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Collapse of electrons to a donor cluster in SrTiO3
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It is known that a nucleus with charge Ze, where Z > 170, creates electron-positron pairs from the vacuum.
Electrons collapse onto the nucleus resulting in a net charge Zn < Z while the positrons are emitted. This effect
is due to the relativistic dispersion law. The same reason leads to the collapse of electrons to the donor cluster
with a large charge number Z in narrow-band-gap semiconductors, Weyl semimetals, and graphene. In this paper,
a similar effect of electron collapse and charge renormalization is found for a donor cluster in SrTiO3 (STO), but
with a different origin. At low temperatures, STO has an enormously large dielectric constant and the nonlinear
dielectric response becomes dominant when the electric field is still small. This leads to the collapse of electrons
into a charged spherical donor cluster with radius R when its total charge number Z exceeds a critical value
Zc � R/a where a is the lattice constant. The net charge Zne grows with Z until Z exceeds Z∗ � (R/a)9/7.
After this point, the charge of the compact core Zn remains � Z∗, while the rest Z∗ electrons form a sparse
Thomas-Fermi electron atmosphere around it. We show that the thermal ionization of such two-scale atoms easily
strips the outer atmosphere while the inner core remains preserved. We extend our results to the case of long
cylindrical clusters. We discuss how our predictions can be tested by measuring the conductivity of chains of
disks of charge on the STO surface.
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I. INTRODUCTION

Recently, studies of ABO3 perovskite crystals have been
a subject of interest due to their intriguing magnetic, super-
conducting, and multiferroic properties [1] and subsequent
significant technological applications. Among them, SrTiO3

(STO) has attracted special attention [2,3]. STO is a semicon-
ductor with a band gap of � 3.2 eV and a large dielectric
constant κ = 2 × 104 at liquid helium temperature. Like the
conventional semiconductors, STO can be used as the basis
for a number of devices [4,5].

Many of the devices are realized by doping the bulk
STO, for example, by generating oxygen vacancies at high
temperatures. The vacancies either form along a network of
extended defects [6] or assemble together to lower the system’s
energy [7,8], probably producing large positively charged
donor clusters. Another way to more controllably create such
a cluster is to “draw” a disk of charge by the atomic force
microscope (AFM) tip on the surface of LAO/STO structure
with the subcritical thickness for LaAlO3 (LAO) [9,10]. The
potential caused by such a positive disk in the bulk STO is
similar to that of a charged sphere.

Let us consider a spherical donor cluster with radius R

and charge Ze. We assume that the cluster is located on the
background of uniformly n-type doped STO in which the
Fermi level is very close to the bottom of the conduction band.
There are Z electrons located at distances from κb/Z to the
Bohr radius κb from the cluster, which form a Thomas-Fermi
“atom” [11] with it. Here b = �

2/m∗e2; m∗ ≈ 1.8me is the
effective electron mass in STO [12] with me being the electron
mass. Since κ is large, the electrons are far away from the
cluster and the whole “atom” is very big. As Z increases, the
electron gas swells inward to hold more electrons. However,
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we find that when Z goes beyond a certain value Zc (κb/Z

is still much larger than R at this moment), the physical
picture is qualitatively altered. The surrounding electrons start
to collapse into the cluster and the net cluster charge gets
renormalized from Ze to Zne with Zn � Z at very large Z.

The effect of charge renormalization is not new [13,14].
For a highly charged nucleus with charge Ze, the vacuum is
predicted to be unstable against creation of electron-positron
pairs, resulting in a collapse of electrons onto the nucleus with
positrons emitted [13]. This instability happens when Z > Zc

with Zc � 170 � 1/α, where α = e2/�c � 1/137 is the fine-
structure constant. When Z exceeds Z∗ � 1/α3/2 � 1373/2,
the net charge saturates at Z∗ [14]. In the condensed matter
setting, there are similar phenomena in narrow-band-gap
semiconductors and Weyl semimetals [14] as well as graphene
[15]. In all these cases, the collapse happens because the energy
dispersion of electrons is relativistic in the Coulomb field of
a compact donor cluster playing the role of a nucleus. In
our work, however, the collapse originates from the strong
nonlinearity of dielectric constant in STO at small distances
from the cluster. In the case of a spherical donor cluster, this
nonlinearity leads to the change of the attractive potential
near the cluster from being ∝ 1/r to ∝ 1/r5, resulting in the
collapse of electrons to the cluster.

The phenomena of electron collapse and charge renor-
malization in both heavy nuclei and our work are presented
in Fig. 1. In our case, the first electron collapses at Z �
Zc � R/a, where a is the lattice constant, and at Z � Z∗ �
(R/a)9/7, the net charge of nucleus Zne saturates as Zn � Z∗.

