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Phase diagram of the Z3 parafermionic chain with chiral interactions
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Parafermions are exotic quasiparticles with non-Abelian fractional statistics that can be realized and stabilized
in one-dimensional models that are generalizations of the Kitaev p-wave wire. We study the simplest
generalization, i.e., the Z3 parafermionic chain. Using a Jordan-Wigner transform we focus on the equivalent
three-state chiral clock model, and study its rich phase diagram using the density matrix renormalization group
technique. We perform our analyses using quantum entanglement diagnostics which allow us to determine
phase boundaries, and the nature of the phase transitions. In particular, we study the transition between the
topological and trivial phases, as well as to an intervening incommensurate phase which appears in a wide region
of the phase diagram. The phase diagram is predicted to contain a Lifshitz type transition which we confirm
using entanglement measures. We also attempt to locate and characterize a putative tricritical point in the phase
diagram where the three above mentioned phases meet at a single point.
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I. INTRODUCTION

There has been concerted effort to engineer systems with
stable Majorana bound states, and other anyonic quasiparticles,
for use in the topological quantum computation architec-
ture [1–7]. For example, there has been recent progress
in attempts to isolate Majorana bound states in quantum
nanowires [5,8–10] and in superconductor surfaces implanted
with a line of magnetic impurities [11]. These quasi-1D
systems effectively realize a version of the Kitaev p-wave wire
model [12], and are predicted to have a gapped topological
phase, which supports characteristic Majorana bound states at
the ends of the wire.

While the boundary modes in these heterostructure systems
are non-Abelian anyons, they are unfortunately known to be
insufficient for universal quantum computation. A possible
remedy for this problem has been to look for more exotic
non-Abelian excitations. For example, Fendley has recently
suggested exploring one-dimensional ZN parafermionic mod-
els, which support topological phases with more computa-
tionally efficient non-Abelian anyon bound states [13]. While
these anyons cannot be used to perform universal quantum
computation, they can be leveraged to create a 2D phase with
Fibonacci anyons, which are universal [14]. These promising
features have spurred wide spread interest in these models,
and led to many analytical and numerical studies, including
several experimental proposals for realizing these topological
phases [15–39].

In this work, we continue along these lines of research
by exploring the rich phase diagram of the Z3 parafermionic
chain; though for ease of calculation we actually study the
Jordan-Wigner transformed parafermionic chain [40], includ-
ing chiral interactions. The resulting model is the three-state
chiral clock model. This model resurfaced in this context in
Ref. [13] as a candidate for exhibiting non-Abelian bound
states beyond Majorana fermions. It was shown analytically
that parafermionic boundary zero modes can exist in this model
when spatial-parity and time-reversal symmetries are broken
via chiral interactions [13]. This was verified numerically in
Ref. [41], which confirms that chiral interactions can help

to stabilize the boundary zero modes, although the zero
modes themselves are more fragile than one might initially
expect.

Here we are interested in studying the full phase diagram of
the chiral clock model as a function of two chiral-interaction
phase-parameters (θ,φ), as well as the relative strength of the
nearest-neighbor coupling (J ) to the local Zeeman field (f ).
Using entanglement techniques, we have been able to locate
the phase boundaries that separate the topological phase from
the trivial gapped phase, and a critical incommensurate phase,
the latter of which has no analog in the Kitaev p-wave wire
model. We have conclusively identified the region in which
there is a topological phase, and have explored the nature of
the quantum phase transitions in and out of the three adjoining
phases. In addition, by studying the oscillatory properties of the
system in, or near, the incommensurate phase, we establish the
approximate location of a putative tricritical point [42,43], and
further support the entanglement signatures that were recently
proposed for identifying Lifshitz transitions [44].

The article is arranged as follows. We first discuss the
details of the model, and the criteria used to map out its
phase diagram. For our numerical simulations, the density
matrix renormalization group (DMRG) [45,46] algorithm is
employed, as it gives immediate access to the entanglement
entropy (EE), and therefore the central charge, at putative
critical points/regions in the phase diagram [47]. Next, we
discuss the general features of the phase diagram and locate
regions in the topological phase (where parafermion boundary
modes may exist). We also discuss the nature of the phase
transitions out of the topological phase. For part of our
study, we discuss our observations pertaining to a critical
incommensurate phase, and the possibility of a tricritical
point [42,43] in the phase diagram at the intersection of
the topological, trivial, and incommensurate phases. We also
find a region of the phase diagram that exhibits the critical
entanglement features of a Lifshitz transition [44]. Finally, we
conclude by summarizing our findings and discussing future
directions. We also include four appendices that discuss some
subtleties of the numerical analysis.
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II. THE MODEL

We study the 1D three-state (Z3) chiral clock
model [13,42,48,49], whose Hamiltonian is

H3 = −f

L∑
j=1

τ
†
j e−iφ − J

L−1∑
j=1

σ
†
j σj+1e

−iθ + H.c. (1)

following the notation in previous work [13], where f , J , θ ,
and φ are scalar parameters, and σi and τi are local three-state
spin operators on site i. The spin operators have the properties
τ 3 = σ 3 = I , στ = ω τσ , where ω = e2πi/3. Specifically, we
use the matrix representation

τ =
⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠, σ =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (2)

