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Appearance of effective surface conductivity: An experimental and analytic study
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Surface conductance measurements on p-type doped germanium show a small but systematic change to the
surface conductivity at different length scales. This effect is independent of the structure of the surface states.
We interpret this phenomenon as a manifestation of conductivity changes beneath the surface. This hypothesis
is confirmed by an analysis of the classical current flow equation. We derive an integral formula for calculating
the effective surface conductivity as a function of the distance from a point source. Furthermore, we derive
asymptotic values of the surface conductivity at small and large distances. The actual surface conductivity
can only be sampled close to the current source. At large distances, the conductivity measured on the surface
corresponds to the bulk value.
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I. INTRODUCTION

Surface conductance measurements at micron and submi-
cron scales belong to popular experimental routines character-
izing semiconductor surfaces; see Refs. [1–3]. The motivation
comes from microelectronics [3] as well as from molecular
electronics projects, and the results depend mainly on the
system under investigation. The underlying physics may be
determined mostly by surface states [4,5], by some bulk
features, or a mixture of these two limiting cases [6,7]. In
the first case, quantum transport theory may be applied to
understand the results, e.g., Ref. [5], while in the latter case,
classical conductance theory is effective. Surprisingly, the
understanding of this well-established theory in the context
of surface measurements is poor, making even a qualitative
interpretation of experimental data rather difficult.

Conductance measurements on beveled surfaces have been
used successfully to reconstruct the doping profile below the
surface with a spreading resistance analysis [8–10]. These
methods, however, rely on refined numerical algorithms and
offer no analytic insight. As such, they are an important tool in
quantitative analysis, but they contribute poorly to our physical
comprehension.

Recently, we have reported surface conductance measure-
ments obtained for germanium samples with an atomically
clean (001) surface [11]. The results were interpreted within
the classical theory without any reference to the surface states.
We observed a slight but systematic change of the measured
conductivity when varying the distance between current
sources. Our assumption was that this was due to the change of
the conductivity beneath the surface as a result of Fermi level
pinning, a phenomenon resulting in variations of charge-carrier
densities near the surface. Such modeling of the subsurface
region was numerically explored for the surface measurements
on Si(111) [6]. As we could not find any reference discussing
changes of the surface conductivity at different length scales,
we decided to address the problem in more detail. Surprisingly,
general analytic conclusions can be made based on a concise
formula for the electrostatic potential profile due to the current
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point source. We show that a conductivity change in the
bulk can not only make surface conductivity appear distance-
dependent, but it can even vary the asymptotic behavior of
the electrostatic potential. Furthermore, the deviation from
the bulk conductivity becomes experimentally inaccessible to
surface measurements at large length scales.

Our paper is organized as follows. In Sec. II we review the
experimental data motivating our considerations. We reanalyze
them in Appendix C in light of our analytic developments.
A brief discussion of the classical current flow equation is
given in Sec. III A. Next, in Sec. III B we outline the so-called
band-bending phenomenon that motivates our model of the
conductivity varying with the distance from the surface. In
Sec. IV we outline our analytic findings, while more rigorous
treatment and technical details are discussed in Appendixes A
and B. We also demonstrate numerical results for two simple
cases. Finally, in Sec. V we comment on the possible finite-
size effects of the physical electrodes. We conclude with a
summary, and we point out several interesting issues.

II. EXPERIMENTAL DATA

We report surface conductivity obtained from surface
conductance measurements for two p-type Ga-doped ger-
manium samples cut from one wafer [MTI Corp., σ =
2−10 (� cm)−1]. Both the preparation and measurements
were done in an ultrahigh-vacuum system [11]. The data are
obtained for a well-reconstructed Ge(001) surface, a hydrogen-
terminated Ge(001) surface, and a partially dehydrogenated
Ge(001):H surface. Ge samples were prepared using the
procedure described in Ref. [11], where some data for the bare
surface have also been reported. The hydrogen termination
of the surface was done following the procedure reported
in Ref. [12]. The partial dehydrogenation was achieved by
irradiation of Ge(001):H with an electron beam from the
scanning electron microscope (SEM). As a result, in addition
to an increased population of unsaturated dangling bonds,
a number of carbon atoms were adsorbed at the surface, as
verified by scanning Auger spectroscopy.

The investigated surfaces have opposite transport properties
due to the different electronic structures. There are well-
defined surface bands for the clean Ge(001) surface [13] close
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FIG. 1. (Color online) Conductivity σ as a function of the dis-
tance D between the current source and drain for three different
germanium surfaces. The measurements were done using the four-
point–probe technique in a collinear arrangement outlined in detail in
Ref. [11]. As some points coalesce, the data are also given in Table I.

to the Fermi level. The Ge(001):H surface is isolating due to
band positions far from the Fermi level [3,12,14]. The surface
treated with the electron beam is supposed to be a disordered
system, hence it is weakly conducting at best. Nevertheless,
the conductivity in all three cases is nearly the same. This
is an interesting property of the Ge samples that we will
address in a future publication. For our considerations here,
it is important that the surface contribution to the current
flow can be disregarded. As such, we can use the classical
description of the current suited for transport phenomena in
bulk.