In the remainder of this paper, we use the Thomas-Fermi
approximation to show how the electron gas collapses into
the cluster at Z � Zc and find the corresponding electron
density. In Sec. II, we demonstrate that when Zc � Z � Z∗,
the charge renormalization is relatively weak and the final
charge number Zn is just a little bit below Z. On the other
hand, when Z � Z∗, the renormalization is very strong and
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FIG. 1. (Color online) The number of collapsed electrons S and
the renormalized net charge Zne as a function of the original charge
Ze. S is shown by the thin solid line (red), Zn is denoted by the
thick solid line (blue), and the dashed line (black) is a guide-to-eye
where Zn = Z. Zc denotes the critical value where electrons begin to
collapse and Z∗ is the saturation point where Zn stops growing. (a)
Collapse of electrons and charge renormalization for highly charged
nuclei. S ∝ Z3 at Zc � Z � Z∗ [16]. (b) Collapse of electrons and
charge renormalization for spherical donor clusters in STO. S ∝ Z9/2

at Zc � Z � Z∗.

Zn is maintained at the level of Z∗. The inner core of the cluster
atom with charge Z∗ is surrounded by a sparse Thomas-Fermi
atmosphere of Z∗ electrons in which the large linear dielectric
constant plays the main role. In Sec. III, we generalize our
studies to the cylindrical donor clusters and introduce the
notion of maximum linear charge density η∗ similar to Z∗
which is got when the bare charge density of the cluster η is
large. In Sec. IV we consider the thermal ionization of donor
cluster atoms and arrive at the conclusion that for both spheres
and cylinders the external electron atmosphere is easily ionized
while the inner core with charge Z∗ or linear charge density
η∗ is robust against the ionization. We suggest experimental
verification of our theory for a periodic chain of charge disks
created by methods of Refs. [9,10]. If neighboring disk atoms
overlap via the outer electron atmosphere (the “bridges”),
raising the temperature may ionize these bridges and sharply
reduce the chain conductance. We conclude our work in Sec. V.

II. SPHERICAL DONOR CLUSTERS

A. Nonlinear dielectric response

It is well known that STO is a quantum paraelectric where
the onset of ferroelectric order is suppressed by quantum
fluctuations [17]. In such ferroelectric-like materials, the free
energy density F can be expressed by the Landau-Ginzburg
theory as a power-series expansion of the polarization P [18]:

F = F0 + τ

2
P 2 + A

4P 2
0

P 4 − EP

(in Gaussian units), where F0 stands for the free energy density
at P = 0, E is the electric field, τ = 4π/(κ − 1) � 4π/κ is
the inverse susceptibility, κ � 1 is the dielectric constant, A ≈
0.9 [19], P0 = e/a2, and a = 3.9 Å is the lattice constant.
We neglect the gradient terms of polarization since they play
a minor role in the nonlinear regime. We assume that the
dielectric response is isotropic. This is justified by the small
anisotropy in the nonlinear response of STO [20]. The crystal
polarization P is determined by minimizing the free energy
density F in the presence of the electric field E; i.e., δF/δP =
0. This gives

E = 4πP

κ
+ AP 3

P 2
0

.

For very big κ , the nonlinear term in this expression is likely
to dominate over the linear one even at relatively small P

as long as P � √
4π/κAP0. At distances not too far from

the cluster, this relationship can easily be satisfied and the
dielectric response becomes nonlinear [19]:

E = AP 3

P 2
0

. (1)

Since P0 = e/a2 is really big, we can expect that P <√
4π/AP0 always holds, which gives E < 4πP . Then,

D = E + 4πP ≈ 4πP. (2)

According to Gauss’s law in dielectric media, we know ∇ ·
D = 4πρ, where ρ is the free charge density. Together with
Eqs. (1) and (2), we have

∇ · (∇φ)1/3 = −
(

A

P 2
0

)1/3

ρ, (3)

where φ is the electric potential.
Below, we show that this nonlinear dielectric response leads

to the collapse of electrons into the spherical donor cluster
inside STO when the cluster charge is large enough.