The chiral clock model is related to the parafermionic chain
through a Jordan-Wigner transformation [13,40], analogous
to the relationship between the Kitaev p-wave wire and the
transverse field Ising model. The parafermion operators are
defined as

χj =
(

j−1∏
k=1

τk

)
σj , (3)

ψj =
(

j−1∏
k=1

τk

)
σjτj , (4)

at site j . The corresponding parafermionic Hamiltonian is

H3 = −f

L∑
j=1

ψ
†
j χj e

−iφ − Jω2
L−1∑
j=1

ψ
†
j χj+1e

−iθ + H.c. (5)

The chiral clock model has a global Z3 symmetry that
can be represented with χ ≡ ∏L

j=1 τ
†
j ≡ e

2πi
3 Z . Here, Z is the

generator of the symmetry, and has three different eigenvalues
0,1,2. In addition, when all the coefficients of the Hamiltonian
are real (i.e. it is Z3 ferromagnetic or antiferromagnetic),
it is invariant under time reversal, charge-conjugation and
parity symmetries. This can be easily seen from the following
definitions of these symmetries. Charge conjugation C acts
on the spin operators via CσjC = ω2σ

†
j , CτjC = τ

†
j , C2 = 1.

(As an aside, note that charge conjugation, together with the Z3

symmetry, forms the S3 permutation symmetry, i.e., the sym-
metry obeyed when the three-state clock model is restricted to
the three-state Potts model.) Time reversal T acts on the spin
operators via T σjT = σj , T τjT = τ

†
j , T 2 = 1, and complex

conjugates any scalar coefficients. Spatial parity P acts on
the spin operators via PσjP = σ−j , PτjP = τ−j , P 2 = 1.
Finally, we note two things: (i) due to the symmetry of the
Hamiltonian with respect to φ and θ , we only need to consider
the region of the phase diagram where φ and θ each range from
0 to π

3 , and (ii) for f = J , the system is self-dual along the line
φ = θ . The details of these two properties are in Appendix A.

There are many previously known results about this
model (1), beginning with the original proposals of
Ostlund [42] and Huse [48]. For example, the corresponding
two-dimensional classical Hamiltonian for φ = 0 was studied

in Ref. [42], and the one-dimensional quantum Hamiltonian
was studied in Ref. [43] for the restricted case φ = θ. One of
the most important early results is that Eq. (1) has a second-
order quantum phase transition at f = J when θ = φ = 0. At
this point the model realizes the full S3 permutation symmetry
(instead of just Z3), and the critical point is described by
the critical conformal field theory for the three-state Potts
model, which has central charge 4/5 [50]. In addition, the
line f cos(3φ) = J cos(3θ ) [51] is known to be integrable
and φ = θ = π

6 is super integrable [52,53]. Despite this, the
knowledge of the location of some important critical points
and their associated properties is an open question.

Generically, it is known that the phase diagram is divided
up into two gapped regions, one of which is identified with
small values of f (compared with J ), and the other with
large values of f. These regions are separated by continuous
quantum phase transitions that we will identify and discuss
in this paper. Using a more modern terminology, the gapped
phase for small f is a symmetry broken phase of the three-state
clock model and it exactly corresponds to the “topological”
phase in the Jordan-Wigner transformed parafermionic chain.
The gapped phase for large f is a disordered phase of the
three-state clock model, and maps onto the “trivial” phase
of the parafermionic chain. This gives another example of a
case where the degeneracy associated to symmetry breaking
is mapped to topological degeneracy via the Jordan-Wigner
transformation [54,55]. Hence, in either representation, this
phase has a threefold ground-state degeneracy, which can be
detected by measuring the ground-state EE. On the other hand,
the trivial phase is equivalent to the spin disordered phase,
which does not have a generic ground-state degeneracy. The
parameter f is thus an important tuning parameter for the
phase diagram, and analogous to the external transverse field
in the Ising model.

While we expect these general features to pervade the
phase diagram, the phase space for generic θ and φ is largely
unexplored. Additionally, it is known that the combination
of the Z3 symmetry and the chiral nature of the interactions
gives rise to interesting behavior that cannot be found in
the Majorana/Ising case. For example, this model supports
a so-called “incommensurate phase” which is not present in
the transverse-field Ising model with chiral interactions [42].

This motivates the main objective of our article, which
is to characterize the phases and the nature of the phase
transitions over the entire phase space. We will show that there
are two types of phase transitions that occur to destabilize
the topological phase, and there is a large region of critical
incommensurate phase that separates the topological from the
trivial phase over a wide range of parameters.

III. METHODS

We primarily use the spatial EE in order to characterize the
phase diagram. This measure has been widely used to detect
topological order in 2D [56,57] and has been applied more
recently to 1D topological phases [58]. The EE can be derived
by partitioning the system into two regions A and B, and then
calculating the reduced density matrix of region A by tracing
over all the degrees of freedom in region B. Mathematically,
the reduced density matrix is given by ρA ≡ TrBρ, and the
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corresponding entanglement entropy is defined to be

S ≡ −Tr(ρA ln ρA). (6)

There are two useful entanglement indicators we will
employ to identify the phases and phase transitions for the
chiral clock model. First, for the gapped regions of the phase
diagram, it is known that for one dimensional gapped systems
the entanglement entropy increases with the block size l

(the size of region A), and saturates when l reaches the
correlation length [47]. Furthermore, if there is topological
ground-state degeneracy, we would expect an entanglement of
order ∼ log D where D is the degeneracy [58]. To identify the
nature of the gapped phases, we will take the entanglement
corresponding to the central-cut, i.e., cut the chain in half.

