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First-principles calculations of indirect Auger recombination in nitride semiconductors
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Auger recombination is an important nonradiative carrier recombination mechanism in many classes of
optoelectronic devices. The microscopic Auger processes can be either direct or indirect, mediated by an additional
scattering mechanism such as the electron-phonon interaction and alloy disorder scattering. Indirect Auger
recombination is particularly strong in nitride materials and affects the efficiency of nitride optoelectronic
devices at high powers. Here, we present a first-principles computational formalism for the study of direct and
indirect Auger recombination in direct-band-gap semiconductors and apply it to the case of nitride materials. We
show that direct Auger recombination is weak in the nitrides and cannot account for experimental measurements.
On the other hand, carrier scattering by phonons and alloy disorder enables indirect Auger processes that can
explain the observed loss in devices. We analyze the dominant phonon contributions to the Auger recombination
rate and the influence of temperature and strain on the values of the Auger coefficients. Auger processes assisted
by charged-defect scattering are much weaker than the phonon-assisted ones for realistic defect densities and
not important for the device performance. The computational formalism is general and can be applied to the
calculation of the Auger coefficient in other classes of optoelectronic materials.
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I. INTRODUCTION

Auger recombination is an important nonradiative carrier
recombination mechanism that is well recognized as a loss
mechanism in optoelectronic devices such as light-emitting
(LEDs) and laser diodes [1]. In the Auger process, the
energy released through an electron-hole recombination event,
approximately equal to the band gap of the material, is
transferred via Coulomb scattering to a third free carrier
that is excited to a higher-energy state [Fig. 1(a)]. The
third carrier can be either an electron [in which case the
process is called an electron-electron-hole (e-e-h) process] or
a hole [hole-hole-electron (h-h-e)]. The overall energy and
momentum of the carriers is conserved, and for nondegenerate
carriers, the recombination rate scales with the third power of
the carrier density. As a result, it becomes an important carrier
recombination mechanism at high carrier densities and reduces
the efficiency of solid-state light emitters at high currents.
In particular, Auger recombination has been shown to be
involved in the efficiency reduction of nitride LEDs and lasers
at high power [2–13]. The direct Auger recombination process
[Fig. 1(a)] has been studied both analytically (e.g., Refs.
[14–17]) as well as with first-principles calculations [18–22].

An additional type of Auger recombination mechanisms are
those assisted by scattering due to phonons, defects, alloying,
etc. [Fig. 1(b)]. The coupling of charge carriers to lattice
vibrations in semiconductors gives rise to important quantum
processes such as optical absorption in indirect-gap materials
[23,24] and free-carrier absorption in semiconductors [25,26]
and transparent conducting oxides [27]. Phonon-assisted
Auger processes have until recently only been treated with
model calculations for the band structure and/or the electron-
phonon coupling matrix elements, and/or only a fraction of
all the relevant microscopic processes have been accounted
for [28–34]. We have developed a set of first-principles
computational approaches to study direct and indirect Auger
recombination in nitride materials. Some initial results of our

work have been reported elsewhere [35–37]. Our calculations
allowed us to conclude that Auger recombination, in particular,
the indirect process assisted by electron-phonon coupling
or alloy-disorder scattering, is especially strong in nitride
materials. The calculated coefficient is sufficient to explain
the efficiency droop in nitride light emitters. Moreover, we
have found that phonon-mediated processes dominate Auger
recombination in GaAs [37] and NaI [38].

In the present paper, we present the full formalism and
computational details for the first-principles calculation of
direct and indirect Auger recombination in direct-band-gap
semiconductors. Our computational formalism makes use of
an array of first-principles tools, such as the maximally local-
ized Wannier function method for the efficient interpolation of
energy eigenvalues [39–42] and density functional perturba-
tion theory [43,44] for the calculation of phonon frequencies
and electron-phonon coupling matrix elements. We discuss
the results we obtained for wurtzite nitride materials and we
show that phonon- and alloy-scattering-assisted Auger recom-
bination dominates in this technologically important class
of wide-band-gap semiconductors. The approximations we
developed to reduce the computational cost are also described.

The paper is organized as follows. In Sec. II, we present the
relevant equations for the calculation of the direct and indirect
Auger coefficients in semiconductors. In Sec. III, we describe
the computational formalism we implemented and the approx-
imations we used for the calculations. In Sec. IV, we present
our results for nitride materials: in Sec. IV A, we discuss our
results for direct Auger recombination in GaN. In Sec. IV B,
we present our results for the alloy-scattering-assisted Auger
recombination in In0.25Ga0.75N. In Sec. IV C, we describe the
results for the phonon-assisted Auger recombination in GaN,
analyze the contributions by the various phonons, and discuss
the effects of temperature and strain. In Sec. IV D, we discuss
the charge-defect-assisted Auger recombination in GaN, and
finally, in Sec. IV E, we present the cumulative values of the
Auger recombination coefficients.
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FIG. 1. (Color online) Schematic diagram of (a) direct and
(b) indirect electron-electron-hole Auger recombination processes.
(a) In the direct case, an electron in the conduction band (1)
recombines with a hole in the valence band (3) while the excess
energy and momentum is transferred to a second electron (2)
that gets excited to a higher conduction-band state (4). (b) The
indirect process is assisted by a carrier-scattering mechanism, such
as electron-phonon coupling, alloy disorder, or defect scattering,
which provides additional momentum and enables Auger transitions
to a wider range of final conduction-band states throughout the first
Brillouin zone.

II. AUGER RECOMBINATION FORMALISM

A. Direct Auger recombination

The formalism for the calculation of the direct Auger re-
combination rate has been reported previously [18,19,22,45];
for completeness we provide a brief review here. The
Auger recombination rate is calculated starting from Fermi’s
golden rule, which gives the transition probability per unit
time in terms of matrix elements of the perturbation and
the quasiparticle energies. For the case of electrons and
holes in a solid, the Auger recombination rate is given
by

R = 2
2π

�

∑
1234

P |M1234|2δ(ε1 + ε2 − ε3 − ε4), (1)

where the bold indices are composite band and k-point
indices [1 ≡ (n1,k1)], the factor of 2 accounts for spin, P is a
statistics factor that accounts for the occupation numbers and
ensures that transitions occur only from occupied to empty
fermion states,

P = f1f2(1 − f3)(1 − f4),

and f are free-carrier occupation numbers according to
Fermi-Dirac statistics. The δ function ensures energy
conservation, while momentum conservation is imposed by
the matrix elements.

The perturbing Hamiltonian is the screened Coulomb
interaction between the carriers and involves two terms, the
direct and the exchange one, that account for the antisymmetry
of the many-body wave function under fermion exchange [45]:

|M1234|2 ≡ ∣∣Md
1234 − Mx

1234

∣∣2 + ∣∣Md
1234

∣∣2 + ∣∣Mx
1234

∣∣2
, (2)

where the direct (Md ) and exchange (Mx) terms are given by
matrix elements of the screened Coulomb interaction
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FIG. 2. Feyman diagrams for the (a) direct and (b) exchange
terms of the Auger recombination process of Eq. (2). Diagram (a)
corresponds to the direct process shown in Fig. 1(a).

