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We report on a study of intrinsic superconductivity in a Weyl metal, i.e., a doped Weyl semimetal. Two distinct
superconducting states are possible in this system in principle: a zero-momentum pairing BCS state, with point
nodes in the gap function, and a finite-momentum FFLO-like state, with a full nodeless gap. We find that, in
an inversion-symmetric Weyl metal, the odd-parity BCS state has a lower energy than the FFLO state, despite
the nodes in the gap. The FFLO state, on the other hand, may have a lower energy in a noncentrosymmetric
Weyl metal, in which Weyl nodes of opposite chirality have different energy. However, realizing the FFLO state
is, in general, very difficult since the paired states are not related by any exact symmetry, which precludes a
weak-coupling superconducting instability. We also discuss some of the physical properties of the nodal BCS
state, in particular, Majorana and Fermi arc surface states.
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I. INTRODUCTION

The study of the interplay of superconductivity and nontriv-
ial electronic structure topology has a long history, dating back
to the work on superfluid 3He [1–3]. The recent discovery of
topological insulators (TI) [4,5] has reinvigorated this subject.
Proximity-induced superconductivity on a 3D TI surface has
been proposed as a route to realize Majorana fermions [6],
and bulk topological superconductivity has also been studied
extensively [7–9].

Most recently, Weyl, and closely related Dirac semimetals,
first discovered theoretically [10–18] and lately realized
experimentally [19–32], have come to the forefront of research
on topologically nontrivial phases of matter. Perhaps the most
interesting new feature that Weyl semimetals bring to the
subject is that they are gapless. The realization these gapless
states of matter may be topologically nontrivial, just as gapped
insulators, is of significant importance.

The nontrivial electronic structure topology of Weyl
semimetals arises from points of contact of nondegenerate
conduction and valence bands, which act as monopole sources
of Berry curvature and thus carry an integer topological charge.
A semimetal is realized when the Fermi level coincides with
the points of contact and the valence band is filled while
the conduction band is empty. This situation, however, is
nongeneric and is unstable to impurities, which will always
give rise to unintentional doping, shifting the Fermi level
into the conduction or valence bands. This motivates the
study of Weyl metals, i.e., lightly-doped Weyl semimetals. It
turns out that Weyl metals share most of the topologically
nontrivial properties with undoped Weyl semimetals [33–35].
Two features of the Weyl metals, which are directly related
to the Weyl node topology, are very important in this regard.
One is that, when the Fermi energy is close enough to the
Weyl nodes, the Fermi surface breaks up into disconnected
sheets, each enclosing one Weyl node. The flux of the Berry
curvature through each such Fermi surface sheet is equal to the
topological charge of the corresponding node, which endows
each 2D Fermi surface sheet with a nontrivial topological
invariant, a Chern number. The second important property

of a Weyl metal is the linearity of the band dispersion, which
necessarily arises in the momentum-space vicinity of each
topological charge, as follows from the so-called Atiyah-Bott-
Shapiro construction [36]. This property may be viewed as an
emergent low-energy chiral symmetry, which is characteristic
of Weyl metals.

A nearly universal property of metals is the superconducting
instability, which always exists, at least in nonmagnetic metals,
at low enough temperature. From this viewpoint, the question
of superconductivity in Weyl metals comes up naturally.
Moreover, it is certain in this case that the superconductivity
will be unconventional since, at least at weak coupling, the
pairing must occur between states in a single nondegenerate
conduction or valence band.

As has been shown in Refs. [37,38], two distinct supercon-
ducting states are possible in Weyl metals in principle: a BCS
(Bardeen-Cooper-Schrieffer) state, in which pairing occurs
between momentum eigenstates, related to each other by
inversion symmetry [assuming time reversal (TR) symmetry
is broken, but inversion exists]; and an FFLO (Fulde-Ferrell-
Larkin-Ovchinnikov)-like state, with finite-momentum pairs,
where the states on the opposite sides of each Fermi surface
sheet, enclosing individual Weyl nodes, are paired. In the latter
case, the states that are paired are not related to each other
by any exact symmetry. What makes such a superconducting
state possible in principle, even at weak (but not infinitesimal)
coupling, is the low-energy chiral symmetry of Weyl metals,
mentioned above. Moreover, if the inversion symmetry is
violated, and as a result, Weyl nodes of opposite chirality
are shifted away from each other in energy to a significant
degree [39], the FFLO state becomes the only superconducting
state possible, since the existence of the BCS state relies on
inversion symmetry.