For critical regions of the phase diagram, it is known that the
entanglement entropy will grow logarithmically with system
size, and the scaling is characterized by the central charge [47].
More specifically, for critical systems with open boundary
conditions, the form of the entanglement scaling law is [47]

S = c

6
ln

(
2L

π
sin

πl

L

)
+ S0, (7)

where l is the length of the subsystem, c is the central charge,
and S0 contains the subleading corrections. Once we know the
central charge we will have an important piece of information
about the phase transition/critical phase, and can then appeal
to previously known analytic results in restricted parts of the
phase diagram to help further specify the phase diagram.
Below we will see the efficacy of these two indicators for
determining the phase diagram.

To arrive at our results for the phase diagram (and to
obtain reasonable estimates of the phase boundaries in the
thermodynamic limit), we simulated Hamiltonians using open-
boundary DMRG with 100 sites, and a bond dimension
m = 100. We find this to be sufficient for the phases with
low entanglement entropy. For the critical phases, additional
checks were performed with bond dimension m = 200. For
establishing characteristics of other phases, for example, the
region of critical incommensurate phase, larger lengths of 400
sites were also tested.

IV. RESULTS

Let us now move on to discuss the results of our numerical
calculations. First, we present the full three-parameter phase
diagram (f,θ,φ) over the reduced domain in Fig. 1, where we
have set J = 1 − f . The basic topology of the phase structure
is clear. We find three distinct phases as mentioned above.
The phase corresponding to largest f values is generically
the trivial phase, and the phase corresponding to the smallest
f values is generically the topological phase. They share a
common/direct phase boundary between them when θ and φ

are small. For large θ or φ, an intermediate incommensurate
phase appears between the two.

We show the central-cut EE in Figs. 2(a)–2(c) for several
2D cross-sections of the 3D phase diagram. These plots help
to identify the gapped phases and the topology of the phase
boundaries. To more clearly identify the nature of the critical
regions/boundaries, we also calculate the central charge via
the scaling relation. It is interesting to see that the observed

FIG. 1. (Color online) Three-dimensional phase diagram of the
chiral three-state clock model in terms of f , θ , and φ with J = 1 − f .
For details of the Hamiltonian, see Eq. (1). The topological, trivial,
and incommensurate (IC) phases are indicated. The coloring is a
function of the value of f at the critical surface separating the phases.
The dashed line that connects points (0, 0, 0.5) and (π/3, π/3, 0.5)
is the self-dual line.

locations of the phase boundaries for cross-sections φ = 0 and
θ = φ are broadly consistent with earlier works [42,43], and
that the topological phase itself is stable over a large part of
the phase diagram.1

We indicate several special points on these cross-sections:
point A in Figs. 2(a) and 2(c) is the transition point of the
three-state Potts model associated with c = 4/5 [50], and
points B and C are putative tricritical points. We indicate
approximate locations of the phase boundaries with solid,
dashed, or dot-dashed lines, depending on the nature of the
phase transition, as indicated in the figure caption. Finite size
effects were checked around specific points along the critical
lines by running system sizes of L = 100 to 400 on a finer
grid. The locations of these lines did not change significantly
in comparison to the resolution of our grid, except in certain
regions which are discussed in further detail in later sections.

From the central-cut EE, we see that the trivial phase is
characterized by a small EE, while the topological phase has a
nearly uniform EE of ≈ ln 3 indicating a threefold degeneracy
of the ground state. The change of EE is abrupt between the
two phases as can clearly been seen in Figs. 2(a) and 2(c) for
θ � π/4 and θ � π/6, respectively. We also verified that this
transition is accompanied by a divergence in the second order
derivative of the ground-state energy (not shown).

The third phase in the phase diagram is the incommensurate
phase. This is a critical phase in which the correlation
functions, as a function of distance r , generically behave as
A(r)e(2πi/3)Qr , where A decays algebraically and Q is irra-
tional. The oscillatory properties of the correlation functions
also manifest themselves in the oscillatory behavior seen in the
energy gaps, which we address later. Although there is not an
extremely sharp distinction between the central-cut EE for the
topological and incommensurate phases, the EE scaling with

1By this, we mean that the system remains gapped and the
topological ground-state degeneracy is robust. We do not mean that
the edge zero modes remain exact over the entire phase range. See
Ref. [41] for discussion on this distinction.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color online) Three cross-sections corresponding to (a) φ = 0 (b) φ = π/3, and (c) φ = θ of the three-dimensional phase diagram,
and all for L = 100. Topological, trivial, and incommensurate (IC) phases are identified by the central-cut entanglement entropy (color coded).
For (a) and (b), a 2D grid in increments of 0.01 was used to resolve fine features of the transitions. (c) was mapped out on a 2D grid in increments
of 0.05. Point A is the transition point of the 3-state Potts model, i.e., the chiral clock model for (θ = φ = 0). Points B and C are Lifshitz points
and are associated with putative tricritical behavior. The solid lines, dashed lines, and dotted-dashed lines indicate direct topological-trivial
(c = 4/5) type, Kosterlitz-Thouless type, and Pokrovskii-Talapov type [59] transitions, respectively. The thick circularly-dotted line represents
an upper bound on the region where exact parafermionic zero modes can exist [13]. (d)–(f) show the corresponding central charges for
cross-sections (a)–(c), respectively. The IC phase is associated with central charge c = 1 (yellow) whereas the critical regions close to point A
have c = 4/5 (green).

system size is markedly different. The former has an EE that
quickly saturates to a constant value of ln 3 with subsystem
size, while the latter has EE that diverges logarithmically with
subsystem size. By fitting our data to Eq. (7), we establish that
the incommensurate phase is critical and its central charge is
c = 1 over the entire phase.