Surface conductance measurements were done using a
four-point probe technique as outlined in Ref. [11]. For a
given distance D between the current source and drain, we
measured the voltage drop between two additional probes.
All four electrodes were collinear with the inner electrodes
probing the voltage drop. The geometry was symmetric with
respect to the point equidistant to the electrodes supplementing
the current. For every D, the voltage drop was measured for
several positions of the inner electrodes. This allowed us
to calculate the conductivity for every D separately using
a simple fitting procedure. The data were consistent with
the model for three-dimensional current flow. For n-type
doped samples, two-dimensional currents were observed,
which we do not address here either experimentally or
theoretically.

The data shown in Fig. 1 and Table I were obtained from two
samples with different tips supplementing the current. What

is of interest here is the fact that the conductivity resulting
from these measurements changes with the distance D. These
changes seem to follow a deterministic pattern rather than
being of a stochastic origin. This led us to believe that these
changes are not an artifact but a physical phenomenon. Below,
we shall put this statement on firm ground. We revisit the
experimental data in Appendix C.

III. GENERAL FRAMEWORK

A. Classical model of the current flow

The classical equation governing the current flow follows
from the Maxwell equations [15]. It can be derived in three
steps. First, as a stationary solution is addressed, all time
derivatives in the Maxwell equations are set to zero. In turn,
the electric field E is a curl-free field,

∇×E = 0,

giving rise to the notion of the electrostatic potential �(x), such
that electric field is given by its gradient, E = ∇�. Second, a
phenomenological input to the theory is needed to relate the
electrostatic field and the current density j(x), where a linear
relation is usually assumed,

j(x) = σ (x)∇�(x), (1)

where the conductivity σ is a scalar. The coefficient σ is a
material property, independent of measurement or the sample
geometry. Third, from the continuity equation (∇ · j = 0) we
obtain the relation

∇(σ∇�) = 0. (2)

This equation is valid in regions where there are no current
sources or drains, which can be taken into account by
modifying the right-hand side of the above equation [6,16].

B. Conductivity

The proportionality coefficient σ between the current
density and the electrostatic field has its microscopic inter-
pretation. For semiconductors it is expressed in terms of the
material properties,

σ = neve + nhvh, (3)

where ne/h stands for the electron/hole density and ve/h is their
mobility, respectively; see Ref. [17].

Band bending is a phenomenon that calls for considering
models with the conductivity σ = σ (z) changing with the
distance z � 0 from the surface (at z = 0). It is explained

TABLE I. Experimental values of conductivity [in (� cm)−1] for various surfaces and distances shown in Fig. 1. SEM irr. denotes the
surface irradiated by the electron beam from SEM.

Sample A Sample B

D(μm) Ge(001) Ge(001):H SEM irr. Ge(001) Ge(001):H

2 3.56 ± 0.19 3.03 ± 0.16 2.80 ± 0.06 1.81 ± 0.06 2.10 ± 0.04
4 1.98 ± 0.03 1.67 ± 0.04 1.95 ± 0.03 1.67 ± 0.03 1.58 ± 0.01
8 1.62 ± 0.02 1.38 ± 0.01 1.63 ± 0.02 1.37 ± 0.01 1.30 ± 0.01
16 1.44 ± 0.01 1.42 ± 0.01 1.47 ± 0.01 1.27 ± 0.01 1.27 ± 0.01
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FIG. 2. (Color online) A schematic picture explaining the band
bending and associated change in the number of electrons and holes.
The acronym s.s. stands for surface states, while ne and nh denote the
electron and hole density, respectively. The width of the subsurface
region depends on band bending and bulk doping, which is usually
in the range given in the picture. The depicted situation with upward
band bending corresponds to germanium, where the valence band
appears very close to the Fermi level.