In this paper, we show that, in the presence of inversion
symmetry, the BCS state has a lower energy, at least for
the short-range momentum-independent pairing interaction
and in the class of Weyl metals, considered in this paper.
This conclusion differs from that, made in previous work on
this subject [37,38], which argued that the FFLO state has a
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lower energy. We will explain the origin of this disagreement
below. For other recent work on Weyl superconductors,
see Refs. [40–42].

The rest of the paper is organized as follows. In Sec. II, we
introduce the model of a Weyl metal we will use, which is based
on the TI-NI (normal insulator) multilayer heterostructure,
introduced by one of us before [12]. This model has the
benefit of being very simple and thus amenable to analytic
calculations, yet more realistic than a generic low-energy
model of a Weyl metal would be. In particular, it does not
suffer from spurious exact chiral symmetry of the simplest
“relativistic” low-energy models. We also derive in this section
the BCS pairing Hamiltonian, the form of which plays an
important role in our analysis. In Sec. III, we analyze the BCS
Hamiltonian, derived in Sec. II, using the standard mean-field
theory and demonstrate explicitly that, in the presence of
inversion symmetry, the BCS pairing state has a lower energy
than the FFLO state. In Sec. IV, we discuss some of the
physical properties of the nodal BCS state in more detail,
in particular, the topological properties of the mean-field
Hamiltonian and the edge states. We discuss the differences
between our results and previous work in Sec. V and conclude
by pointing out that, when the inversion symmetry (in addition
to TR) is violated, the BCS state is destroyed while the FFLO
state may survive.

II. MODEL AND DERIVATION OF THE BCS
AND FFLO HAMILTONIANS

As mentioned above, we will start from the model of a
Weyl metal, based on the TI-NI multilayer heterostructure,
introduced by one of us before [12]. The model has been
described extensively in the literature and here we will only
mention the most essential points, which are necessary to
understand what follows. The momentum space Hamiltonian,
describing the multilayer structure, is given by

H0 = vF τ z(ẑ × σ ) · k + t̂(kz). (1)

Here, ẑ is the growth direction of the heterostructure, σ are
Pauli matrices, describing the real spin degree of freedom,
while τ is the pseudospin, describing the top (T) and bottom
(B) surfaces of the TI layers in the heterostructure, and � = 1
units are used here and throughout the paper. The operator t̂ (kz)
describes the motion of the electrons in the growth direction
of the structure. Explicitly it is given by

t̂(kz) = tSτ
x + tD

2
(τ+eikzd + H.c.), (2)

where tS,D are amplitudes for tunneling between top and
bottom surfaces of the same (S) or neighboring (D) TI layers
and d is the superlattice period. We will take both tS,D to
be positive for concreteness, this choice does not affect any
of the physics. This structure describes a Dirac semimetal
when tS = tD , with two Weyl fermion components of opposite
chirality residing at the same point (0,0,π/d) in the first
Brillouin zone (BZ). To create a Weyl semimetal, we need to
separate the Weyl fermions of opposite chirality in momentum
space. This may be accomplished by breaking either TR
or inversion [43] symmetries. We choose to break TR and
(for now) keep inversion symmetry intact, as this creates the

simplest kind of Weyl semimetal state with only two nodes.
Breaking of TR is accomplished by adding a term b σ z to the
Hamiltonian (1):

H0 = vF τ z(ẑ × σ ) · k + t̂(kz) + bσ z. (3)

Physically this may arise, for example, from magnetized
transition-metal impurities, introduced into the sample.
Throughout this paper, we will assume that undoped het-
erostructure is almost a Dirac semimetal, i.e., |tS − tD| is small.