When constructing the detailed phase diagram cross-
sections, we found that while it was easy to approximate
the locations of the phase boundaries, we often encountered
difficulties in precisely nailing down the central charge of
the corresponding critical points. As an example, we note
the appearance of a few points with (apparently) high central
charge, indicated by red color, on the direct topological-trivial
phase boundary in Fig. 2(d). While in some cases there
may be real physics associated to this behavior, we show in
Appendix B that a primary source for these spurious effects
is fitting to a region of the phase diagram that is just slightly
off criticality. We show that the central charge is very sensitive
to the precise location of the critical point, and can easily
give O(1) errors even when only slightly tuned away from
criticality, and even with reasonably large-size calculations.

Additionally, although most phase boundaries were easily
identified, there are three regions where difficulties arise:
(i) the trivial-incommensurate phase transition at φ = 0 and
large θ [lower-right corner of Fig. 2(d)], (ii) the topological-
incommensurate phase transition at φ = π/3 and small θ

[upper-left corner of Fig. 2(e)], and (iii) the Lifshitz transition
area for f = 0.5 and φ = θ ∼ π/6 as seen in Fig. 2(f). Regions
(i) and (ii) are related by duality, and the explanation of the
numerical difficulties in these regions may have a common
origin. To explain, we recall that the trivial-incommensurate
phase transition at φ = 0 and large θ, i.e., region (i), is of the
Kosterlitz-Thouless type [42]. Hence the correlation length
decays as exp (c(T − TKT )−1/2) away from the transition
point [60,61], and this results in a long correlation length
(compared to our system size L = 100) for this region of the
phase diagram. The duality indicates that region (ii) may also
be near a Kosterlitz-Thouless phase transition point. Thus we
attribute the issues with these regions as likely artifacts due to
finite-size effects. We elaborate further on this in Appendix C.
The remaining region (iii) requires more discussion, to which
we now turn.

V. LIFSHITZ BEHAVIOR

Let us now focus on the cross-section in Figs. 2(c) and 2(f),
which corresponds to φ = θ . Since the system is self-dual
on the line f = J , the trivial-topological phase boundary
should just be the line f = J = 0.5, a fact verified in our
numerical calculations when θ = φ are small. On top of the
phase diagram we also plot the function f = [2 sin(3φ)][1 +
2 sin(3φ)]−1 (in a thick circular dotted line), which represents
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(a) (b) (c)

FIG. 3. (Color online) Properties of the critical line at f = J = 1/2 for various values of θ = φ (a) Profile of the EE as a function of
block size shows Lifshitz oscillations. We predict the oscillation length for φ < 0.2 to be larger than our system size L = 200. (b) Energy gap
between the ground and first excited states, which displays similar oscillatory behavior on varying the system size. (c) Characteristic oscillation
lengths in the EE and energy gap, which are nearly identical for a large range of φ. The (green) line is the fit with ζ = φ−3.75 + 1.16.

an upper bound on the region in which exact parafermionic
zero modes are expected to exist as proven in Ref. [13]. The
region of the phase diagram above this curve is guaranteed to
not have exact parafermionic zero modes, despite still being
in the topological phase with the topological ground-state
degeneracy.

Along the critical line f = J = 0.5, c = 4/5 at the ferro-
magnetic point (φ = θ = 0), and c = 1 at the antiferromag-
netic point (φ = θ = π/3) [50]. It is a priori unclear how
the central charge transitions from c = 4/5 to c = 1, i.e., is
it an abrupt jump at some transition point, or does it change
incrementally in stages, or perhaps something else entirely?
Only a few studies address this question directly: among
them is the work of Howes et al. [43] who used fermion
analyses and series expansions to conjecture that a tricritical
point connecting the ordered (topological), disordered (trivial),
and incommensurate phases exists at exactly φ = θ = π/6.
McCoy et al. [52,53] studied the super integrable line φ = θ =
π/6 and suggested a modified picture with the incommensurate
phase stretched all the way down to the point φ = θ = 0 and
f = J = 0.5. Our results seem to support the latter picture, as
we will further develop below.