B. Renormalization of charge

Consider a large spherical donor cluster of the radius R and
the total positive charge Ze such that a � R < κb/Z. If the
dielectric response is linear, the electrons are mainly located
at distances between r1 = κb/Z and rA = κb from the cluster
[11] where b = �

2/m∗e2 ≈ 0.29 Å [19]. For a very large κ ,
these radii are huge (rA = 700 nm in STO at liquid helium
temperature where κ = 20 000) and the electrons are far away
from the cluster. However, at small distances, the dielectric
response is nonlinear and changes the potential form. If the
potential energy outweighs the kinetic energy, electrons are
attracted to the cluster and renormalize the net charge. To see
when this will happen, we look at the specific form of electric
potential in this situation. We can calculate the potential from
Eq. (3). But due to the simple charge distribution here, we
can get it in an easier way. At r > R where r is the distance
from the cluster center, the sphere looks like a point charge
and D(r) = Ze/r2. Using this together with Eqs. (1) and (2),
one can calculate the electric field and get the electric potential
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FIG. 2. (Color online) Potential energy of electrons U (r) =
−eφ(r) as a function of radius r . φ0 is defined as n(φ0) = n0, where
n0 = 3Z/4πR3; n(r) is a function of φ(r) given by Eq. (7). The thick
solid line (blue) represents the potential profile of a cluster of charge
Z � Z∗ which is in the regime of weak charge renormalization. The
thin solid line (red) represents the potential of a cluster at Z � Z∗ in
the strong renormalization regime, where the two vertical dotted lines
show edges of the “double-layer” structure of width ∼ d � R. The
horizontal dashed line (black) indicates the position of the chemical
potential μ = 0. r∗ is the external radius of the collapsed electron gas
where Thomas-Fermi approach fails.

φ(r) as

φ(r) = A

P 2
0

(
Ze

4π

)3 1

5r5
, R < r � r1, (4)

with φ(r = ∞) defined as zero. Inside the cluster at r < R,
since the charge is uniformly distributed over the sphere,
the total positive charge enclosed in the sphere of radius r

is equal to Zer3/R3, so D(r) = Zer/R3. One then gets the
corresponding potential φ(r):

φ(r) = A

P 2
0

(
Ze

4π

)3( 9

20

1

R5
− 1

4

r4

R9

)
, 0 < r < R, (5)

using the boundary condition φ(r = R−) = φ(r = R+). A
schematic graph of the potential energy U (r) = −eφ(r) is
shown in Fig. 2 by the thick solid line (blue).

The Hamiltonian for a single electron is H = p2/2m∗ −
eφ(r), where p is the momentum of the electron and m∗ is
the effective electron mass in STO [19]. If we approximately
set p � �/2r , we get a positive total energy of the electron
everywhere when Z is very small. This means there are no
bound states of electron in the cluster. However, when Z is
big enough so that Z > Zc, the electron can have negative
total energy at r < R and will collapse into the cluster. Using
Eqs. (4) and (5), we find

Zc ≈ 4π (b/Aa)1/3R

a
∼ R

a
� 1. (6)

As Z continues increasing, more and more electrons get inside
the cluster filling it from the center where the potential energy
is lowest (see Fig. 2). The single-electron picture no longer
applies. Instead, we use the Thomas-Fermi approximation [11]
with the electrochemical potential μ = 0, which gives

n(r) = c1

b3

[
φ(r)

e/b

]3/2

, (7)

where n(r) is the electron density at radius r , and c1 =
23/2/3π2 ≈ 0.1.

We assume that the bulk STO is a heavily doped semicon-
ductor in which the Fermi level lies in the conduction band.
On the other hand, due to the relatively high effective electron
mass, the Fermi energy is much smaller than the depth of the
potential well shown in Fig. 2 and is thus ignored. Since at
r = ∞ the electric potential φ(r) is defined as 0, we then have
the electrochemical potential μ � 0.

When the number of collapsed electrons S is small, their
influence on the electric potential is weak. One can still use
Eqs. (4) and (5) for φ(r) and get the corresponding expression
of n(r). At r > R, since φ(r) is ∝ 1/r5, we get n(r) ∝ 1/r15/2.
In this way, we calculate S as

S =
∫ ∞

0
n(r)4πr2dr = 0.5Z

(
Z

Z∗

)7/2

∝ Z9/2, (8)

where

Z∗ =
[

4π (b/Aa)1/3R

a

]9/7

. (9)

The net charge number of the cluster is

Zn = Z − S = Z

[
1 − 0.5

(
Z

Z∗

)7/2]
. (10)

One can see, when Zc � Z � Z∗, one gets S � Z and Zn �
Z, meaning the charge renormalization is weak. However,
at Z ∼ Z∗, according to Eqs. (8) and (10), we get Zn ∼
S ∼ Z∗. The potential contributed by electrons is no longer
perturbative. This brings us to the new regime of strong
renormalization of charge.