(W ) between electron and hole wave functions
(ψ):

Md
1234 ≡ 〈ψ1ψ2|W |ψ3ψ4〉, (3)

Mx
1234 ≡ 〈ψ1ψ2|W |ψ4ψ3〉, (4)

and are shown in Figs. 2(a) and 2(b), respectively. The matrix
elements of the screened Coulomb interaction are given by

〈ψ1ψ2|W |ψ3ψ4〉
=

∫∫
d r1d r2ψ

∗
1 (r1)ψ∗

2 (r2)W (r1,r2)ψ3(r1)ψ4(r2)

= 1

V

∑
G

δk1+k2,k3+k4+G′W̃ (k1 − k3 + G)

×I1,3(G)I2,4(G′ − G), (5)

where G′ is the umklapp vector that brings k4 = k1 + k2 −
k3 + G′ back into the first Brillouin zone. Ignoring local-field
effects [46], the Fourier-transformed Coulomb interaction (W̃ )
is given by

W (r1,r2) = W (r1 − r2) ≡ 1

V

∑
q

W̃ (q)eiq·(r1−r2)

= 1

V

∑
q

1

ε(q)

4πe2

q2 + λ2
eiq·(r1−r2), (6)

where ε(q) is the static dielectric function of the material and
λ is the inverse screening length due to the free carriers. The
overlap integrals I are given by

Iα,β(G) ≡
∑
G1

c∗
α(G1)cβ(G1 − G)

=
∫

cell
u∗

α(r)uβ(r)eiG·rd r, (7)

where c are the plane-wave components of the lattice-periodic
part of the Bloch functions u.

The Auger rate is then calculated using

dn

dt
=R

V
= 4π

�

1

V 3
cell

1

N3
k

∑
123n4

f1f2(1 − f3)(1 − f4)

× |V M1234|2δ(ε1 + ε2 − ε3 − ε4), (8)

where 4 ≡ (n4,k1 + k2 − k3 + G′). In the remainder of this
paper, we assume an equal density of free electrons and holes
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(n = p), which is usually the case in optoelectronic devices
for high injected carrier densities and under steady-state
conditions. For nondegenerate carriers, which can be described
with Boltzmann statistics, the Auger recombination rate scales
with the third power of the carrier density [45]. At high carrier
concentrations, however, the carriers become degenerate and
need to be described by Fermi-Dirac statistics. In this case, the
exponent of the power law can take values lower than 3, an
effect known as phase-space filling [47]. In the following, we
will calculate density-dependent Auger coefficients C = C(n)
defined by

C(n) ≡ R(n)

n3V
.

B. Indirect Auger recombination

In this section, we present the complete formalism for the
calculation of the indirect recombination rate. Various aspects
of this formalism have been presented before in Refs. [28–33].
The transition probability per unit time (P) for indirect Auger
processes from an initial state (I) to a final state (F) via an
intermediate state (M) is determined based on second-order
Fermi’s golden rule [48]:

PI→F = 2π

�

∣∣∣∣∣
∑

M

HIMHMF

EM − EI

∣∣∣∣∣
2

δ(EF − EI),

where the perturbation Hamiltonian (H ) is the combination
of the screened Coulomb interaction plus the scattering
mechanism (e.g., the electron-phonon interaction), and EI, EF,
and EM are the energies of the initial, final, and intermediate
states, respectively.

By summing over all initial and final states, we obtain an
expression for the recombination rate similar to the expression
for direct Auger recombination [Eq. (1)]. The equation for
phonon-assisted Auger recombination is

R = 2
2π

�

∑
1234,νq

P̃ |M̃1234;νq |2δ(ε1 + ε2 − ε3 − ε4 ∓ �ωνq),

(9)

where ν is the phonon mode and q is the phonon wave vector.
The upper (lower) sign corresponds to the phonon-emission
(absorption) process, respectively. The difference with direct
Auger recombination is that the phonon energy (�ωνq) enters
the energy-conserving δ-function (the phonon momentum �q
appears in the momentum-conserving matrix elements later).
The statistics factor P is modified to account for the additional
phonon absorption or emission process,

P̃ = f1f2(1 − f3)(1 − f4)
(
nνq + 1

2 ± 1
2

)
,

where nνq are the phonon occupation numbers given by Bose-
Einstein statistics:

nνq = 1

e�ωνq/kBT − 1
,

and the matrix element has been generalized to include the
scattering to the virtual intermediate state.

There are eight diagrams that enter the calculation of the
generalized matrix element that correspond to all possible
combinations of the electron-phonon and screened-Coulomb
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FIG. 3. (Color online) (a)–(h) Schematic diagrams correspond-
ing to each of the microscopic indirect Auger recombination
processes of Eq. (10) (M̃1–M̃8, respectively).

interaction Hamiltonians (direct and exchange) for both
parallel and antiparallel initial carrier spin configurations.
These diagrams are summed in groups and then squared,
depending on whether they correspond to distinguishable or
indistinguishable quantum processes. The generalized matrix
element (M̃) is given by

|M̃|2 =|M̃1 + M̃2 + M̃3 + M̃4 − M̃5 − M̃6 − M̃7 − M̃8|2

+ |M̃1 + M̃2 + M̃3 + M̃4|2

+ |M̃5 + M̃6 + M̃7 + M̃8|2, (10)

where each of the M̃1 to M̃8 terms corresponds to each of the
phonon-assisted process depicted in Figs. 3(a)–3(h):

M̃1
1234;νq =

∑
m

g1m;νM
d
m234

εm − ε1 ± �ωνq + iη
, (11)

M̃2
1234;νq =

∑
m

g2m;νM
d
1m34

εm − ε2 ± �ωνq + iη
, (12)

M̃3
1234;νq =

∑
m

Md
12m4gm3;ν

εm − ε3 ∓ �ωνq + iη
, (13)

M̃4
1234;νq =

∑
m

Md
123mgm4;ν

εm − ε4 ∓ �ωνq + iη
, (14)
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M̃5
1234;νq =

∑
m

g1m;νM
x
m234

εm − ε1 ± �ωνq + iη
, (15)

M̃6
1234;νq =

∑
m

g2m;νM
x
1m34

εm − ε2 ± �ωνq + iη
, (16)

M̃7
1234;νq =

∑
m

Mx
12m4gm3;ν

εm − ε3 ∓ �ωνq + iη
, (17)

M̃8
1234;νq =

∑
m

Mx
123mgm4;ν

εm − ε4 ∓ �ωνq + iη
, (18)

and η is the inverse of the lifetime of the intermediate state.
For example, the process in Fig. 1(b) is given by the M̃4 term
[Fig. 3(d)]. We made sure to evaluate all terms using the same
set of calculated wave functions in order to preserve the correct
phase information and ensure that the cross terms among the
various paths are properly taken into account.