To address the questions posed above, we studied the
critical line f = J carefully. We observed [see Fig. 3(a)]
that before we reach the putative tricritcal (Lifshitz) point
at φ = θ = π/6, the EE starts to show oscillatory behavior.2

The frequency of the oscillations increases as we approach the
Lifshitz point from small φ = θ , and when further increasing
φ = θ its amplitude dies out after the system clearly enters the
incommensurate phase. Conventionally, a Lifshitz transition
point of this nature corresponds to a continuously varying
oscillation length, and in this case it is the length scale
associated with the incommensurate order. Interestingly, the
shapes of the EE oscillation curves match those observed
recently in 1D free, and interacting, fermion systems near
Lifshitz points where the Fermi surface is augmented by
additional Fermi points [44]. Thus our result adds to the
evidence of Ref. [44] that these types of EE oscillations are a
fingerprint of the Lifshitz-type phase transition. As an aside,

2Note, in Fig. 3(a), the EE curves in the incommensurate phase are
not shown because they overlap with the curve at φ = θ = 0.5.

we mention that the Lifshitz oscillations are only present in
the EE when one uses open boundary conditions. One can
easily check this by calculating the EE for free fermions as
a function of next-nearest-neighbor hopping [44], but with
periodic boundary conditions (shown in Appendix D).

To qualitatively study the nature of this critical regime, we
investigate the variation of the central charge. However, in the
presence of oscillations in the EE, we must modify Eq. (7) if
we wish to extract the central charge. Empirically, the observed
oscillations appear to have a similar form to those in the work
Ref. [62], and we propose a phenomenological scaling form
which can fit the EE with oscillations:

S(l)cor = c

6
ln

(
L

π
sin

πl

L

)
+S0 + cos(2πl/ζ + p)

(L/2 − |L/2 − l|)w , (8)

where the first two terms are the same as in Eq. (7), and
the third term incorporates oscillations and a symmetrized
damping function. The parameter ζ is the oscillation length
and p is a phase factor. These parameters, along with the
exponent w, are free-parameters determined by fitting. Some
representative fits are shown in Figs. 4(a) and 4(b), which
clearly capture the subleading oscillations accurately.

The results of calculating the central charge from this
procedure are shown as a function of φ in Fig. 4(c). One can
see that there is still an unaccounted for effect that leads to a
peak in the central charge at a system-size dependent φ value.
More careful inspection reveals that the peak is located at a
φ∗ that corresponds to an oscillation length ζ ≈ L/2. Thus, as
seen in the figure, the peak location φ∗, occurs at values closer
and closer to φ = θ = 0 when system size is increased, and
all other parameters remain fixed. Our observations indicate
that the central charge converges to c ≈ 1 when φ � φ∗, and
c ≈ 4/5 for φ < φ∗. This strongly suggests that the transition
from c = 4/5 to c = 1 along the line f = J = 0.5 is an abrupt
one that occurs at φ = θ = φ∗. From our numerical data, it
appears that φ∗ → 0 as L → ∞. Hence our data support a
scenario where there is an immediate onset of oscillations as
one tunes away from φ = θ = 0 in the thermodynamic limit.

We corroborate this by observing that oscillations are not
seen in the EE if the oscillation length itself exceeds the system
size L. For example, for L = 200, the oscillations are not
explicitly visible for φ � π/12, however, upon increasing the
system size, with all other parameters fixed, the oscillations
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(a) (b) (c)

FIG. 4. (Color online) (a) and (b) show the profile of the entanglement entropy (as a function of block size) for various values of system size
at φ = θ = 0.25 and φ = θ = 0.35, respectively. (c) shows the central charge obtained by fitting the entanglement entropy with the corrected
formula along the line φ = θ and f = J = 0.5. The two dashed lines are at c = 0.8 and c = 1. The arrow indicates the trend of the peak
movement when L is increased.

appear over a larger region of φ, as is shown in Fig. 4(a). As φ

is decreased the oscillation length increases, and thus we must
use larger and larger systems to observe the oscillations. Thus
we believe that this is evidence that, in the thermodynamic
limit, the oscillations are a feature for all θ = φ except
θ = φ = 0. An alternate scenario, which we can not rule
out completely based on this numerical data, is that the
incommensurate phase persists to small but nonzero values
of θ = φ. Thus a conservative estimate of the location of the
tricritical point is 0 � (θ = φ) < 0.25, which is well below
the previously conjectured location at θ = φ = π/6. We aim
to shed further light on this transition through larger scale
simulations in future work.

Finally, we note that matching oscillations are observed in
the splitting of the lowest two energy states [Fig. 3(b)], as
a function of system size. We can extract the characteristic
length scale ζ of the oscillations from both the EE (for a
given system length), and the energy gap (as a function of
system length). Our results are shown in Fig. 3(c) where a clear
correlation between the two is observed for φ = θ < π/4.

The solid (green) line in Fig. 3(c) is the fit of the oscillation
length for φ = θ < π/4 to the function ζ = φ−3.75 + 1.16.
When φ = θ = 0, the oscillation length appears to diverge,
indicating that no such oscillations survive in the nonchiral
three-state Potts model limit. Attempts to relax the fit with
ζ = (φ − φ∗)−η+ const (i.e., with a possibly nonzero φ∗) gave
φ∗ ∼ 0.09 indicating that the conjectured tricritical point may
be in close proximity to φ∗ = 0.