We show that at Z � Z∗ the net charge Zne saturates at the
level of Z∗e. Indeed, when Z grows beyond Z∗, Zn cannot go
down and therefore cannot be much smaller than Z∗. At the
same time it cannot continue going up, otherwise as follows
from Eqs. (4) and (8) with Z replaced by Zn � Z∗, the total
electron charge surrounding the charge Zne at r > R would
become Se � Zne(Zn/Z

∗)7/2 � Zne leading to a negative
charge seen from infinity. Thus, at Z � Z∗, the net charge
Zn saturates at the universal value of the order of Z∗ as is
shown in Fig. 1(b). As we emphasized in Fig. 1, this result
is qualitatively similar to the one obtained for heavy nuclei
and donor clusters in Weyl semimetals and narrow-band-gap
semiconductors in Ref. [14].

In the following subsection, we show how the renor-
malization of charge at Z � Z∗ is realized through certain
distribution of electrons, in which a structure of “double layer”
(see Fig. 2) plays an important role.

C. Radial distribution of electrons

At Z � Z∗, the charge renormalization is strong and
most of the sphere of radius R is completely neutralized
by electrons. In the neutral center of the sphere, the electron
density n(r) = n0, where n0 = 3Z/4πR3 is the density of the
positive charge inside the cluster. The corresponding “internal”
electric potential φin(r) = φ0 where φ0 is given by n(φ0) = n0

using Eq. (7). φin(r) is then ∝ (n0a
3)2/3 ∝ [Z/(R/a)3]2/3.

Outside the cluster, when the charge is renormalized to Zn,
one gets a potential φout(r) similar to Eq. (4) with Z replaced
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by Zn. Since Zn is ∼ Z∗ where Z∗ is given by Eq. (9), we
get φout(r) ∝ (R/a)−8/7 at a distance r of the order R. Thus,
close to the cluster surface, the ratio of the outside potential
φout(r) to the inside potential φin(r) is � (R/a)6/7/Z2/3 � 1
since Z � Z∗ � (R/a)9/7. This indicates a sharp potential
drop across the sphere surface.

At 0 < R − r � R, there is a thin layer of uncompensated
positive charges. At 0 < r − R � R, a higher potential than
farther away means a larger electron concentration that forms
a negative layer close to the surface. This “double-layer”
structure resembles a capacitor which quickly brings the
potential down across the surface as shown in Fig. 2. An
analogous structure also exists in heavy nuclei [13,16] with
charge Z � 1/α3/2.

To make the analysis more quantitative, one needs to know
the specific potential profile in this region. Using Eq. (3), we
get the general equation of φ(r) in the spherical coordinate
system:

(
d

dr
+ 2

r

)(
dφ

dr

)1/3

= A1/3e

P
2/3
0

[n(r) − n0], r < R, (11a)

(
d

dr
+ 2

r

)(
dφ

dr

)1/3

= A1/3e

P
2/3
0

n(r), r > R. (11b)

Near the cluster surface, we can approximately use a plane
solution of φ(r), i.e., ignore the 2/r term on the left side. This
kind of solution for r � R is already known [19]:

φ(r) = c3

A2/7

e

b

(
b

a

)16/7(
a

x + d

)8/7

, (12)

where x = r − R � R is the distance to the surface and d �
R is the characteristic decay length to be determined; c3 ≈ 6.
Correspondingly, the radial electron concentration at r � R is
given by

n(r)r2 = c4

A3/7

1

b3

(
b

a

)24/7(
a

x + d

)12/7

r2

≈ c4

A3/7

1

b3

(
b

a

)24/7(
a

x + d

)12/7

R2, (13)

where r ≈ R, c4 ≈ 1.
Since the “double-layer” structure resembles a plane capac-

itor, near the surface, the potential drop is nearly linear with the
radius. Using Eq. (12), one can get φ(r) ≈ (1 − 8x/7d)φ(R) at
0 < x = r − R � d, which gives the electric field 8φ(R)/7d

inside the “double layer.” At r < R, this electric field persists
and gives φ(r) ≈ (1 + 8x/7d)φ(R) at 0 < x = R − r � d.
As r further decreases, the positive layer ends and the potential
crosses over to the constant value φ0 given by n(φ0) = n0 using
Eq. (7). This boundary condition gives

d = c5

A1/4

(
b

a

)1/4
a

(n0a3)7/12
, (14)

where c5 ≈ 2. By expressing n0 in terms of Z and R, we get
d/R ∝ (Z∗/Z)7/12 � 1 at Z � Z∗.