in many textbooks, e.g., Ref. [18], so we confine ourselves
to a succinct resume in terms of a self-consistent calculation
scheme, and we illustrate the main facts about it in Fig. 2.
The phenomenon is due to surface states whose energy is
determined in relation to bands; they may appear below the
valence band, above the conductance band, or within the
band gap. Assume there is no shift of the bands against
the Fermi level at the surface. As such, the surface states
accumulate a large electric charge. This gives rise to the
creation of an electrostatic field that may be seen in the
semiclassical (envelope) approximation of a shift of the band
positions with respect to the Fermi level. But such shifts
change the electric charge at the surface. In real crystals, we
observe the surface Fermi level at the position arriving as a
self-consistent solution of the problem sketched above. Thus,
in equilibrium the semiconductor surface is slightly charged
and is accompanied by an electrostatic field. Due to this field,
the relative position of bands with respect to the Fermi level
varies near the surface, and in this region the number of current
carriers may be different from their bulk values. As indicated
by Eq. (3), a variation of the conductivity follows naturally. A
similar model can also be found in Ref. [6]. More quantitative
considerations allowing for band bending and carrier density
profiles can be found in Refs. [19,20]. We note that treating
band bending and current flow as independent phenomena
is not entirely correct, as they both refer to the electrostatic
potential. However, at sufficiently large distances from the
current source, the current-associated field is so weak that
it cannot substantially change the band bending. It is also
not certain whether the above model is straightforwardly
applicable to germanium. However, the strong Fermi level
pinning in germanium at the valence band is beyond any
doubt [11].

IV. SURFACE CURRENT FROM THE POINT SOURCE

A. Transformation of the current equation

Now we turn to Eq. (2). We are interested in solving the
equation in semispace, i.e., with two unrestricted Cartesian
coordinates, x and y, and a third one constrained to the upper
semiaxis, z � 0. As already mentioned, to take into account
current sources and drains we need to modify Eq. (2) by adding
a source term. A common choice is the point source. As such,
we concentrate on the following equation:

∇(σ∇�) = δ(x − x′). (4)

To fully formulate the model, we state the boundary condition

∂�

∂z

∣∣∣∣
z=0

= 0, (5)

which ensures that there is no current flowing through the
plane, z = 0. Equation (4) is a linear equation and may be
transformed to a familiar form of a Schrödinger operator if
we switch from the function � to a function ξ defined by the
relation

� = ξ√
σ

. (6)

The resulting form of Eq. (4) yields

√
σ

[
−� + �

√
σ√

σ

]
︸ ︷︷ ︸

L̂

ξ = δ(x − x′). (7)

Further, in the case of interest σ depends only on the z

coordinate. We will use the representation of the Dirac δ in
terms of eigenfunctions and eigenvalues of the operator L̂.
The eigenproblem factorizes, and in two dimensions (x and y)
it is trivial. All complexity is in the one-dimensional equation,[

− d2

dz2
+

d2

dz2

√
σ (z)√

σ (z)

]
ψ(k; z) = k2ψ(k; z). (8)

Now we study this equation, as both its eigenfunctions and
eigenvalues appear in the solution of Eqs. (4) and (7). In
analogy to the Schrödinger equation, we will refer to the term

V (z) =
d2

dz2

√
σ (z)√

σ (z)
(9)

as the potential. If the potential vanishes, the corresponding
Eq. (8) is called potential-free. It is noteworthy that the
correspondence between the current equation and the time-
independent Schrödinger equation is a formal feature, which
will facilitate our reasoning. However, one should bear in mind
that the current flow equation we deal with is a classical theory
of the electrostatic field, as shown in Sec. III A.

Transformation (6) mixes the electrostatic potential � and
the function σ . The boundary condition (5) then reads

∂zψ(k; 0) = 0 for ∂zσ (0) = 0, (10)

∂zψ(k; 0)

ψ(k; 0)
= ∂zσ (0)

2σ (0)
for ∂zσ (0) �= 0, (11)

where ∂zψ(k; 0) is dψ(k,z)/dz taken at z = 0.
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B. The potential

Equation (8) binds the potential and the conductivity σ in
a highly nontrivial way. To shed some light on its physical
meaning, we introduce a function η,

η(z) = 1

2
ln

σ (z)

σ (0)
. (12)

The function reflects how the conductivity, and hence the car-
rier density as implied by Eq. (3), changes on the logarithmic
scale. The potential can be rewritten in the following form:

V (z) = (∂zη)2 + ∂2
z η. (13)

We observe that the potential is independent of the absolute
value of σ , i.e., multiplication of σ with any number does not
alter the potential. As the potential contains terms with the
first and second derivative of σ , the range of the change is
important. A given potential value may be obtained for a small
but abrupt change of σ as well as for a large deviation spread
on a long distance. If the variation of σ is slow enough, the
resulting potential is negligible. We assume it is the case for
large z as the bulk conductivity is well defined. The presence
of the term ∂2

z η appears to be slightly inconvenient from a
physical standpoint. It requires accurate sampling of σ if it is
to define a physical model. In this paper, we are interested in
potentials that could be termed small perturbations around the
zero-valued potential.

Figures 3 and 4 show two potentials corresponding to two
conductance profiles illustrating the formation of accumula-
tion and depletion layers near the surface. As will be shown,
physically relevant results are obtained if condition (10) is
assumed. This is, however, at odds with the classical [18] and
quantum [19] modeling of the carrier density. As such, these
conductivity profiles do not appear as results of a theoretical
calculation. A profile of σ (z) approximately reproducing
experimental data is given in Appendix C.