The electron-phonon coupling matrix elements (g) are
given in terms of the electron and hole wave functions and
the derivative ∂νqV of the self-consistent potential due to a
collective ionic displacement by phonon mode νq [49],

gnk,mk+q;ν =
(

�

2M0ωνq

)1/2

〈ψnk|(∂νqV )∗|ψmk+q〉,

where M0 is the total mass of the atoms in the unit cell.

III. COMPUTATIONAL FORMALISM

Calculations for the electronic energies and wave functions
were performed using density functional theory (DFT) [50,51]
within the local-density approximation for the exchange-
correlation potential [52,53] and the plane-wave pseudopo-
tential method [44,54]. The semicore 3d electrons of Ga
and 4d electrons of In are treated as valence electrons to
get accurate electronic and structural properties [55]. Effects
due to the spin-orbit interaction, which are small in nitride
semiconductors, were not included in the calculations. After a
self-consistent calculation was performed to obtain the charge
density, we determined the maximally-localized Wannier
functions [39–41], which we subsequently used to interpolate
the band structure from coarse k-grids (8 × 8 × 8 for the GaN
calculations in Sec. IV A and 4 × 4 × 4 for the In0.25Ga0.75N
calculations described in Sec. IV B) to arbitrarily fine k-grids
(as fine as 64 × 64 × 32 for GaN and 24 × 24 × 12 for
In0.25Ga0.75N) in the first Brillouin zone. This enables the
efficient determination of the band energies near the band
extrema, which we subsequently use to determine the free-
carrier quasi-Fermi levels, without the need to perform costly
non-self-consistent DFT calculations for these fine k grids.
The band structure is not significantly affected by the addition
of the free carriers for carrier densities that are relevant for
most devices (up to 1020 cm−3). The delta functions in the rate
equations are approximated by finite-width Gaussians. All k
grids mentioned in this paper are unshifted (i.e., they include
the � point). We expect that shifted k grids yield similar results
provided they are sufficiently converged.

To describe the distribution of the free carriers over states
near the band extrema, we interpolated the bands to fine
k-point meshes in the Brillouin zone and determined the
quasi-Fermi levels as a function of the free-carrier density

and temperature. We then applied a cutoff criterion to limit the
number of k points used in subsequent Auger rate calculations.
The criterion was to keep only k points which correspond to
band energies within an energy cutoff from the corresponding
band edge, Ecutoff = εF + MkT , where εF is the free-carrier
quasi-Fermi level and M is an integer. The integer cutoff
parameter M is determined such that the free-carrier density
obtained after applying the cutoff criterion differs by less than
1% from its starting value. This ensures that most of the
free charge carriers are accounted for when calculating the
Auger rates. We repeat this procedure to converge the Auger
coefficients with respect to the k-grid spacing.

To further reduce the number of k points used in Auger
rate calculations, the sums over hole states are sampled with
coarser grids that are half as dense along each linear dimension
as the corresponding electron sums. This choice relies on the
fact that holes in the nitrides have a larger effective mass than
electrons and thus occupy a larger k-space volume around
� that can be effectively sampled with coarser grids. Since
we eventually converge our calculations with respect to the
grid spacing, the choice of sparser hole grids speeds up the
calculations without loss of accuracy.

For the calculation of the matrix elements of the screened
Coulomb interaction [Eq. (5)], we used a model dielectric
function [56]:

ε(q) = 1 + [
(ε∞ − 1)−1 + α(q/qTF)2 + �

2q4/
(
4m2ω2

p

)]−1
,

where ε∞ is the dielectric constant due to electronic screening,
qTF is the Thomas-Fermi wave vector, ωp is the plasma
frequency, and α = 1.563 is an empirical parameter. This
model has been shown to accurately reproduce the first-
principles dielectric function of zinc-blende GaN calculated in
the random-phase-approximation [57]. For the wave functions
used to calculate the matrix elements we employed a lower
plane-wave cutoff energy (50 Ry) than the self-consistent field
calculations (90 Ry) to speed up the calculation. The choice
of this lower plane-wave cutoff energy affects the calculated
Auger rates by at most 10%. For the dielectric constant of GaN
needed by the model, we used the directionally averaged exper-
imental dielectric constant, ε∞ = (ε∞‖ε2

∞⊥)1/3 = 5.5 [58,59],
where ε‖ and ε⊥ are the dielectric constants for polarization
parallel and perpendicular to the c axis of the wurtzite
structure, respectively. The dielectric constant of In0.25Ga0.75N
(ε∞ = 7.0) was estimated with a model extrapolation [60] to
a band gap of 2.4 eV, the value of the 25% InGaN alloy as
predicted from hybrid-density-functional calculations [61].

For the free-carrier screening wave vector of electrons
λe, we used the Debye-Hückel equation for nondegenerate
carriers (λ2

e = 4πne2/ε∞kBT ) if the quasi-Fermi energy of
electrons referenced to the energy of the conduction-band
minimum (ECBM) is εF − ECBM < 0 or 0 � εF − ECBM <
3
2kBT , and the Thomas-Fermi equation for degenerate carriers
[λ2

e = 6πne2/ε∞(εF − ECBM)] if εF − ECBM � 3
2kBT . We use

similar equations for the screening wave vector of holes λh and
sum the contributions by electrons and holes to obtain the total
free-carrier screening wave vector λ2 = λ2

e + λ2
h.

For the calculation of the phonon-assisted Auger coef-
ficients, we need to make approximations in the way we
calculate the indirect Auger rate. The technical challenge
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is that the full calculation of Eq. (9) that accounts for all
possible initial and final electronic states is computationally
very expensive. The high computational cost arises because of
the fine grids needed to sample the free-carrier distributions in
reciprocal space and the large number of associated phonon
calculations. The approximation we make is based on the fact
that the free carriers are confined in reciprocal space to the
vicinity of the band extrema near the � point of the Brillouin
zone. As a result, the wave functions of the initial electron and
hole states can be effectively approximated by the conduction-
and valence-band wave functions at the Brillouin-zone center.
We will later show that this is a valid approximation for the
case of wide-band-gap nitrides.