According to Eq. (12), when x is comparable to R and
the plane approximation is about to lose its validity, φ(r) is
∝ (R/a)−8/7. It is weak enough to match the low electric

FIG. 3. (Color online) Radial electron concentration n(r)r2 as
a function of radius r . The thick solid line (red) represents the
inner collapsed electrons at r < rc where the dielectric response is
nonlinear. The thin solid line (blue) shows the electrons belonging
to the outer shell which form the standard Thomas-Fermi atom with
the renormalized nucleus of charge Z∗ at r > rc, where the dielectric
response is linear. This electron gas ends at the Bohr radius rA = κb

while most of them are at radius rm = κb/Z∗1/3. The dashed line
(black) denotes the electrons forming a Thomas-Fermi atom [11]
with a nucleus of charge Z when P0 is infinity and there is no range
with nonlinear dielectric response. The reduction of electron density
in the outer shell of electrons due to the collapse is substantial. The
reason this is not immediately seen from the difference of height
between the dashed line (black) and the thin solid line (blue) is that
we use a logarithmic scale here. n0 is defined as 3Z/4πR3. This graph
is plotted at b = 0.35 Å, a = 3.9 Å, A = 0.9, R = 4.4a, κ = 20000,
n0 = 0.8/a3.

potential φout(r) ∝ (R/a)−8/7 caused by the renormalized
charge Zn ∼ Z∗ at r ∼ R. The plane solution then crosses
over to the potential φout(r) ∝ Z∗3/r5 which is the asymptotic
form at large distances.

A schematic plot of the potential energy U (r) = −eφ(r)
as a function of radius r is shown in Fig. 2 by the thin solid
line (red). The corresponding radial distribution of electrons
is shown in Fig. 3 by the thick solid line (red).

So far, we have got a 1/r5 potential φ(r) and 1/r11/2

radial electron concentration n(r)r2 at r � R in both weak
and strong charge renormalization cases. However, as the
electron density decreases to a certain extent so that the
Fermi wavelength λ is comparable to the radius r , the gas
is no longer degenerate and the Thomas-Fermi approach fails.
Since λ � n(r)−1/3, we get this radius r∗ � Z∗a at Z � Z∗.
One should then return to the Schrödinger equation used for
a single electron. Since the uncertainty principle estimates
that the kinetic energy decays as 1/r2 while the potential
energy is ∝ −Z∗3/r5, the potential energy is smaller than the
kinetic energy in magnitude at r > r∗, which means electrons
cannot stay at radii larger than r∗. One can also find that
using the Thomas-Fermi solution φout(r), the total electron
number calculated at r > r∗ is ∼ 1, which again indicates that
there is no electron at r > r∗ considering the discreteness of
electron charge. As a result, the 1/r11/2 tail of radial electron
concentration will not continue to infinity but stop at radius
r∗. This is a semiclassical result. Quantum mechanical analysis
shows that the electron density does not go to zero right at r∗
but decays exponentially after this point. Since this decay is
fast and brings very small corrections to the end of the inner
electron gas, we do not consider it here.
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At κ = ∞, the rest of the electrons are at the infinity so
that we are dealing with a positive ion with charge Z∗. At
finite but very large κ , at certain distance from the cluster, the
field is so small that P >

√
4π/κAP0 is no longer satisfied

and the linear dielectric response is recovered. Things then
become quite familiar. Electrons are mainly located between
r1 = κb/Z∗ and rA = κb with the majority at radius rm =
κb/Z∗1/3 as given by the Thomas-Fermi model [11]. Although
quantum mechanics gives a nonzero electron density at r < r1,
the number of total electrons within this radius is only ∼ 1
and can be ignored. So approximately, when r1 � r∗, i.e.,
κ � (Z∗)2 � (R/a)18/7, there is a spatial separation between
inner collapsed electrons and outer ones that form the usual
Thomas-Fermi atom with the renormalized nucleus. When κ

is not so big, such separation is absent, which actually happens
more often in real situations. The inner tail then connects to
the outer electrons with the Thomas-Fermi approach valid all
the way and the dielectric response becomes linear at r = rc ∝
aκ1/4Z∗1/2. One should note, as long as κ is large enough to
satisfy rm � R which gives κ � (R/a)10/7, the majority of
the outer electrons located at rm have not intruded into the
cluster or the highly screening double-layer structure near the
cluster surface. The charge renormalization process remains
undisturbed and the total net charge seen by outer electrons
is still Z∗. The corresponding radial electron concentration
n(r)r2 is shown in Fig. 3. At κ � (R/a)10/7, in most of the
space the dielectric response is linear. In that case, almost all
electrons reside in the cluster with only some spillover near
the surface. The positive and negative charges are uniformly
distributed inside the cluster as described by the Thompson
“jelly” model.