VI. CONCLUSIONS

In summary, we have mapped out the three-dimensional
phase diagram of the Z3 chiral clock model using the density
matrix renormalization group method. Using the entanglement
entropy (of the half-chain) as a diagnostic, we have been able
to locate the phase boundaries of the various topological-
trivial-incommensurate phase transitions. Quantitatively, we
have also been able to see the variation of the central charge
along the various critical surfaces that divide these phases.
Another outcome of this study is the identification of the
Lifshitz transition using the entanglement entropy, along with
an estimate of the location of the putative tricritical point.
We discussed several competing qualitative scenarios for the

cross-section of the phase diagram in which the tricritical point
has been predicted to exist. Our data suggests that the tricritical
point (along f = J = 1/2) is not at φ = θ = π/6; rather we
find it to be shifted to a much smaller value in the range
0 � θ = φ < 0.25.

Finally, our results must be viewed in a broader context
as providing further confirmation of the stability of the
parafermionic topological phase to chiral interactions, over
a wide range of parameters. We expect a further study of this
and related models to elucidate the conditions under which
these phases can be practically realized.
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APPENDIX A: PROPERTIES OF THE THREE-STATE
CHIRAL CLOCK MODEL

The Hamiltonian in Eq. (1) has the same properties when
either of the two phases θ,φ are shifted by multiples of 2

3π . To
see this, first note that the transformation

θ ′ → θ + 2nπ

3
φ′ → φ + 2mπ

3
(A1)

changes the Hamiltonian to

H3 =−f ω−n

L∑
j=1

τ
†
j e−iφ − Jω−m

L−1∑
j=1

σ
†
j σj+1e

−iθ + H.c.

(A2)

Then we can redefine the operators

τ ′ = ω−nτ σ ′
2j = ω−mσ2j σ ′

2j+1 = σ2j+1. (A3)
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This new set of operators preserves the properties τ 3 = σ 3 =
I , στ = ω τσ , where ω = e2πi/3. After this redefinition, we
end up with a Hamiltonian with the same form as the original.

Additionally, the transformation that flips the signs of the
two phases at the same time, i.e.,

θ ′ → −θ φ′ → −φ (A4)

changes the Hamiltonian to

H3 = −f

L∑
j=1

τj e
−iφ − J

L−1∑
j=1

σjσ
†
j+1e

−iθ + H.c. (A5)

Here we can redefine the operators as

τ ′ = τ † σ ′ = σ † (A6)

to recover the form of the original Hamiltonian.
We can also flip the sign of just one of the phases, say

φ′ → −φ, and then the redefinition

τ ′
j = τ−j σ ′

j = σ−j (A7)

leaves the Hamiltonian unchanged. If only the sign of θ

were flipped, then a transformation involving both Eqs. (A6)
and (A7) is needed to see the invariance of the Hamiltonian.

Finally, we can consider the duality transformation

μj+ 1
2

=
j∏

k=1

τk, νj+ 1
2

= σ
†
j σj+1. (A8)

These dual operators satisfy μ3 = 1, ν3 = 1, and μν = w νμ.
The dual Hamiltonian is then

H dual
3 =−J

L−1∑
j=1

ν
†
j+ 1

2
e−iθ − f

L∑
j=1

μ
†
j− 1

2
μj+ 1

2
e−iφ + H.c.

(A9)

Comparing with the original Hamiltonian, the dual Hamilto-
nian returns to the original form if we exchange θ and φ, and
at the same time J and f .

APPENDIX B: EXTRACTING CENTRAL CHARGE
NEAR CRITICAL POINTS

When performing the fit to EE data obtained from a finite
size system, and for a point in parameter space that is close
to (but not at) a critical point, it is often difficult to obtain
a reasonable estimate of the central charge. One possible
explanation is that, when the system size is smaller than the
correlation length, the fit to Eq. (7) may appear to be good,
but the central charge obtained from the fit may not match
the actual central charge of the nearby critical point. This is
not unique to our model, and we were also able to observe
this effect for free Dirac fermions with a tunable mass term as
shown below. Eventually, if the system is tuned off criticality,
and when the system size is larger than the correlation length,
the EE will saturate and hence reveal the gapped phase.

To provide an example of such behavior, we refer to known
analytic results that the central charge should be 4/5 at (f =
J = 0.5, φ = θ = 0), and zero for all other f at φ = θ = 0.
In Fig. 5, we show that at the critical point f = J = 0.5,
the central charge is c = 0.81 ± 0.01, close to the analytical

FIG. 5. (Color online) The EE as a function of the subsystem
size l at φ = θ = 0 and several different f close to or at the critical
point (f = 0.50). From the highest curve to the lowest one, the
corresponding f is 0.495, 0.499, 0.500, and 0.501. The central
charges obtained from the fitting are shown in the legend. For
f = 0.495 and 0.501, a plateau in the EE is seen indicating a gapped
phase. For f = 0.499, an apparent critical phase is seen, which is
attributed to an artifact of finite-size effects.

result. However, when we are slightly away from this point, say
f = 0.499, the system still appears critical with an (apparent)
central charge of c = 1.58, much larger than the expected value
of 0.80. On going slightly further away, f = 0.495, a plateau
in the EE profile is seen consistent with our expectation of a
gapped phase. Thus the fitting procedure produces misleading
results in the neighborhood of the critical point, and can make
it difficult to determine the central charge for critical points in
which the position of the point is not known to extremely high
accuracy.

1. Near-critical behavior

To further confirm our discussion above, we performed
similar calculations for 1D gapless Dirac fermions using exact
diagonalization. We use the two-band free-fermion lattice
Dirac model as the test model:

H =−
∑

n

(ic†n+1,↑cn,↓ + ic
†
n+1,↓cn,↑ + H.c.)