Within the approximation that the initial-state wave func-
tions are those at the � point, the sums over indices 1 to 3 yield
N/2, where N is the total number of free electrons or holes
and the factor of 2 arises because we already accounted for the
carrier spin in the matrix elements. State 4 is initially empty
since it is located at an energy on the order of the band gap
(i.e., several eV) away from the corresponding band edge. In
the case of the e-e-h process, for example, the expression we
need to calculate reduces to the form

R = 2
2π

�

N3

8

∑
nνq

(
nνq + 1

2
± 1

2

)
|M̃c�,c�,v�,nq;νq |2

× δ(εc� + εc� − εv� − εnq ∓ �ωνq), (19)

which involves only a single sum over the phonon wave vectors
and is computationally feasible. A similar expression can be
derived for the h-h-e case:

R = 2
2π

�

N3

8

∑
nνq

(
nνq + 1

2
± 1

2

)∣∣M̃v1�,v2�,c�,nq;νq

∣∣2

× δ
( − εv1� − εv2� + εc� + εnq ∓ �ωνq

)
, (20)

where v1 and v2 are hole band indices. The eight components
of the generalized matrix element in Eq. (19) are given by

M̃1
c�,c�,v�,nq;νq =

∑
m

gc�,mq;νM
d
mq,c�;v�,nq

εmq − εc� ± �ωνq + iη
. (21)

Similar expressions hold for M̃2 to M̃8. Since we are neglecting
the spin-orbit interaction, the heavy- and light-hole bands are
degenerate at �, and we average their contribution in the
evaluation of Eqs. (19) and (20). The phonon frequencies and
electron-phonon coupling matrix elements were calculated
using density functional perturbation theory [43,44] for k-
points on a 24 × 24 × 12 grid that fall in the irreducible part
of the first Brillouin zone of GaN.

IV. RESULTS AND DISCUSSION

A. Direct Auger recombination in GaN

We performed calculations for the direct Auger coefficient
in bulk GaN and show that it cannot account for the efficiency
reduction of nitride LEDs. In our calculations of Auger rates,
we treat the band gap of GaN as an adjustable parameter and
rigidly shift the conduction bands with a scissors operator. This
serves to correct the band-gap problem of density functional
theory and to model the effect of alloying GaN with InN to
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FIG. 4. (Color online) Auger coefficients of GaN for a carrier
density of 1019 cm−3 and a temperature of 300 K due to (a)
electron-electron-hole (e-e-h) and (b) hole-hole-electron (h-h-e)
Auger processes plotted as a function of the scissors-shift-adjusted
band gap for various k-grid sampling densities.

form InxGa1−xN alloys. By varying the band-gap value, the
third carrier that participates in the Auger process is excited to a
different range of higher-energy states for different gap values
and this leads to a variation of the Auger rate with respect
to the adjusted band gap. The screened-Coulomb-interaction
matrix elements are calculated using the wave functions of
GaN. The Auger coefficients due to direct e-e-h and h-h-e
Auger recombination processes are plotted as a function of
the adjusted band gap in Figs. 4(a) and 4(b), respectively. The
values of the direct e-e-h and h-h-e Auger coefficients for pure
GaN are simply given by the value of the Auger coefficients
for the experimental band-gap value of GaN (3.5 eV [62]).
The broadening of the delta function in Eq. (1) is set to
0.1 eV and the free-carrier densities and temperatures to
n = p = 1019 cm−3 and 300 K, respectively. The different
curves correspond to different grids that we employed to
sample the part of the Brillouin zone occupied by free carriers,
illustrating the convergence with respect to the grid spacing.

The data indicate that both e-e-h and h-h-e direct Auger
processes are very weak for GaN (less than 10−35 cm6 s−1

for Egap = 3.5 eV) and the corresponding coefficients cannot
account for the experimentally measured values in nitride
devices (10−31–10−30 cm6 s−1) [3–11]. The coefficients in-
crease drastically for decreasing band-gap values in the range
of 2.4–3.5 eV, which is the typical band-gap range for
nitride devices. However, even the larger Auger coefficients
at lower band-gap values cannot explain the experimental
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measurements. The coefficient of the h-h-e process increases
exponentially for decreasing adjusted band gap and reaches a
value of 3.5 × 10−33 cm6 s−1 for band-gap values in the green
(Egap = 2.4 eV). The e-e-h process increases for decreasing
band gap and displays a peak for a band-gap value of 2.3 eV
due to interband Auger transitions to the second conduction
band. The magnitude of the Auger coefficient at this peak
(5.7 × 10−33 cm6 s−1), however, is too small to account for
the experimental observations. This result is different from
earlier calculations [20] that used a different approach to model
the Auger process. The discrepancy has been traced back to
the inadvertent omission of a normalization factor and the
treatment of the long-range part of the Coulomb interaction in
Ref. [20]. Our present results for the direct Auger process are
in qualitative agreement with the work of Bertazzi et al.[63]
who also observed a peak of the e-e-h Auger coefficient,
but at a different energy (Egap = 2.9 eV). We attribute the
quantitative differences between our work and that of Bertazzi
et al.[63] to the different band structures (fully first-principles
in pure GaN versus fitted pseudopotentials for virtual-crystal
InGaN) and dielectric-function models used in the respective
calculations. Finally, in the 1.0–1.5 eV energy range, the e-e-h
coefficient increases exponentially for decreasing band-gap
values, as expected for direct Auger recombination [64],
because only direct intraband Auger transitions are possible
for this band-gap range.

We also examined the dependence of the direct Auger
coefficients on the free-carrier density. Figures 5(a) and 5(b)
show the dependence of the e-e-h and h-h-e direct Auger
processes on the free-carrier density. The dependence of the
Auger coefficient on the carrier density is not monotonic as
a function of the adjusted band gap. For small adjusted band
gaps (less than 2.0 eV), the h-h-e Auger coefficient is reduced
for increasing carrier density. This is due to phase-space filling
effects [47]. Free carriers at low densities are nondegenerate
and this results in a cubic carrier-dependence of the Auger
rate. For degenerate carrier densities, however, the Boltzmann
approximation breaks down and carriers need to be described
by the Fermi-Dirac distribution, which reduces the cubic
density dependence of the Auger rate. In other words, the
Auger coefficient becomes density-dependent at high carrier
densities. The Auger coefficient increases as a function of
carrier density for larger vales of the adjusted band gap for
h-h-e and for all adjusted band-gap values for e-e-h. This
is because direct Auger recombination for large values of
the adjusted band gap is inhibited by the limited density of
states available for momentum-conserving Auger transitions.
However, as the carrier density increases the free carriers
occupy a more extended region of the Brillouin zone and more
phase-space becomes available for Auger transitions.

B. Alloy-scattering-assisted Auger recombination in
In0.25Ga0.75N

Alloying GaN with InN forms InxGa1−xN alloys with band
gaps desirable for optoelectronic applications. In Sec. IV A,
we modeled the resulting variation in Auger rates by changing
the band gap. However, alloying also introduces an additional
carrier scattering mechanism due to the breaking of the
translational periodicity by the substitution of Ga atoms with
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FIG. 5. (Color online) Auger coefficients of GaN at 300 K due to
(a) electron-electron-hole (e-e-h) and (b) hole-hole-electron (h-h-e)
Auger recombination processes plotted as a function of the scissors-
shift-adjusted band gap for various free-carrier densities.