III. CYLINDRICAL DONOR CLUSTERS

In some cases, the donor clusters are more like long
cylinders than spheres. For this situation, a cluster is described
by the linear charge density ηe while its radius is still denoted
as R. We use a cylindrical coordinate system with the z axis
along the axis of the cylinder cluster and r as the distance from
the axis. We show that when the charge density ηe is larger
than a certain value ηce, electrons begin to collapse into the
cluster and the charge density is weakly renormalized. When η

exceeds another value η∗ � ηc, the renormalization becomes
so strong that the net density ηn remains � η∗ regardless of the
original density η (see Fig. 4). Our problem is similar to that of
the charged vacuum condensate near superconducting cosmic
strings [21], and is also reminiscent of the Onsager-Manning
condensation [22] in salty water [23].

Renormalization of linear charge density. For a uniformly
charged cylindrical cluster with a linear charge density ηe,
similar to what we did in Sec. II, we get D(r) = 2η(r)e/r ,
where η(r) = ηr2/R2 at r < R and η(r) = η at r > R. We
then can calculate the electric field using Eqs. (1) and (2) and
get the electric potential φ(r) as

φ(r) = A

P 2
0

(
ηe

2π

)3(3

4

1

R2
− 1

4

r4

R6

)
, 0 < r < R, (15a)

φ(r) = A

P 2
0

(
ηe

2π

)3 1

2r2
, R < r, (15b)

FIG. 4. (Color online) Number of collapsed electrons per unit
length θ and renormalized net charge density ηn as a function of
cluster charge density η. The thick solid line (blue) shows ηn(η). The
thin solid line (red) represents θ (η). The dashed line (black) is a guide
to the eye with ηn = η. θ (η) ∝ η9/2 at ηc � η � η∗.

with φ(r = ∞) chosen to be 0. The corresponding potential
energy U (r) = −eφ(r) is shown in Fig. 5 by the thick solid
line (blue). Using the Schrödinger equation and setting the
momentum p � �/2r , we find that the tightly bound states of
electrons, in which electrons are strongly confined within the
cluster (at r < R), exist only when η > ηc, where

ηc ≈ 2π

(
b

Aa

)1/3 1

a
, (16)

which, contrary to the Zc value got in the spherical case,
does not depend on R. Electrons begin to collapse into the
cluster at η > ηc and in the beginning they are located near
the axis where the potential energy is lowest (see Fig. 5). With
increasing η, the electron density grows and one can adopt
the Thomas-Fermi description. Using Eqs. (7) and (15b), one
gets the electron density n(r) ∝ 1/r3 at r > R and the total
number of collapsed electrons per unit length is

θ =
∫ ∞

0
n(r)2πrdr = 0.5η

(
η

η∗

)7/2

∝ η9/2, (17)

FIG. 5. (Color online) Potential energy of electrons U (r) =
−eφ(r) as a function of radius r . φ0 is defined as n(φ0) = n0, where
n0 = η/πR2; n(r) is a function of φ(r) given by Eq. (7). The thick
solid line (blue) represents the potential profile of a cluster of charge
density η � η∗ which is in the regime of weak renormalization of
charge. The thin solid line (red) represents the potential of a cluster
with η � η∗ which is in the strong renormalization regime. The two
vertical dotted lines show edges of the “double-layer” structure of
width ∼ d � R. The horizontal dashed line (black) indicates the
position of the chemical potential μ = 0.
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where

η∗ = 1

a

[
2π

(
b

Aa

)1/3]9/7(
R

a

)2/7

. (18)

The net charge density ηne is then renormalized to

ηn = η − θ = η

[
1 − 0.5

(
η

η∗

)7/2]
. (19)

At η � η∗, the renormalization of charge density is weak
and ηn grows with η. At η > η∗, the number of collapsed
electrons is large and the renormalization effect is strong. Most
of the cluster is then neutralized by electrons and the final net
density ηn is much smaller than η. Following logics similar
to those in the spherical case, and by using Eq. (17), one can
show that ηn reaches a saturation value of η∗ at η � η∗. The
dependence of ηn on η is shown in Fig. 4, which resembles
Fig. 1.

Radial distribution of electrons. At η � η∗, there are
many collapsed electrons inside the cluster where n(r) = n0 =
η/πR2 and the potential energy is low. Again, there is a
“double-layer” structure on the surface that provides steep
growth of potential energy with r at r = R. Close to the
cylinder surface at 0 < r − R � R, as for the sphere, we can
approximately use a plane solution of φ(r) as given by Eq. (12).
The expression of the characteristic decay length d is also the
same as in Eq. (14). When x = r − R is comparable to R,
the plane solution crosses over to the fast decaying potential
∝ 1/r2 as given by Eq. (15b) with η replaced by ηn � η∗.
A schematic plot of the potential energy U (r) = −eφ(r) is
shown in Fig. 5.