We now introduce the simplest and most natural (at least for
phonon-mediated pairing) kind of pairing interaction, i.e., an
s-wave short-range, and thus necessarily singlet, pairing term,
which in second-quantized notation has the form

Hint = −U

∫
d3r �

†
↑(r)�†

↓(r)�↓(r)�↑(r), (4)

where U > 0. We want to eventually rewrite Hint in the basis
of the eigenstates of H0. To this end, we first write the electron
field operators in the following way:

�†
σ (r) = 1√

LxLy

∑
kiτ

φ∗
iτ (z)e−ik·rc†kiσ τ . (5)

Here, i labels the unit cells of the TI-NI superlattice in
the growth direction, σ and τ are the spin and pseudospin
labels, φiτ (z) are Wannier-like exponentially localized states,
describing the z-axis behavior of the TI surface states in the unit
cell i and surface τ , k = (kx,ky) is the transverse momentum,
and Lx,y are the sample dimensions in the x and y directions.
Due to the exponential localization of the Wannier functions
φiτ (z), it is easy to see that, upon substitution of Eq. (5) into
Hint, the dominant terms will correspond to pairing interaction
that is local in both the i and the τ indices

Hint = − Ũ

LxLy

∑
kk′q

∑
iτ

c
†
k+qi↑τ c

†
k′−qi↓τ ck′i↓τ cki↑τ , (6)

where

Ũ = U

∫ ∞

−∞
dz|φiτ (z)|4. (7)

Redefining Ũd → U and transforming to the crystal momen-
tum basis with respect to the i index, we then obtain

Hint = −U

V

∑
kk′q

∑
τ

c
†
k+q↑τ c

†
k′−q↓τ ck′↓τ ck↑τ , (8)

where k henceforth means the full 3D crystal momentum and
V = LxLyLz is the sample volume.

As demonstrated in Refs. [37] and [38], the electron pairing
will predominantly occur in two distinct channels: BCS and
FFLO. Correspondingly, we simplify Hint by leaving only the
two contributions, H BCS

int and H FFLO
int , where

H BCS
int = −U

V

∑
kk′τ

c
†
k↑τ c

†
−k↓τ c−k′↓τ ck′↑τ (9)

and

H FFLO
int = −U

V

∑
kk′Qτ

c
†
Q+k↑τ c

†
Q−k↓τ cQ−k′↓τ cQ+k′↑τ . (10)
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Here, the momentum vector Q labels the locations of the Weyl
nodes, to be specified below. An important property of Eq. (10),
which follows from momentum conservation, is that H FFLO

int
does not couple different Weyl nodes. This will play a signifi-
cant role in selecting the lowest energy superconducting state.

To proceed, we diagonalize the noninteracting part of the
Hamiltonian, H0, in order to rewrite the full Hamiltonian in
the basis of the eigenstates of H0. Performing a canonical (i.e.,
commutation relations preserving) transformation

σ± → τ zσ±, τ± → σ zτ±, (11)

which corresponds to the following unitary transformation of
the electron creation operators:

c
†
k↑T → c

†
k↑T , c

†
k↓T → c

†
k↓T ,

c
†
k↑B → c

†
k↑B, c

†
k↓B → −c

†
k↓B, (12)

one obtains

H0 = vF (ẑ × σ ) · k + m̂(kz)σ
z, (13)

where m̂(kz) = b + t̂(kz). The pairing terms are clearly un-
changed by this transformation.