In. As a result, the momentum-conservation requirement of
Eq. (5) imposed by the crystal periodicity is relaxed for the
alloy. Consequently, Auger transitions that are forbidden in
the perfect crystal because of the translational symmetry are
allowed in the alloy as a result of the substitutional disorder.
The corresponding matrix elements acquire nonzero values.
By performing calculations for an InGaN alloy supercell,
which explicitly contains the effect of alloy disorder, we
show that alloying enables additional Auger recombination
processes that enhance the Auger coefficient.

Previous calculations of Auger recombination in alloys
used the virtual-crystal approximation to model the effect
of alloying. However, the virtual crystal is a perfectly peri-
odic arrangement of atoms that misses important aspects of
the actual alloy structure, such as substitutional disorder and
atomic relaxations. The importance of these two factors has
been highlighted, for instance, in the case of TiO2(a−x)S2x ,
where they break the symmetry of optical matrix elements
and enhance interband optical absorption [65], and also in
the case of free-carrier absorption in InxGa1−xN [25,26]. In
order to capture these effects in our simulations, we have to
explicitly study Auger recombination in an alloy supercell that
includes both kinds of alloy atoms. A computationally feasible
way to do this is with the 32-atoms special quasirandom alloy
structure [66] for the 25% alloy composition (Fig. 6) [67].
This particular supercell has the special property that it is
the optimal 32-atom supercell that reproduces the short-range
correlation function of the random alloy.
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FIG. 6. (Color online) Structure of the quasirandom alloy cell
used for the calculation of the Auger coefficient in In0.25Ga0.75N
(coordinates from Ref. [67]).

The scattering of free carriers by the alloy disorder is found
to be important for Auger recombination and significantly
increases the Auger coefficients compared to pure GaN.
Figure 7(a) shows the scissors-shift-adjusted band structure
of In0.25Ga0.75N calculated for the 32-atoms alloy supercell
shown in Fig. 6, while Fig. 7(b) shows the band structure of
GaN with a band gap adjusted to the gap of In0.25Ga0.75N
(Egap = 2.4 eV). The two figures show that the disorder
introduced by alloying breaks the symmetry and folds the band
structure, which in turn enables additional Auger transitions
and enhances the Auger coefficient. These transitions cannot
be modeled within the virtual-crystal approximation because
the latter cannot describe the folded bands and the associated
symmetry breaking. Our first-principles calculations take into
account the short-range alloy disorder and incorporate the
effect of alloy scattering on the Auger coefficients.

Once the additional scattering processes are taken into
account, the dependence of the Auger rates on the band gap
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FIG. 7. (Color online) Scissors-shift-adjusted band structure of
In0.25Ga0.75N calculated using (a) the quasirandom alloy structure and
(b) bulk GaN with an adjusted band gap to match that of the alloy.
Alloying enables additional Auger transitions, such as the illustrated
h-h-e process, that are not possible without the zone folding and
symmetry breaking introduced by alloying.
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FIG. 8. (Color online) Auger coefficients of In0.25Ga0.75N for a
carrier density of 1019 cm−3 and a temperature of 300 K due to
(a) electron-electron-hole (e-e-h) and (b) hole-hole-electron (h-h-e)
Auger processes, plotted as a function of the band gap for various
Brillouin-zone sampling densities. The band gap is treated as an
adjustable variable in order to model a varying alloy composition.
The variation of the alloy scattering potential with alloy composition
on these Auger coefficients has not been included in this figure, but
it is examined in Sec. IV E.

can again be examined by plotting results as a function of a
scissors-shift-adjusted band gap, keeping the matrix elements
fixed to those of the In0.25Ga0.75N alloy. Figures 8(a) and
8(b) illustrate the dependence of the e-e-h and h-h-e alloy-
scattering-assisted Auger coefficients on the scissors-shift-
adjusted band gap, as well as the convergence with respect
to the Brillouin-zone-sampling grid density. The broadening
of the delta function in Eq. (1) has been set to 0.3 eV,
the free-carrier densities are n = p = 1019 cm−3, and the
temperature is 300 K. The coefficients are on the order of
3 × 10−31 cm6 s−1 for the adjusted gap value that matches the
25%-alloy band gap (Egap = 2.4 eV), much larger than the
corresponding values for GaN.

The dependence of the alloy-assisted Auger coefficients on
the free-carrier density is shown in Figs. 9(a) and 9(b). Both
the e-e-h and the h-h-e coefficients decrease for increasing
densities for every value of the adjusted band gap. This
implies that for the alloy-assisted Auger case, the effects of
phase-space filling are more important than the enabling of
additional Auger transitions for higher carrier densities. This
is expected, since bands farther from the zone center have
already been made accessible for direct Auger transitions by
the zone folding due to alloying.
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FIG. 9. (Color online) Alloy-assisted Auger coefficients of
In0.25Ga0.75N at 300 K due to (a) electron-electron-hole (e-e-h)
and (b) hole-hole-electron (h-h-e) Auger recombination processes,
plotted as a function of the scissors-shift-adjusted band gap for
various free-carrier densities. The dotted line corresponds to the band
gap of In0.25Ga0.75N (2.4 eV) as predicted from hybrid functional
calculations [61].

The density dependence of the alloy-scattering-assisted
Auger coefficients of In0.25Ga0.75N at 300 K for an adjusted
band-gap value of 2.4 eV is plotted as a function of carrier
concentration in Fig. 10. The values of the Auger coefficients
decrease linearly for increasing carrier densities in the 2 ×
1018–5 × 1019 cm−3 range, which is the typical range of free-
carrier concentrations under LED operating conditions. The
decrease of the Auger coefficients with increasing density is
due to the transition from nondegenerate to degenerate carrier
statistics (phase-space filling) in this carrier-density regime
and to the increasing screening of the Coulomb interaction
matrix elements by free carriers. We fit the first-principles data
in the 2 × 1018–5 × 1019 cm−3 carrier-concentration range
with a linear equation of the form

C(n)/10−31 cm6 s−1 = a + bn/1019 cm−3, (22)

where a and b are dimensionless fitting parameters with values
a = 3.1, b = −0.26 for e-e-h and a = 3.9, b = −0.13 for
h-h-e.

We note that the calculated density dependence of the alloy-
scattering-assisted Auger coefficients differs from the ex-
pression C(n) = C0/(1 + n/n0), which has been used in the
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FIG. 10. (Color online) Carrier-density dependence of the alloy-
scattering-assisted Auger coefficients of In0.25Ga0.75N at 300 K.
The coefficients decrease for increasing carrier densities due to
the transition from nondegenerate to degenerate carrier statistics
(phase-space filling).

literature to describe the effect of phase-space filling [8,47].
Our present results show that the rate of decrease of the Auger
coefficient with density in the 2 × 1018 − 5 × 1019 cm−3 range
(which includes the peak of the internal quantum efficiency
of LEDs [9]) is smaller than the rate of decrease of the
radiative coefficient (B) [36]. The more rapid decrease of
the B coefficient in comparison to the C coefficient with
increasing free-carrier density may explain the asymmetry
of the internal quantum efficiency curve reported in the
literature [68], without invoking an additional fourth-order or
higher-power carrier-loss mechanism.