C. Electrostatic potential at the surface

Not much can be said in general about solutions � of
Eq. (4). In the potential-free case, the Green function may

−4 · 10−5

−2 · 10−5

0

2 · 10−5

4 · 10−5

0 100 200 300

0.83

1.00

V
(z

)[
n
m

−2
]

σ(z)
σ(0)

z [nm]

FIG. 3. (Color online) Gaussian conductance profile describing a
tiny enhancement of the conductance at the surface (red dotted line)
and related potential V (black solid line). The conductance profile
reads σ (z) = σ (0)[0.833 + 0.267 exp(−0.0002z2)].
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FIG. 4. (Color online) Gaussian conductance profile describing a
small deficiency of the conductance at the surface (red dotted line)
and related potential V (black solid line). The conductance profile
reads σ (z) = σ (0)[1.25 − 0.25 exp(−0.0002z2)].

be calculated exactly, as shown in Appendix B. However, we
can infer a lot about the surface profile of the Green function,

φ(r) = �(x,y,z = 0; x ′,y ′,z′ = 0),

where the radial coordinate r =
√

(x − x ′)2 + (y − y ′)2 is
introduced and the point source is located at (x ′,y ′,z′ = 0).
As shown in Appendix A, φ(r) satisfies the following integral
formula:

σ (0)

2π
φ(r) = 1

r

∫ ∞

0
duK0(u)ψ2

(
u

r
,0

)
, (14)

where K0(u) is the modified Bessel function of the second
kind of zeroth order. This function explodes logarithmically
at the origin and vanishes exponentially for large values

0
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FIG. 5. (Color online) The black solid curve corresponds to the
function K0(u) with a logarithmic divergence close to u = 0 and
vanishing exponentially for u → ∞. Two other curves correspond to
some function ψ2(u/r; 0) with r = 0.6 (red and dashed) and r = 12
(blue dotted). Due to the quick decrease of K0(u), only the region
(0; 3.5) contributes significantly to the integral, Eq. (14). For small
values of r , the function ψ2 gets compressed and it has the limiting
value 1 nearly on the whole interval (0,3.5). For large values of
r , the function ψ2 is stretched, so that for sufficiently large r it is
nearly constant [equal to ψ(0; 0)] on the interval. The compression
and stretching are responsible for the obtained asymptotic behavior.
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of u; see Fig. 5. For the assumed potentials, the function
ψ(k; 0) is bounded and does not quickly vary. As such, the
asymptotic behaviors of φ(r) may be deduced from the above
formula. Here we summarize the results elaborated in detail in
Appendix A and informally explained in Fig. 5. At this point,
we do not care much about the multiplicative prefactor of φ(r).
In Sec. IV D, we will set its normalization to suit the physical
context. First, we report the short-range limit (r → 0), for
which we have the following relation:

σ (0)

2π
φ(r) −→

r→0

1

r

∫ ∞

0
duK0(u)ψ2(∞; 0) = π

2r
. (15)

The same result would be obtained if there were a uniform
conductivity σ (0) in the whole sample. This is reasonable,
as close to the source the current explores only a thin layer
in the surface neighborhood where the conductivity can be
considered constant. It is the behavior of ψ(k; 0) for large k

that is important here.
There are two asymptotic relations for large r depending

on whether condition (10) or (11) is considered. For (10), we
can assume that ψ(0; 0) �= 0, and then

σ (0)

2π
φ(r) −→

r→∞
1

r

∫ ∞

0
duK0(u)ψ2(0; 0) =

π σ (0)
σ (∞)

2r
, (16)

where σ (∞) corresponds to the bulk value of the conductivity,
σ (∞) = limz→∞ σ (z). It is a very intriguing fact that the
asymptotic values of conductivity are given by its surface and
bulk values no matter how complicated the conductivity profile
beneath the surface is.

The second boundary condition (11) gives rise to a modified
behavior at large distances φ(r) ∼ r−3 if ∂zσ (0) > 0. The case
of negative ∂zσ (0) is not treated here for the bound state it
has in the spectrum (for more details, see Appendix A). We
do not know any experimental results demonstrating such a
quick voltage drop on the surface. This is why it appears to be
a hint as to how the conductivity should be modeled close to
surfaces. It is noteworthy that numerical algorithms often deal
with thin slices of constant conductivity [10,21] parallel to the
surface. As such, they assume condition (5).

0.84

0.88

0.92

0.96

1

0 500 1000 1500

σeff (r)

σ(0)

r [nm]

0.9

1

1.1

1.2

0 0.02 0.04 0.06 0.08

ψ
2 (

k
;0

)

k [nm−1]
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described in Fig. 4. The dotted horizontal line corresponds to the
asymptotic value of the bulk conductivity. The inset shows ψ2(k; 0).