−
∑

n

(c†n+1,↑cn,↑ − c
†
n+1,↓cn,↓ + H.c.)

+ (2 − m)
∑

n

(c†n,↑cn,↑ − c
†
n,↓cn,↓).

This model is gapless at k = 0 if m is zero, and the critical
point should have a central charge of 1. If m is tuned away
from zero, the system exhibits an energy gap of the size 2m.
For our entanglement calculations, the system was filled to
half-filling, such that when it is gapless, the filling hits exactly
at the Dirac node, and if it is gapped, the filling includes all the
states in the lower band. In this model the correlation length is
controlled by the scale 1/m (with units it would be �vF /m but
� and vF are effectively unity for our model).

To compare closely with our DMRG results, we fit the
central charge of this model using entanglement scaling with
open boundary conditions. When gapless, we find the central

035154-7



ZHUANG, CHANGLANI, TUBMAN, AND HUGHES PHYSICAL REVIEW B 92, 035154 (2015)

TABLE I. The central charge obtained by fitting from different
region of the system and different system size L. The mass gap is set
to be m = 1/10000.

40–360 120–280 40–80

L = 300 1.0198 1.0202 1.0199
L = 400 1.022 1.024 1.021
L = 500 1.0243 1.0273 1.0219

charge to 2 or 3 digits of accuracy. For example, we find c =
1.006 when the chain is of length 400. In addition to calculating
the scaling law over the entire chain, we can improve the fit
by taking symmetric cuts around the center of the chain which
reduces the edge effects. We get slightly improved accuracy
for ranges such as 120 − 280, i.e., c = 1.004. If we increase
system size to L = 500 and fit over 120–380, we find c =
1.003.

Now let us perturb the system slightly away from the critical
point. For this test we turn on a gap size of m = 1/10 000 as
a start. As an estimate, this should give a correlation length of
ξ = 10 000 sites. For system size 400, if we fit from 40–360,
we find c = 1.022; if we fit from 120–280, we find c = 1.024.
If we try to fit a different range, e.g., 40–80, we find c = 1.021.
Either way, the result is already 1% different than the gapless
case even for this tiny gap (compared with the bandwidth).
Next we repeated the same three fits for L = 300 and we find
c = 1.0198, 1.0202, and 1.0199, and then for L = 500 and find
c = 1.0243, 1.0273, and 1.0219. These results are summarized
in Table. I. We observe that the fits get worse when we increase
the system size, and when we fit over the region restricted
mostly to lie over the center. The latter result may be expected
since the scaling function varies most slowly over the center.
The fact that the fits get worse as we increase system size is
most likely just an indicator that there is a finite correlation
length and that the critical scaling form will eventually break
down. For additional tests we also fit the central charge for
larger (but still very small) mass gaps with m = 1/1000 and
1/100 in Table II and Table III, respectively.

We see that when we are tuned near, but not at, the critical
point, the best fits in the gapped case seem to come from
smaller system sizes, and over ranges that do not include the
flat middle portion of the scaling range nor the far tails of
the scaling range. The unfortunate thing is that once we are a
bit further away from the critical point, this optimized fitting
pattern no longer works. In this case, none of the fitting regimes
we used give accurate results because the system begins to
reveal its gapped nature. We do find something close to c =
1 when m = 1/100 and L = 500 (Table III), but this seems

TABLE II. The central charge obtained by fitting from different
regions of the system and different system sizes L. The mass gap is
set to be m = 1/1000.

40–360 120–280 40–80

L = 300 1.1374 1.1633 1.1230
L = 400 1.1699 1.2082 1.1372
L = 500 1.2014 1.2499 1.1473

TABLE III. The central charge obtained by fitting from different
regions of the system and different system sizes L. The mass gap is
set to be m = 1/100.

40–360 120–280 40–80

L = 300 1.8811 1.7267 1.9246
L = 400 1.7563 1.4033 1.9438
L = 500 1.5701 1.0878 1.9385
L = 600 1.3874 0.845 07 1.9273

accidental since we tested it for L = 600 and got a worse result.
From these data, we would claim that for the Dirac model when
the central charge differs by 20% from its expected value then
we are too far away from the critical point to do any fitting and
should claim that it is not critical. In fact for a system size of
500 and mass gap of m = 1/1000, the fitted values are closer
to 6/5 instead of 1 and could easily lead to misidentification
of critical points in models where their location is not known
exactly.

As a possible diagnostic we plot the entanglement entropy
as a function of x = ln( L

π
sin πl

L
), where l is the subblock size.

The slope of the entanglement entropy versus x should be
interpreted as c/6. The only feature that could be used as a
diagnostic is that if the transformed curve has a decrease in
slope then we are definitely too far away from a critical point to
fit properly as can be seen in Fig. 6. The final two curves have
clear decreases in slope as we move far away from criticality.
Note that all these artificially high central charges only occur
when we use open boundary conditions. As can be seen in
Fig. 7, the central charge first goes up then drops for open
boundary conditions when we tune the system away from
criticality. However, it decreases monotonically for periodic
boundary conditions.

