vulnerable close to the threshold.

D. Stability threshold and the role of initial conditions

In the majority part of the stability diagram, the initial
conditions given as a seed to the evolution do not influence the
steady state properties. However, the situation is drastically
different for the ODGPE model in the vicinity of the stability
threshold given by (15). An example is given in Fig. 5.
Here, the momentum distribution is plotted for simulations
starting from two different initial conditions, either ¥ (x,r =
0) =vo+ &) or Y(x,t =0)=E&(x), where & represents
a small uncorrelated noise with a Gaussian distribution. In
the first case, the system converges to a steady state that is

PHYSICAL REVIEW B 92, 035311 (2015)
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FIG. 5. (Color online) System close to the stability threshold. In
the right panel momentum distributions obtained from different initial
conditions are shown (see text). Parameters are as in Fig. 2, except
Yc = 1.

very well described by the analytical Bogoliubov momentum
distribution. In the second case, the system does not reach
this state even after very long evolution, instead dwelling in a
chaotic evolution with large density fluctuations. The “normal”
and “chaotic” states are therefore metastable. This behavior
can be generally observed in the vicinity of the stability limit,
both on the stable and unstable side of the phase diagram
of Fig. 5. We checked that this bistability persists even if a
relaxation term (frequency-dependent pumping) is included
the evolution equation (4), analogous as in [50]. Since we
do not find any similar dynamics in the SGPE model, we
conclude that it is also related to the breakdown of the adiabatic
approximation. The investigation of these chaotic states will
be a topic of a future study.

VI. CONCLUSIONS

In conclusion, we investigated the relation between the
models commonly used in the literature to describe nonres-
onantly pumped exciton-polariton condensates. The complex
Ginzburg-Landau equation, and the equivalent (in the limit of
small fluctuations) stochastic Gross-Pitaevskii equation were
compared with the open-dissipative Gross-Pitaevskii equation
which includes a separate equation for the reservoir density.
The adiabatic approximation allows one to reduce the latter to
one of the single-equation models, under the assumptions that
the condensate is close to the steady state and fluctuations are
small. Additionally, three independent analytical conditions
for adiabaticity must be met simultaneously. While spin degree
of freedom was not taken into account in this work, the
generalization to the spin-dependent case is straightforward.

We investigated the corresponding stochastic models by
comparing the numerical steady states with the analytical
predictions of the Bogoliubov approximation. We demon-
strated how the zero-momentum singularity of the momentum
distribution spectrum can be avoided by an appropriate
generalization of the Bogoliubov approximation. This also
allowed for determination of the number fluctuations and
condensate phase diffusion equation.

The comparison of the models with and without a separate
equation for the reservoir demonstrated that close agreement
between the two can be obtained only under the adiabatic
conditions. Moreover, we showed that close to the limit
of condensation or the limit of modulational stability, large
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fluctuations lead to qualitatively different results depending
on the model used. These results show that special care
must be taken when choosing the right model for describing
exciton-polariton condensates in certain conditions.

PHYSICAL REVIEW B 92, 035311 (2015)
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