D. Effective surface conductivity

The asymptotic description obtained for the condition (10)
motivates introducing a function σeff(r), which is defined as

σ (0)

σeff(r)
= 2

π

∫ ∞

0
duK0(u)ψ2

(
u

r
,0

)
. (17)

To justify this definition, we write the electrostatic potential �

in an infinitesimal range around the source,

�(r1,z) = I

2πσ (0)

1√
r2

1 + z2
, (18)

where I is the current supplemented. In this way, we get
a normalization factor for the whole range of r . As a
consequence of Eq. (14), one can write the following for any
r and r1:

φ(r) = r−1
∫ ∞

0 duK0(u)ψ2
(

u
r
,0

)
r−1

1

∫ ∞
0 duK0(u)ψ2

(
u
r1

,0
)φ(r1). (19)

For small r1, both Eqs. (15) and (18) hold. They may be
plugged into the above formula, resulting in the relation

φ(r) = I

2πσeff(r)

1

r
. (20)

Thus, σeff(r) may be viewed as an effective surface conductiv-
ity. It reflects the fact that the measured surface conductivity
varies with the distance from the source due to changes in the
conductivity below.

Figures 6 and 7 show the effective conductivity obtained for
the potentials shown in Figs. 3 and 4. The results come from
numerical integration of Eq. (14) with numerically calculated
functions ψ(k; z).

V. BEYOND THE POINT-SOURCE APPROXIMATION

A more realistic model of the contact supplying the current
to the sample involves an area on the surface, where both
the function � and the current σ (0)∂z� are given. This
corresponds to the physical situation in which the potential
and current at the contact are determined by the supplying
electrodes. A detailed analysis of the problem goes beyond the
scope of the present article. While the experimental data were
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acquired with different tips, yielding different contact areas
and shapes, the results seem not to depend on them. This is
why we will be satisfied with only a few general remarks.

The requirement that for a given area �(r,0) must be equal
to a predefined function can be satisfied by making use of
the obtained Green function. For a qualitative discussion one
can formulate an analog of the multipole expansion known in
electrostatics to arrive at quickly vanishing r−n (n > 1) terms.

To take into account the incoming current profile, further
developments are needed. We observe that the current density
j corresponds, upon transformation (6), to the quantity

j = √
σ∇ξ − ξ

2
√

σ
∇σ.

Assuming boundary condition (10), we can draw an analogy
to the quantum mechanics and interpret the current density at
the surface as the momentum of the incoming particles. This
makes it clear that for different j we can get different penetra-
tion depths, and hence different solutions. The Green function
is built as a weighted sum of all related eigenfunctions, i.e., the
larger the eigenvalue (energy), the smaller the weight. Thus,
the point-source formula is dominated by low-energy features.
As we have observed, it is the long-ranged behavior (r → ∞)
that is governed by small eigenvalues (k → 0). Regions that
are distant enough should not be affected either by source
finite-size effects or by the value of the current density.

VI. CONCLUSIONS

Our experimental data show a systematic change of the
surface conductivity with the distance between the probes.
To understand the results, we have investigated the classical
current flow equation. We have developed a theoretical scheme
making it evident that the change of the conductivity beneath
the surface impacts the results obtained on the surface, i.e., the
well-known formula for the current point source φ ∼ 1/σr

is to be transformed to the form φ ∼ 1/σeff(r)r . Asymptotic
values of σeff have been found to be the actual σ (0) value
close to the source and the bulk value far from the source.
This scheme eases the numerical effort needed to obtain
the surface conductivity profile. Furthermore, it delivers a
framework to discuss and classify different effects obtained
in numerical studies such as that in Ref. [6]. We have confined
our considerations to small deviations of the conductance
parameter.

There are several interesting open questions mentioned
in the text, however three issues are of practical interest.
First, there is the inverse problem, i.e., the existence of a
scheme of surface measurements allowing for reconstruction
of the conductivity profile. Second, capturing the mechanism
behind the dimensional reduction [6,11] seems both interesting
and feasible. Third, apparently the condition d

dz
σ (0) = 0

corresponds to physical observations. It is at odds with the way
(envelope) wave functions are modeled near the surface [19].
This contradiction needs to be clarified.
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APPENDIX A: CALCULATION DETAILS

Here we describe in more detail the calculations behind the
results outlined in Sec. IV. To begin with, we write explicitly
Eq. (7), which is solved as[

∂2
x + ∂2

y + ∂2
z + V (z)

]
ξ = δ(r − r′), (A1)

where the potential is calculated from the conductivity function

V (z) = σ−1/2(z)
d2

dz2

√
σ (z).