This potential produces a universal tail of electron density
n(r) ∼ 1/r3. The corresponding radial electron concentration
n(r)r is ∼ 1/r2. Since the Fermi wavelength λ � n(r)−1/3, we
get λ ∼ r; i.e., the Thomas-Fermi approach is only marginally
valid. The collapsed electrons extend until the linear dielectric
response is recovered and then connect to the outer electrons.

IV. FINITE-TEMPERATURE IONIZATION OF CLUSTER
ATOMS AND ITS EXPERIMENTAL IMPLICATIONS

So far, we dealt with very low temperature. At a finite
temperature T , the neutral cluster atom can get ionized due to
the entropy gain of ionized electrons. The donor cluster atom
becomes a positive ion with charge Zi(T )e. Our goal below is
to find this charge.

We assume that we have a small but finite three-dimensional
concentration N of spherical clusters and the charge Zi(T ) <

Z∗, i.e., the outer electron shell is still incompletely ionized.
Such a cluster can bind electrons with an ionization energy
Zi(T )2e2/κ2b. We can find Zi(T ) by equating this energy with
the decrease in the free energy per electron kBT ln(n0/n) due
to the entropy increase, where kB is the Boltzmann constant,
n = Zi(T )N is the concentration of ionized electrons, and
n0 = 2/λ3 with λ =

√
2π�2/m∗kBT as the de Broglie wave-

length of free electrons at temperature T . At κ = 20 000, b =
0.29 Å, m∗ = 1.8me where me is the electron mass, and N =
1015 cm−3 (estimated from that the concentration of total donor
electrons is around 1018 cm−3 and each cluster contributes ∼
300 donor electrons), we get Zi(T ) � Z∗ at T � 8 K with
Z∗ = 100 which is a reasonable estimate. This shows that the

outer electrons are completely ionized at temperatures that
are not too low. For the inner core electrons, the dielectric
response is nonlinear and the attractive potential is stronger.
So the ionization energy is higher � A(Z∗e/4π )3/5P 2

0 R5 for
electrons at r � R. At R = 4a, it is found that only at T >

450 K can the inner electrons be ionized by a considerable
quantity (the 1/r15/2 tail is completely stripped then). So the
inner electrons are robust against the thermal ionization.

For the cylindrical cluster, since it can effectively be
regarded as the assembly of sphere clusters, one can expect that
electrons are harder to be stripped off than in the spherical case.
The thermal ionization is thus somewhat weaker. For the outer
electrons, the dielectric response is linear and the ionization
degree is determined by the Onsager-Manning linear density
ηOM [22]. It can be derived as follows. The potential energy
of electrons caused by the cylindrical charge source with a
linear density ηie grows with the radius r as 2ηie

2 ln(r/r0)/κ
while the entropy increases as 2kB ln(r/r0), where r0 is a
chosen reference point. In equilibrium, by equating the energy
increase and the entropic decrease of the free energy one gets
the critical concentration ηi = ηOM = κkBT /e2. This is the
universal value of the net charge density, which depends only
on the temperature T and the dielectric constant κ of the media
similar to the case of DNA in salty water [23].

When the outer electrons are completely ionized, the charge
density is expected to be η∗e given by Eq. (18). Taking R =
4a,A = 0.9, κ = 20 000, a = 3.9 Å, and b = 0.29 Å, we get
ηOM � η∗ at T � 10 K. Thus, the ionization of the outer shell
proceeds until T grows to 10 K. Since the product κT is
almost fixed at T > 10 K, ηOM actually stops growing with
the temperature at T > 10 K. This practically means that only
outer electrons are ionized at T > 10 K. The inner electrons
are well preserved against the ionization even at T > 10 K.

Thus, in both spherical and cylindrical cases, the outer
electrons are thermally ionized at not very low temperature
while the inner ones are mainly kept by the cluster. The final
observable charge or charge density is then equal to Z∗ or
η∗. Below we will discuss how one can observe the thermal
ionization.

Experimentally, charged clusters can be created control-
lably on the surface of LAO/STO structure when the LAO layer
is of subcritical thickness � 3 unit cells [9,10]. A conducting
atomic force microscope (AFM) tip is placed in contact with
the top LaAlO3 (LAO) surface and biased at certain voltage
with respect to the interface, which is held at electric ground.
When the voltage is positive, a locally metallic interface is
produced between LAO and STO where some positive charges
are accumulated in the shape of a disk. The same writing
process can also create a periodic array of charged disks.