C. Phonon-assisted Auger recombination in GaN

1. Phonon-assisted Auger coefficients

Figures 11(a) and 11(b) display our calculated results of
the phonon-assisted Auger coefficients at 300 K for the e-e-h
and h-h-e processes, respectively. To model the various alloy
compositions we again used the calculated parameters for GaN
and adjusted the band gap with a rigid scissors shift. By varying
the band gap, we can model transitions to different sets of final
states and this enables us to model phonon-assisted Auger
recombination for a range of InxGa1−xN compositions. The
broadening of the δ function in Eqs. (19) and (20), as well as the
imaginary component of the energy denominator in Eq. (21)
were set to 0.3 eV. The phonon-assisted Auger coefficients
are much larger than the values of the direct Auger coefficient
in GaN. The coefficients increase for decreasing band-gap
values, indicating that Auger recombination is enhanced for
higher-In-composition alloys.

2. Phonon mode and wave-vector contributions to
phonon-assisted Auger coefficients

One interesting question to examine is which phonons con-
tribute to the Auger process and how well their contributions
to the Auger processes are captured with more approximate
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FIG. 11. (Color online) Contributions by the various phonon
modes [longitudinal optical (LO), acoustic, and other optical modes]
to the total phonon-assisted Auger coefficient of GaN for the (a)
e-e-h and (b) h-h-e processes at 300 K. The phonon-assisted Auger
coefficient using the Fröhlich model for the electron-phonon coupling
is also shown for comparison.

theoretical treatments, as opposed to the first-principles density
functional theory treatment used in the present work. The
contributions from each type of vibrational mode to the
Auger coefficient at 300 K are also plotted in Figs. 11(a)
and 11(b) for the e-e-h and h-h-e processes, respectively. For
both kinds of Auger processes, and for band-gap values in the
2.4–3.5 eV range, the dominant electron-phonon processes
are due to optical-phonon deformation-potential scattering,
followed by scattering by the acoustic phonon modes and the
polar optical phonons. Figures 11(a) and 11(b) also include
a comparison of the first-principles results to the phonon-
assisted Auger coefficients calculated using the Fröhlich
expression for the electron-phonon interaction potential, which
models the scattering of carriers by polar interactions with the
longitudinal-optical phonons [45] and has been shown to agree
with the first-principles results at long wavelengths [25]:

�Vel-ph = − i

q

[
2πe2

�ωLO

V

(
1

ε∞
− 1

ε0

)]1/2

.

For the model parameters, we used ε0 = (ε0‖ε2
0⊥)1/3 = 9.79

[59], ε∞ = (ε∞‖ε2
∞⊥)1/3 = 5.5 [59], and �ωLO = 92 meV

[69]. For band-gap values in the 2.4–3.0 eV energy range,
the Auger coefficients calculated with the Fröhlich model are
smaller than the first-principles ones by approximately one
order of magnitude. For the h-h-e process, the Fröhlich model

FIG. 12. (Color online) Relative magnitude of phonon-assisted
Auger coefficients of GaN at 300 K due to (a) electron-electron-
hole (e-e-h) and (b) hole-hole-electron (h-h-e) Auger recombination
processes, plotted as a function of the scissors-shift-adjusted band
gap and analyzed in terms of the norm of the q-points that contribute
to the recombination process. The norms of the vectors from the
� (0,0,0) point to the A (0,0, 1

2 ), M ( 1
2 ,0,0), and H ( 2

3 , 1
3 , 1

2 ) points
are denoted along the horizontal axis. The coordinates of the points
are given in relative coordinates with respect to the reciprocal lattice
vectors.

agrees well with the first-principles data for the LO-phonon
contribution to the scattering, but for the e-e-h case the
Fröhlich model cannot account even for that contribution. As
we will show later, the reason for this discrepancy is because
the phonons involved in the scattering process for band-gap
values in the 2.4–3.0 eV range are short-ranged ones (i.e., they
involve large momentum transfer) and cannot be captured by
the Fröhlich model, which is derived for the long-wavelength
limit.

3. Limitations of approximate band-structure and phonon models

The limitations of approximate phonon models are further
illustrated by an analysis of the wave vectors of the phonons
that provide the dominant contribution to phonon-assisted
Auger recombination. Figure 12 shows the contributions to
the phonon-assisted Auger coefficients from phonons with
different momenta q as a function of the adjusted band
gap (to model the effect of alloying, but using parameters
for GaN) and the norm of the phonon momentum |q|. The
plots indicate that for band gap values in the 2.4–3.0 eV
range, the dominant contributions to the Auger coefficient
originate from scattering by phonons with momenta compa-
rable to the Brillouin-zone dimensions [i.e., comparable to
the distance from the � to the A point at the boundary of
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the first Brillouin zone of wurtzite (Fig. 7)]. This indicates
that the phonon-scattering events involved in the indirect
Auger process in nitride devices with wavelengths from
violet to green are short ranged. This is dictated by the
band structure and by the fact that the higher conduction-
(valence-)band states, which accommodate the electrons
(holes) excited by the e-e-h (h-h-e) processes, are located
at wave vectors comparable to the size of the first Brillouin
zone.

Our analysis indicates that since phonon-assisted Auger
recombination is a short-range effect, it will not be significantly
affected by quantum confinement. The values of the phonon-
assisted Auger coefficients for quantum wells with a width of
2.5–3 nm (i.e., 5–6 times the lattice constant along the c axis),
which is typical for commercial nitride LEDs, are expected to
be approximately equal to their bulk values. Our results also
show that the values of the phonon-assisted Auger coefficients
cannot significantly be suppressed by engineering approaches
such as nanopattering, because these methods do not modify
materials properties on the scale of the unit cell.

These results also validate the approximation of using
�-point-only wave functions for the initial electron and hole
states. It is known from k · p theory that the difference between
the wave functions at � and at a k point in the vicinity
of � is proportional to |k| [70]. Since matrix elements are
proportional to the square of the wave function, the error
we make by approximating the initial-state wave functions
of the carriers with those at � is on the order of the square
of the ratio of the free-carrier Fermi wave vector versus
the dominant-phonon wave vectors, i.e., the Brillouin-zone
dimensions. For n = 1019 cm−3, the free-carrier Fermi wave
vector at T = 0 K is on the order of 0.03 a−1

B , while the
Brillouin-zone dimension (distance from � to A point) is
0.64 a−1

B . Therefore the error introduced by this approxi-
mation is on the order of 0.2%, which is sufficient for our
purposes.