The solution of Eq. (A1) defines the Green function for the
differential operator. There are many methods of finding Green
functions, from which spectral decomposition [22,23] is most
appropriate to us. We observe that the related eigenproblem is
solved via

L̂ei(px+qy)ψ(k; z) = (p2 + q2 + k2)ei(px+qy)ψ(k; z), (A2)

where we follow notation introduced in Sec. IV. Both p and q

are any real numbers, while k may be considered positive.
The Green function may be expressed as

G(x,y,z; x ′,y ′,z′)

=
∫ ∞

0
dk

∫ ∞

−∞
dp

∫ ∞

−∞
dq

× eip(x−x ′)+iq(y−y ′)ψ(k; z)ψ̄(k; z′)
p2 + q2 + k2

. (A3)

We consider real ψ , so ψ = ψ̄ . The eigenmodes have to obey
a uniform normalization condition, e.g.,∫ ∞

0
dz ψ(k; z)ψ(k′; z) = δ(k − k′).

Using relation (A5) from Ref. [24],

1

2π

∫ ∞

−∞

∫ ∞

−∞
dξ1dξ2

eiξ ·x

|ξ |2 + |β|2 = K0(|β||x|),

we can integrate out p and q to arrive at the most important
formula in this paper,

G(x,y,z; x ′,y ′,z′) = 2π

∫ ∞

0
dk K0(kr)ψ(k; z)ψ(k,z′), (A4)

where r =
√

(x − x ′)2 + (y − y ′)2, and K0 stands for the
modified Bessel function of the second kind. To proceed,
the functions ψ and related eigenvalues are needed. This
can be done for the potential-free case, as shown below
(see Appendix B).

With no effect on generality, we set x ′ = 0 and y ′ = 0. As
the point source is to be located at the surface, we also set
z′ = 0. We look for the surface profile of the Green function,
hence we can also set z = 0. The function G(x,y,0; 0,0,0)
corresponds to the sought-after surface profile φ(r). Now we
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can argue for the asymptotic formulas given in Sec. IV. The
integral to solve is

C =
∫ ∞

0
dk K0(kr)ψ2(k; 0). (A5)

Substituting u = kr , the integral becomes

C = 1

r

∫ ∞

0
duK0(u)ψ2

(
u

r
; 0

)
. (A6)

We note that the Bessel function K0 has a logarithmic
divergence at the origin and exponentially decays for large
arguments. Integrating K0 gives∫ ∞

0
duK0(u) = π

2
;

see 11.4.23 in Ref. [25]. As the function ψ(k; 0) is bounded,
for any desired accuracy ε > 0 one can find a value u0 for
which ∣∣∣∣

(∫ ∞

0
−

∫ u0

0

)
duK0(u)ψ2

(
u

r
; 0

)∣∣∣∣ < ε. (A7)

As a consequence, we can switch to integration over a finite
interval.

First we deal with the case of small values of r . Toward that
end, we observe that for sufficiently large k the potential may
be considered a small perturbation of the eigenstate obtained
for the potential-free equation. As such, ψ(k,z) ≈ cos kz and
ψ(k,0) → 1. Hence, there is an argument t∞ such that for
any t > t∞ it holds that ψ(t,0) ≈ 1. As such, we can split
integration into two parts,

rC =
∫ t∞r

0
duK0(u)ψ2

(
u

r
; 0

)
+

∫ u0

t∞r

duK0(u)1. (A8)

The first term vanishes due to shrinking of the integration
interval with r , and finally we are left with the limiting value

C = π

2r
. (A9)

Now, we address large values of r . We assume that the limit

lim
t→0

ψ(t ; 0) = ψ(0; 0)

is finite and does not vanish. Hence, there is again t0 such
that for any t < t0 the difference ψ(t ; 0) − ψ(0; 0) can be
neglected. Then

rC =
∫ t0r

0
duK0(u)ψ2(0; 0)

+
∫ min{u0,t0r}

t0r

duK0(u)ψ2

(
u

r
; 0

)
. (A10)

Now it is the second term that vanishes due to a reduction of
the integration interval. As such, we arrive at the limiting value

C = πψ2(0; 0)

2r
. (A11)

It is easy to note that Eq. (8) has a zero eigenvalue corre-
sponding to the function

√
σ . This function is related to the

freedom left by Eq. (2), which admits shifting its solutions by

any constant. The second independent solution ψ0(z) assuming
k = 0 reads

ψ0(z) =
√

σ (z)
∫ z

0

dy

σ (y)
.

It vanishes for z = 0 but has a nonvanishing first derivative.
Following the theorems on continuity of solutions of a
differential equation with respect to a parameter [26], we make
use of the solution

√
σ to arrive at

ψ(0; 0) =
√

σ (0)

σ (∞)
, (A12)

where the denominator appears due to the proper normaliza-
tion.