Diagonalizing the 2×2 matrix m̂(kz) one obtains the
following eigenvalues:

mr (kz) = b + rt(kz), (14)

where r = ± and t(kz) =
√

t2
S + t2

D + 2tS tD cos(kzd). The
corresponding eigenvectors are

|ur (kz)〉 = 1√
2

(
1,r

tS + tDe−ikzd

t(kz)

)
. (15)

Diagonalizing the remaining 2×2 blocks of H0, one finally
obtains its eigenvalues:

εsr (k) = sεr (k) = s

√
v2

F

(
k2
x + k2

y

) + m2
r (kz), (16)

where s = ± and the corresponding eigenvectors

|vsr (kz)〉 = 1√
2

(√
1 + s

mr (kz)

εr (kz)
, − iseiϕ

√
1 − s

mr (kz)

εr (kz)

)
,

(17)

where eiϕ = kx+iky√
k2
x+k2

y

. The full 4-component eigenvector may

be viewed as a tensor product:

|zsr (kz)〉 = |ur (kz)〉 ⊗ |vsr (kz)〉. (18)

The Weyl nodes correspond to points along the z axis
in momentum space at which m−(kz) = b − t(kz) vanishes.
Solving the equation b = t(kz), one obtains Q = Qẑ, where

Q = π

d
± 1

d
arccos

(
t2
S + t2

D − b2

2tS tD

)
≡ π

d
± k0. (19)

When the Fermi energy is sufficiently close to the Weyl
nodes, namely when εF � b, the Fermi level only crosses
the s = +,r = − band, assuming εF > 0 for concreteness.
Projecting onto this band, we write the electron creation
operators as

c
†
kστ = z∗+−

στ (k)c†k+− ≡ z∗
στ (k)c†k, (20)

i.e., we will omit the explicit s = +, r = − indices from
now on in all the equations for brevity. Substituting this into
H BCS

int and H FFLO
int , we finally obtain the following projected

low-energy BCS and FFLO Hamiltonians:

HBCS =
∑

k

ξ (k)c†kck − U

2V

∑
kk′

f ∗
k fk′c

†
kc

†
−kc−k′ck′ (21)

and

HFFLO =
∑

k

ξ (k)c†kck

− U

2V

∑
kk′Q

f̃ ∗
kQf̃k′Qc

†
Q+kc

†
Q−kcQ−k′cQ+k′ , (22)

where in Eq. (22), we assume that Qd � 1, i.e., Weyl nodes
are far away from the BZ boundary. ξ (k) = ε(k) − εF is the
band energy, counted from the Fermi energy and

fk = ieiϕ

2

√
1 − m2(kz)

ε2(k)
, (23)

while

f̃kQ = ieiϕ

4

[√
1 + m(Q + kz)

ε(Q + k)

√
1 − m(Q − kz)

ε(Q − k)

+
√

1 + m(Q − kz)

ε(Q − k)

√
1 − m(Q + kz)

ε(Q + k)

]
. (24)

The nontrivial momentum-dependent form factors fk and f̃kQ
are a consequence of projection of the pairing interaction
terms onto a nondegenerate band. Their properties play an
important role in the physics of the BCS and the FFLO states.
It is easy to see that the BCS form factor vanishes identically
everywhere on the kx = ky = 0 line in momentum space. The
four points at which this line intersects the two Fermi surface
sheets will produce four nodes in the BCS gap function, as
will be seen below. On the other hand, the FFLO form-factor
f̃kQ never vanishes, which is directly related to the fact that
the function m(kz) changes sign at the Weyl node locations
kx = ky = 0,kz = Q. This means that the FFLO state is
nodeless. It would then seem natural if the fully gapped FFLO
state would have a larger condensation energy and thus a lower
overall energy than the nodal BCS state, with the gap vanishing
at four points in the BZ. Surprisingly, as we show below, this
is not the case: the BCS state in fact has a lower energy.

III. CONDENSATION ENERGIES OF THE BCS
AND THE FFLO STATES

In this section, we will evaluate and compare the conden-
sation energies of the BCS and the FFLO states, using the
low-energy Hamiltonians, derived in the previous section.

A. BCS state

We analyze HBCS using the standard mean-field theory. The
mean-field BCS Hamiltonian has the form

HBCS =
∑

k

[
ξ (k)c†kck − 


2
(f ∗

k c
†
kc

†
−k + fkc−kck)

]
+ V

2U

2,

(25)
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where the pairing amplitude 
 is given by


 = U

V

∑
k

f ∗
k 〈c†kc†−k〉 = U

V

∑
k

fk〈c−kck〉. (26)

It is important to note that our BCS state has odd parity since
fk changes sign under inversion. This is already in contrast to
Ref. [37], which claimed an even-parity BCS state.