Another conclusion that can be drawn from the results of
Figs. 11 and 12 is that the calculations using k · p theory for the
band structure and the Fröhlich model for the electron-phonon
coupling employed in Ref. [33] cannot properly capture Auger
recombination in wide-band-gap nitride materials. This is
because k · p theory is inaccurate for the bands and wave
functions of states in the energy range at 2.4–3.0 eV away from
the band edges, which is relevant for Auger recombination
in the nitrides, and therefore cannot accurately include the
contribution of these states to the overall recombination rate.
Moreover, Figs. 11(a) and 11(b) illustrate that the dominant
contributions to the phonon-assisted Auger recombination rate
arises from deformation-potential optical phonon scattering
and from acoustic phonons, while the LO phonons contribute
only a small fraction to the overall rate. In addition, the results
in Figs. 11(a) and 11(b) show that the Fröhlich model cannot
accurately capture the contribution of the LO phonons to the
Auger rate and that a microscopic description of electron–
LO-phonon coupling is necessary. The proper description
of the energies and wave functions of states away from the
band edges as well as the incorporation of all phonon modes
in electron-phonon scattering provided by the first-principles
calculations of this work is essential to obtain accurate results
for phonon-assisted Auger recombination in the nitrides.

4. Appropriateness of second-order perturbation theory

Our results also show that another previous study of
phonon-assisted Auger recombination in the nitrides [71],
which is based on the formalism of Bardyzewski and Yevick
[72], does not incorporate the dominant phonon-assisted
processes and significantly underestimates the magnitudes of
the phonon-assisted Auger coefficients in the nitrides. The
method used in Ref. [71] incorporates the effect of electron-
phonon coupling in the broadening of the carrier spectral
functions, but it does not consider the additional momentum
provided to the carriers by phonon emission or absorption
(Eq. (3) in Ref. [71]). In other words, the indirect Auger
processes facilitated by the additional momentum provided by
the phonons that excite carriers to higher electronic states near
the edges of the Brillouin zone, which we found to dominate
phonon-assisted Auger recombination, were not considered in
Ref. [71]. We therefore attribute the difference between our
results and the ones reported in Ref. [71] to the omission of
the dominant phonon terms in the latter work.

It was also argued in Ref. [71] that a treatment of phonon-
assisted Auger recombination with second-order perturbation
theory as performed in the present work may be inadequate
because of the need to use the imaginary broadening parameter
(η) in the denominator of the matrix elements in Eq. (21). We
have explicitly examined the dependence of the calculated
phonon-assisted e-e-h and h-h-e Auger coefficients on the
value of the broadening parameter η used in Eq. (21). Figure 13
shows that the calculated coefficients remain approximately
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FIG. 13. (Color online) Phonon-assisted Auger coefficient as a
function of the scissors-shift-adjusted band gap of GaN for various
values of the energy broadening parameter η in the energy denomi-
nator of Eq. (21).
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constant as the broadening parameter varies over almost two
orders of magnitude. For adjusted band-gap values in the
2.4–3.5 eV range, the Auger coefficients change only by 2% for
the e-e-h and by 14% for the h-h-e processes as the broadening
parameter varies by a factor of 50. The dependence on the
broadening parameter is slightly greater for band-gap values
in the 1.0–2.0 eV range, but still the e-e-h coefficient changes
by at most 21% and the h-h-e coefficient by 43% at most.

The imaginary part of the energy denominator may in
general affect the transition rates calculated with second-order
perturbation theory if, as pointed out in Ref. [71], resonant
direct transitions to the intermediate states are possible.
However, this is not the case for phonon-assisted Auger recom-
bination in the nitrides. The intermediate states involved are far
from being resonant and the real part of the energy denominator
of the matrix elements in Eq. (21) dominates. Therefore the
theoretical treatment of phonon-assisted Auger recombination
in terms of perturbation theory yields results that do not
significantly depend on the chosen value of the imaginary
broadening parameter. We also note that for materials for
which resonant intermediate states do matter, the imaginary
part of the energy denominator induced by electron-phonon
coupling can be calculated with first-principles methods (e.g.,
Ref. [73]) and incorporated in our formalism.

5. Temperature dependence of phonon-assisted Auger coefficients

Figure 14 shows the temperature dependence of the phonon-
assisted Auger coefficients of GaN as a function of the scissors-
shift-adjusted band gap. The Auger coefficients increase at
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FIG. 14. (Color online) Temperature dependence of the (a) e-e-h
and (b) h-h-e phonon-assisted Auger coefficient of GaN as a function
of the scissors-shift adjusted band gap.

higher temperatures because the phonon occupation numbers
in Eq. (9) are a monotonically increasing function of tem-
perature. We note that phonon-assisted Auger recombination
is possible even at absolute zero temperature because the
phonon-emission-assisted process does not require a finite
thermal phonon population.

Our calculated temperature dependence of the Auger
coefficient is in agreement with experimental measurements.
Galler et al.[74] measured the radiative and Auger coefficients
for a single-quantum-well InGaN device. After accounting for
the reduced overlap due to polarization fields, they determined
the values of the Auger coefficient as a function of temperature.
Their data indicate that the Auger coefficient in InGaN is a
monotonically increasing function of temperature, in agree-
ment with our findings for phonon-assisted Auger recombina-
tion. Moreover, the internal-quantum-efficiency data reported
by Laubsch et al.[6] show that Auger recombination in InGaN
occurs even at cryogenic temperatures (4 K). This is in contrast
with the expected exponential temperature dependence of
direct Auger recombination [45] but in agreement with our
finding that phonon-emission-assisted Auger processes are
possible even at absolute zero temperature.

6. Influence of strain on phonon-assisted Auger coefficients

We also explored the influence of strain on the value of
the phonon-assisted Auger coefficients, but we found that the
effect is very small. Strain modifies the relative energy of the
valence bands near the maximum at � [75] and influences
the electron-hole recombination. It is therefore conceivable
that certain strain conditions could yield a favorable valence-
band ordering that minimizes the Auger coefficients. To test
this hypothesis, we calculated the phonon-assisted Auger
coefficients in strained GaN. We applied a 0.5% tensile strain
along one of the primitive vectors in the c-plane of the
wurtzite structure, which breaks the valence-band degeneracy
and allows us to distinguish transitions involving various hole
states. The value of the Auger coefficients for various InGaN
compositions was again calculated by applying a rigid scissors
shift to the band gap. The calculated results are shown in
Fig. 15. The e-e-h phonon-assisted Auger coefficient depends
weakly on the choice of hole state [Fig. 15(a)]. This is expected
by symmetry since electrons occupy Ga s states, while the top
of the valence band is made of N p orbitals oriented along
different directions. On the other hand, we expect variations
for the h-h-e coefficient depending on whether the two holes
occupy the same or different valence bands. Our results,
however, show that this dependence is weak [Fig. 15(b)].
Therefore the application of strain in order to reorder the
valence bands and alter the hole state occupations does not
significantly reduce the value of the phonon-assisted Auger
recombination rate, which is the primary Auger recombination
mechanism in the nitrides.