To complete the discussion, we address the case in which
ψ(t ; 0) ∼ t for t → 0 and m > 0 [see Eq. (B1)]. In such a
case, we arrive at the following relation:

rC = 1

r2

∫ t̃0r

0
du u2K0(u) +

∫ min{u0,t̃0r}

t̃0r

duK0(u)ψ2

(
u

r
; 0

)
,

(A13)

where t̃0 stands for the maximal argument, for which the linear
approximation may be considered exact. As a consequence, we
obtain the relation

C = 1

r3

∫ ∞

0
du u2K0(u) (A14)

with a different asymptotic current behavior. The numerical
value of the above integral yields∫ ∞

0
du u2K0(u) = π

2
,

as can be interfered from formula 11.4.22 in Ref. [25]. The case
with a negative value of m is more complicated. The spectrum
then has an isolated eigenfunction ∼ exp mz with a negative
eigenvalue [27] and hence the Green function becomes more
complicated than the functions considered here.

It is evident from the numerical examples described in
Sec. IV that σeff changes on a slightly larger scale than the
potential. To remark on finding solutions of Eq. (8) for small
eigenvalues k, we denote the range of the potential V with d.
It corresponds to the distance from which the potential may be
neglected. Then, in the basis of {cos kz}k>0 the matrix element
Vk,p reads

Vk,p = 1

2

∫ ∞

0
dz V (z)[cos (k + p)z + cos (k − p)z]. (A15)

For small values of k and p, the integral tends to the value

Vk,p −→
k,p→0

∫ d

0
dz V (z) (A16)

if in the range (0,d) the functions cos(·) can be considered
constant. As such, the vectors k obeying the inequality

kd � 0.1

may be considered small. This hints at the length scale needed
to solve the problem numerically—to explore the lowest
eigenvalue sector, one needs to work on segments ∼100d
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in length. We used the standard MATHEMATICA 10 routines
to diagonalize the operator L̂ (with higher precision). The
segment lengths that we explore are about 20 000 and 40 000
nm. The lowest eigenvalues became numerically unstable.
This is why we excluded several lowest eigenvalues. ψ2(0,0)
was found by extrapolation of a function obtained as a
quadratic interpolation of ψ2(k,0) for several lowest remaining
eigenvalues. As shown in Figs. 6 and 7, the results are close
to the exact values σ (0)/σ (∞). A more credible and efficient
approach to finding ψ(k; 0) is to solve Eq. (8) for different
values of k with the boundary condition (10) on a segment
larger than the range of the potential V . The normalization
then requires that there is a given amplitude of oscillations for
all solutions ψ(k,z) in the potential-free region.

APPENDIX B: GREEN FUNCTIONS FOR
THE POTENTIAL-FREE EQUATION

For the potential-free case, the eigenfunctions for the
eigenvalues k2 yield cos(kz) if condition (10) is to be satisfied
and cos [kz + ϕ(k)] if condition (11) holds. The phase shift ϕ

is given by the formula

ϕ = −sgn(m) arccos
k√

k2 + m2
, (B1)

where m denotes ∂zσ (0)/2σ (0) and sgn(m) is the sign of m.
For eigenfunctions cos(kz) we can complete the integration in
Eq. (A4) to arrive at the following formula:

G(x,y,z; x ′,y ′,z′) = 2π

∫ ∞

0
dkK0(kr)

1

2
[cos k(z − z′)

+ cos k(z + z′)]. (B2)

Using relation 11.4.14 in Ref. [25], we obtain

G(x,y,z; x ′,y ′,z′)

= π2

2

(
1√

r2 + (z − z′)2
+ 1√

r2 + (z + z′)2

)
, (B3)

which reduces to the familiar formula r−1 at the surface. The
term with z + z′ appears due to the boundary conditions to
ensure that no current escapes through the surface. Similar
Green functions are known in electrostatics to give rise to
image charges.

We note that eigenfunctions cos kz converge to a constant
in the limit k → 0, which solves potential-free Eq. (8) with
k = 0. This is a demonstration of theorems on the continuity of
solutions of a differential equations with respect to parameters.

APPENDIX C: EXPERIMENTAL DATA REVISITED

The insight gained from the above analysis of the current
flow equation prompts a few comments on the experimental
data presented in Sec. II. The bulk value of the conductivity
appears different for the two samples investigated and reads
about 1.4−1.5 and 1.2−1.3 �−1 cm−1 for samples A and B,
respectively. In both cases, it is below the nominal value. The
experimental conductivity decreases with the distance from
the source; see Fig. 1. The trend is reproduced in Fig. 6,
which suggests an enhancement of the conductivity at the
surface. For the p-type doped samples, the surface Fermi level

is located close to the valence band, and hence the formation of
an accumulation layer consistently explains the data. In Figs. 6
and 7 we observe that the first derivative of ψ2(k; 0) vanishes
for k → 0. As such, the following asymptotic expansion for
large r is natural:

σeff(r) = σ (∞)

(
1 − ∂2

k ψ2(0; 0)
σ (∞)

σ (0)

1

2r2
+ · · ·

)
. (C1)

We stop at the first correction term and rewrite the above
formula using an effective parameter σ1,

σeff(r) = σ (∞) + σ1

r2
. (C2)

One should bear in mind that the terms neglected in Eq. (C1)
can be important if the term with σ1 becomes relevant. Hence,
some caution is needed when attributing a physical meaning
to σ1.