Let us first concentrate on a disk of positive charge created
in this manner on the STO surface. Close to the surface and
in the bulk STO, one should apply the plane solution given by
Ref. [19] and repeated by Eq. (12) above. When the distance r

from the disk center is large, i.e., r � R, the disk behaves like
a charged sphere. Our results for a sphere are still qualitatively
correct in this case.

In a periodic array of highly charged disks with period
2L (see Ref. [9]), the linear concentration of free electrons
responsible for the conductance at a very low temperature is
on the order of n(L)L2, where n(r) is the electron density

035204-6



COLLAPSE OF ELECTRONS TO A DONOR CLUSTER IN . . . PHYSICAL REVIEW B 92, 035204 (2015)

around a spherical donor cluster given by Sec. II. When
the overlapping parts between neighboring disks belong
to the outer electron shells, the corresponding density at
r = L is that of a Thomas-Fermi atom with charge Z∗.
In this situation, the overlapping external atmosphere forms
conductive “bridges” between disks at low temperature. When
T increases, however, the outer electrons are ionized and
the bridges are gone. These free electrons spread out over
the bulk STO. At T � 30 K, electrons are scattered mainly
by the Coulomb potential of donors and the corresponding
mobility decreases with a decreased electron velocity. For the
electrons ionized into the vast region of the bulk STO, they are
no longer degenerate, so their velocity becomes much smaller
at relatively low temperature. This results in a much smaller
mobility of the ionized electrons than those bound along the
chain. Their contribution to the conductivity is thus negligible.
The system becomes more resistive due to the ionization
and one can observe a sharp decrease of the conductivity
along the chain. It may be possible for the chain to transition
from a conducting “line” to multi-quantum-dots. Interesting
phenomena of the conductance behavior such as the Coulomb
blockade can probably emerge.

V. CONCLUSION

In this paper we have studied the structure of a many-
electron “atom” whose center is a strongly charged donor
cluster. It is determined by the collapse of electrons to the
cluster in SrTiO3 due to the nonlinear dielectric response
at small distances from the cluster surface. For a spherical
cluster, when its charge number exceeds a critical value Zc,
the potential well inside it becomes deep enough to trap
electrons despite their high kinetic energy. In the beginning,
the cluster charge Ze is weakly renormalized by the electrons.
When Ze grows beyond another value Z∗, the number of
collapsed electrons becomes large so that most of the cluster
is neutralized and the charge is strongly renormalized to Z∗.
This strong renormalization is realized via a “double-layer”
structure on the cluster surface. The corresponding potential
profiles and radial distributions of electrons are investigated.
The critical and saturation values are found to be dependent
only on the cluster radius: Zc � (R/a) and Z∗ � (R/a)9/7. At

zero temperature, a renormalized cluster with charge Z∗ is the
nucleus of a Thomas-Fermi atom. This nucleus is surrounded
by the external electron atmosphere which is sparse due to
the weak Coulomb interaction at a large dielectric constant.
These outer electrons can easily be stripped off by the thermal
ionization leaving only the compact ionic core with charge
Z∗. The case of a cylindrical donor cluster is discussed as well
where similar results are found. Namely, when its linear charge
density ηe is larger than ηce � e/a, electrons start collapsing to
the cluster. At η � η∗ where η∗ � (R/a)2/7/a is the saturation
density, the net charge density of the cluster ηne stays at the
level of η∗e. At zero temperature, this renormalized cylindrical
cluster is surrounded by a sparse electron atmosphere which
can be ionized at temperatures larger than 10 K. We also
discuss how one can verify our predictions by measuring the
conductivity of a chain of charged disks on the surface of
LAO/STO structures.

In this work, the mean-field Thomas-Fermi approach has
been applied. It is simple yet has shown reasonable agreement
with more exact calculations [24–29] in the planar STO
model [19]. In that model, instead of constituting spherical or
cylindrical dopant clusters inside STO, the electron-providing
material such as LAO is outside the bulk STO and forms a
planar interface with STO over which electrons spill out. The
width of the electron distribution layer inside STO derived
using the Thomas-Fermi approximation [19] is consistent with
results got from ab initio calculations and other non-mean-field
microscopic models [24–29]. Therefore, it is natural to expect
that the Thomas-Fermi approach is a good approximation for
different geometries (spherical and cylindrical) as well, since
in this work we also deal with spatial scales larger than the
lattice constant.
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