APPENDIX C: KOSTERLITZ THOULESS TRANSITION IN
THE THREE-STATE CHIRAL CLOCK

MODEL PHASE DIAGRAM

In the main text, we studied several 2D cross-sections of
the 3D (f,J = 1 − f,θ,φ) phase diagram of the chiral clock
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FIG. 6. (Color online) The transformed curve of entanglement
entropy. Here, x is defined as ln( L

π
sin πl

L
), where l is the block size

and the system size L = 200. For small x, the curves are ordered by
increasing the mass gap (lowest mass is the lowest curve).
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FIG. 7. (Color online) The central charge obtained by fitting the
entanglement entropy from site 40-160 for a 200 sites chain. The blue
open circles are for open boundary conditions and the red dots are for
periodic boundary conditions.

FIG. 8. (Color online) Panel (a) shows the entanglement entropy
(for the central cut), as a function of f for θ = 1.00. The EE increases
for larger sizes of the system for f from 0.07 to 0.17, indicating a
critical phase at this region. (b) shows the corresponding central
charge calculated for various system sizes. The change of the central
charge becomes sharper for larger systems.

model. The 2D cross-sections corresponding to φ = 0 [see
Figs. 2(a) and 2(d)] and φ = π/3 [see Figs. 2(b) and 2(e)]
showed some regions whose phase boundaries could not be
located. This was attributed to finite size errors, which we now
address.

We first discuss the features seen in Figs. 2(a) and 2(d), i.e.,
the cross-section for φ = 0. For small f and large θ, the phase
transition between the topological and trivial phase is indirect:
it is mediated by the incommensurate phase. To establish the
fact that the incommensurate region is of nonzero extent,
we performed finite size analyses on both the entanglement
entropy and central charge as is shown in Figs. 8(a) and 8(b).
This extent is found to be from f ≈ 0.07 to f ≈ 0.15. We find
that the central charge of the trivial-incommensurate transition
is consistent with that of the Kosterlitz-Thouless (KT) type,
i.e., c = 1 [42].

Because of the duality in the Hamiltonian (Eq. 1), the phase
diagram is symmetric with respect to the line f = J = 0.5,
φ = θ . Thus the above mentioned phase transition is dual to
the incommensurate-topological phase transition, for large φ

and small θ . That is to say, the region with the smooth change
of the central charge in the lower-right corner of Fig. 2(d) is
dual to the (red) region in the upper-left corner of Fig. 2(e).
This region, being near the KT phase transition point, is also

(a)

(b)

FIG. 9. (Color online) The profile of the entanglement entropy as
a function of block size l at φ = π/3, θ = 0 and (a) f = 0.8 and (b)
f = 0.9 for different system sizes. The continuous lines are the fit to
the DMRG data.
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FIG. 10. (Color online) Entanglement entropy as a function of
block size for different next-nearest hopping t with the open boundary
condition. t is chosen from 0.97 to 1.03 with a step of 0.001. The
lower part corresponds to t � 1. The cyan peak appears in the middle
is of t = 1.001.

plagued by finite size errors: the correlation length is long
compared with the system size (L = 100).

To test this assertion, we studied the (apparently) large
central charge that was calculated near the critical region, as
is shown in Fig. 9. For example, as is shown in Fig. 9(a), the
point φ = π/3, θ = 0, and f = 0.8 appears to be critical, but
for larger system sizes is shown to be gapped. We base this
conclusion on the appearance of a saturation plateau in the
profile of the EE scaling as a function of subsystem size. As
a comparative check, we went deeper into the critical regime
(i.e., f = 0.9). As can be seen in Fig. 9(b) and as is expected,
we found no such plateau in the EE.

APPENDIX D: LIFSHITZ TRANSITION
FOR FREE FERMIONS

For comparison with our discussion of the Lifshitz transi-
tion in the chiral clock model, we consider a version with 1D
free fermions hopping on a chain with nearest-neighbor and
next-nearest-neighbor (n.n.n.) hopping. As the n.n.n. hopping
is increased, additional Fermi points can enter the spectrum and
eventually hit the chemical potential, which leads to a Lifshitz
transition of the Fermi-surface topology. As our model, we
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FIG. 11. (Color online) Entanglement entropy as a function of
block size for different next-nearest hopping t with the periodic
boundary condition. t is chosen from 0.97 to 1.03 with a step of
0.001. For t � 1, all the curves collapse into the lowest curve in the
figure. The entanglement entropy increases as we increase t . Clearly,
there are some steps for such increase.

consider free fermions with next-nearest-neighbor hopping:

H = −
∑

n

(c†n+1cn + tc
†
n+2cn + H.c.). (D1)

Here, t is the parameter for the next-nearest hopping. The
energy spectrum of this model is E = −2 cos(k) − 2t cos(2k).
When t increases from zero, the topology of the Fermi surface
at zero energy changes from two points to four points at t = 1,
which is the Lifshitz transition.

We calculate the entanglement entropy of this model with
open boundaries and the periodic boundaries at half-filling.
The results are shown in Figs. 10 and 11, and one can
immediately recognize the pattern of oscillations that we saw
earlier for the chiral clock model. One interesting thing to
notice is that the oscillations go away when we use periodic
boundary conditions. This model and the related entanglement
properties, are carefully studied in Ref. [44]. For periodic
boundary conditions, the curves gradually increase from the
scaling form with c = 1 to a scaling form of c = 2, which is
the result expected for two sets of left and right movers at the
Fermi level.
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