To apply the expression (C2) to the experimental setup
described in Ref. [11], we put the point current source at
the point (0,0,0) and the drain at (D,0,0) and calculate the
voltage drop between probes located at x1 = (D 1−s

2 ,0,0) and
x2 = (D 1+s

2 ,0,0). Here the parameter 0 < s < 1 corresponds
to the parameter x in Ref. [11]. The resulting formula for the
measured resistance R(D; s), i.e., the voltage drop between x1

and x2 divided by the current supplemented to the sample, is
poorly informative. However, it is interesting to expand it in
powers of 1/D,

R(D; s) = s

πσ (∞)(1 − s2)

1

D

− 4σ1s(s2 + 3)

πσ 2(∞)(1 − s2)3

1

D3
+ · · · . (C3)

We confine our considerations to the two lowest orders of
expansion written above. For s close to zero they are finite,
thus the first term (of the order D−1) dominates. At this level,
the scaling behavior characteristic for three dimensions [11]
may be seen: the quantity DR(D,s) does not depend on D.

0

2000

4000

6000

0 0.2 0.4 0.6 0.8 1

D
R

(D
;s

)
[Ω

μ
m

]

s

D=2 μm
D=4 μm
D=8 μm

D=16 μm

FIG. 8. Experimental resistance multiplied by D measured for
various s for sample A with a passivated surface. For s < 0.2, all the
data coincide. The data for D = 8 and 16 μm coincide for nearly all
values of s. Solid lines show numerically obtained data for the profile
σ (z) = (4.5 cosh−1 z

120 + 1)σ (∞).
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In the case of experimental data, such a universality is clearly
observed for D equal to 8 and 16 μm; see Fig. 8. For smaller
D, the second term (∼D−3) spoils the universality. The reason
is that for s close to unity, both terms on the right-hand side of
Eq. (C3) are singular. The second one explodes more quickly
and dominates for big enough s no matter how large D is. As
the second term in Eq. (C3) is due to the subsurface variation
of the conductivity, the deviations from the universal behavior
bear information about the subsurface region.

The formula assuming (C2) for R(D; s) was used to fit the
experimental data for both samples; see Table II. As a result,
estimated values of σ (∞) vary much less than for a naive fit
behind numbers presented in Table I. The values of σ1 are

TABLE II. σ (∞) (σ1), i.e., bulk conductivity σ (∞) [in (� cm)−1]
and σ1 [in 10−14 �−1 cm] from fitting for various surfaces. The
uncertainty for σ (∞) is not larger than 5%, while for σ1 it varies
from several percent for larger D up to 20% for D = 2 μm. SEM irr.
denotes the surface irradiated by the electron beam from SEM.

D Sample A Sample B

(μm) Ge(001) Ge(001):H SEM irr. Ge(001) Ge(001):H

2 1.87 (8.64) 1.87 (8.64) 2.30 (3.97) 1.50 (1.03) 1.93 (2.65)
4 1.73 (7.53) 1.73 (7.53) 2.05 (4.97) 1.66 (2.90) 1.55 (4.34)
8 1.55 (5.84) 1.55 (5.84) 1.75 (6.59) 1.75 (3.83) 1.42 (7.27)
16 1.47 (17.1) 1.47 (17.1) 1.47 (12.4) 1.19 (40.8) 1.20 (22.4)

usually of the same order and no clear trend is seen, which is
probably due to the higher-order terms. Dimensional analysis
allows us to identify a length parameter

Rs =
√

σ1

σ (∞)
,

a characteristic distance where surface corrections are im-
portant. In our case, it appears about 150–500 nm. This is
consistent with the profile σ (z) we apply to reproduce our
experimental data; see Fig. 8. We use the following function
to model conductivity changes:

σ (z)

σ (∞)
= σ̃

cosh z
d

+ 1, (C4)

where d, σ̃ , and σ (∞) are parameters adjusted to the experi-
mental data. This function satisfies the boundary condition (10)
and it decays exponentially except for a region close to
the surface. As such, it is a reasonable description of the
surface charge screening [18]. The parameters d and σ̃ have
a physical meaning while σ (∞) depends on the way one
solves the problem (i.e., the applied normalization condition).
As shown in Fig. 8, simulated data for d = 120 nm and
σ̃ = 4.5 satisfactorily correlate with the experimental points.
Similar results can be obtained for d ranging between 80 and
200 nm and for σ̃ between 3 and 7. Interpretation of these
parameters within the band-bending theory, e.g., the Schottky
approximation, seems to be misleading as it overestimates the
doping and underestimates the band bending.
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