D. Charged-defect-assisted Auger recombination in GaN

Another scattering mechanism that can in principle con-
tribute to indirect Auger recombination is scattering due
to charged defects. The formalism for the calculation of
the charged-defect-assisted Auger coefficient is similar to
the phonon-assisted case, except the phonon frequencies in
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FIG. 15. (Color online) Phonon-assisted Auger recombination in
strained GaN as a function of the scissors-shift-adjusted band gap for
the (a) electron-electron-hole (eeh) and (b) hole-hole-electron (hhe)
processes. The various curves correspond to the various hole states
(heavy hole, light hole, or crystal-field-split hole) that participate in
the Auger transitions.

Eq. (9) are set to zero, and the electron-phonon scattering
matrix elements (g) to the corresponding charged-defect-
scattering ones, gdefect = 〈k|�Vdefect|k + q〉, where �Vdefect

is the screened Coulomb potential of a defect of charge Z:

�Vdefect = 4πZe2

ε(q)(q2 + λ2)
.

The calculations were performed using band-structure and
screening parameters for GaN and rigidly shifting the band
gap to model the effect of alloying. We investigated the
scattering induced by negatively charged defects on Ga sites.
The results for the e-e-h and h-h-e processes for a free-carrier
concentration of 1019 cm−3 are shown in Fig. 16. We assumed
a singly charged defect (Z = 1) with a density of 1019 cm−3.
This density is actually much higher than the observed defect
densities, for instance, for the Ga vacancies, which are the
most common point defects in n-type GaN [76,77]. Figure 16
illustrates that charged-defect-assisted Auger recombination
is weak for realistic densities of charged defects. Even if we
assume a concentration of 1019 cm−3 of triply charged defects
(Z = 3, the charge state expected for gallium vacancies in
n-type GaN), the calculated charged-defect-assisted Auger
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FIG. 16. (Color online) Charged-defect-assisted Auger recombi-
nation in GaN for a charged-defect concentration of 1019 cm−3.

coefficients increase only by a factor of 9 and are still smaller
by one order of magnitude compared to the phonon-assisted
results. In order to get an effect comparable to phonon-
assisted Auger, the defect density would need to be on the
order of 1021 cm−3 of singly charged defects or 1020 cm−3

of triply charged ones, which are unrealistically high and
not encountered in actual devices. Therefore charged-defect-
assisted Auger recombination is an unlikely candidate to
explain the efficiency droop in nitride light emitters. This
is in agreement with experimental findings that the Auger
coefficient does not change significantly for samples of varying
quality [3]. We note that our results only included the effect
of long-range Coulomb scattering by charged impurities, and
do not include effects such as central-cell corrections [78],
short-range scattering by neutral defects, or Auger transitions
to localized defect states [79]. Further work that considers
these effects is needed to fully evaluate the interplay of defects
and Auger recombination in nitride materials.

E. Cumulative Auger recombination coefficients

The contributions to the total Auger coefficients, as well as
the cumulative result, for a carrier concentration of 1019 cm−3

as a function of the band gap of InGaN are plotted in Fig. 17.
The band-gap dependence of the direct, phonon-assisted,
and charged-defect-assisted Auger coefficients is obtained
by applying a rigid scissors shift to the band gap of GaN.
The alloy-scattering-assisted Auger coefficients calculated for
In0.25Ga0.75N have been extrapolated to model other alloy
compositions by applying a rigid scissors shift to the band
gap (which was the only effect included in Fig. 8) and multi-
plying with x(1 − x)/(0.25 · 0.75). This is because the alloy-
scattering-assisted Auger recombination rate is proportional
to the square of the alloy-disorder-scattering matrix elements,
which are proportional to x(1 − x) [45]. The band-gap bowing
equation of InxGa1−xN from Ref. [61] was inverted to yield
the alloy composition as a function of the band gap. Our results
reveal that the primary contribution to Auger recombination in
InxGa1−xN alloys stems from the scattering of charge carriers
by the alloy disorder, while phonon-mediated processes
provide a secondary contribution to Auger recombination. Our
results also show that the recombination rate due to direct
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FIG. 17. (Color online) Summary of the calculated results for the
investigated direct and indirect Auger recombination mechanisms in
InGaN for free electron and hole concentrations of 1019 cm−3 and a
temperature of 300 K. The contributions by the individual processes as
well as the cumulative Auger coefficients are shown for (a) electron-
electron-hole and (b) hole-hole-electron processes. In both cases,
the results show that phonon-assisted Auger recombination is the
dominant Auger recombination mechanism in InGaN.

Auger processes is negligible compared to the phonon- and
alloy-scattering assisted terms, and that charge-defect-assisted
Auger recombination is negligible for realistic defect densities
in actual devices. Our present results for the phonon-assisted
and alloy-scattering-assisted coefficients slightly differ from
values we reported previously [35], mainly due to the different
model used in the present work to describe the screening by
free carriers.

The calculated values for the Auger coefficients are in
agreement with experimentally reported values for nitride
LEDs and lasers, and thus they highlight the important role
of these nonradiative recombination mechanisms during the
operation of nitride optoelectronic devices at high power
[35]. The total value of the Auger coefficient for the e-e-h
process ranges from 7 × 10−32 cm6 s−1 for a gap of 3.0 eV

to 4 × 10−31 cm6 s−1 when the gap is 2.4 eV, while the h-h-e
Auger coefficient ranges from 3 × 10−31 cm6 s−1 for a gap
value of 3.0 eV to 6 × 10−31 cm6 s−1 for a 2.4 eV gap. The
overall Auger coefficient accounting for both e-e-h and h-h-e
contributions amounts to 0.3 – 1 × 10−30 cm6 s−1 in the range
of In compositions corresponding to LEDs in the violet to
green part of the visible spectrum.

V. SUMMARY

In this work, we presented a first-principles methodology
and the associated computational details for the determination
of the direct and indirect Auger recombination rate in direct-
band-gap semiconductors. With minor modifications, the
methodology can also be applied to indirect-gap materials. The
formalism has been applied to study Auger recombination in
the group-III nitride materials used in optoelectronic devices.
The sensitivity to various parameters and approximations used
in the calculations has been examined. The results indicate that
direct Auger recombination is not important in this class of
wide-band-gap materials. Indirect Auger processes, mediated
by electron-phonon and alloy scattering, are much stronger
and the corresponding coefficients are of the magnitude that
has been shown to be sufficient to account for the efficiency
droop of nitride LEDs [35]. The formalism is not limited to
nitrides and can be applied to study Auger recombination in
other classes of materials both from a fundamental materials
physics point of view and to understand their performance
in high-power optoelectronic applications. Future improve-
ments to the methodology could include the first-principles
calculation of the dielectric function within the random-phase
approximation [46] and the inclusion of alloy effects on the
band structure and matrix elements for phonon-assisted Auger
recombination.
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