Diagonalizing HBCS using Bogoliubov transformation, one
obtains

HBCS =
∑

k

E(k)ψ†
kψk + 1

2

∑
k

[ξ (k) − E(k)] + V

2U

2.

(27)

Here, ψ
†
k are the Bogoliubov quasiparticle creation operators,

E(k) =
√

ξ 2(k) + |fk|2
2, (28)

is the quasiparticle energy and the pairing amplitude 
 satisfies
the standard BCS equation (assuming temperature T = 0)

1 = U

2V

∑
k

|fk|2
E(k)

. (29)

It is clear from Eq. (28) that the quasiparticle energy indeed
vanishes at four points in the first BZ, at which the form factor
fk vanishes.

The T = 0 BCS equation may be easily solved following
the well-known steps [44]. One obtains


 = 2ωDe−〈|fk|2 ln |fk|〉/〈|fk|2〉e−1/Ug(εF )〈|fk|2〉. (30)

Here, ωD is the Debye frequency,

g(εF ) =
∫

d3k

(2π )3
δ[ε(k) − εF ]

= εF

4π2v2
F

∫ π/d

−π/d

dkz�[εF − |m(kz)|] (31)

is the density of states at Fermi energy, and

〈|fk|2〉 = 1

g(εF )

∫
d3k

(2π )3
|fk|2δ[ε(k) − εF ] (32)

is the Fermi surface average of the BCS gap function |fk|2.
In the limit εF � b, i.e., when the Fermi energy is close

to the Weyl nodes, the Fermi surface average may be easily
evaluated explicitly. Indeed, in this case the band dispersion
in the z direction in momentum space may be assumed to
be linear, which follows from the leading-order expansion of
m(kz) near the nodes:

m(kz) ≈ m(Q) + dm(kz)

dkz

∣∣∣∣
kz=Q

δkz = ±ṽF δkz, (33)

where

ṽF = d

2b

√
[b2 − (tS − tD)2][(tS + tD)2 − b2] (34)

is the z component of the Fermi velocity near the nodes. Then
one obtains

g(εF ) = ε2
F

π2v2
F ṽF

(35)

and

〈|fk|2〉 = 1

4

(
1 − 〈m2(kz)〉

ε2
F

)

= 1

4

(
1 − ṽ3

F

2ε3
F

∫ εF /ṽF

−εF /ṽF

dkz k2
z

)
= 1

6
. (36)

The pairing amplitude is thus given by


 ≈ 5ωDe−6/Ug(εF ). (37)

To evaluate the condensation energy, we take the expec-
tation value of HBCS at T = 0. In this case, there are no
quasiparticles and we obtain

EBCS

V
= 1

2V

∑
k

[ξ (k) − E(k)] + 
2

2U
. (38)

This is again evaluated in the standard way [44] and gives the
following result for the condensation energy, i.e., the energy
gain compared to the normal state energy E0:

EBCS − E0

V
= −1

4
g(εF )〈|fk|2〉
2

≈ −25ω2
Dg(εF )

24
e−12/Ug(εF ). (39)

B. FFLO state

The FFLO state is analyzed in exactly the same way as above.
One important point to note is that the FFLO Hamiltonian (22)
clearly does not mix different Weyl nodes, i.e., different values
of Q, as required by momentum conservation. This means
that, in mean-field theory, the contributions of different Weyl
nodes may be analyzed separately and simply summed when
calculating the total condensation energy.

The mean-field Hamiltonian for a single Weyl node, i.e.,
with a fixed Q, is given by

H
Q
FFLO

=
∑

k

[
ξ (k)c†kck − 


2
(f̃ ∗

kQc
†
Q+kc

†
Q−k + f̃kQcQ−kcQ+k)

]

+ V

2U

2, (40)

where the pairing amplitude is


= U

V

∑
k

f̃ ∗
kQ〈c†Q+kc

†
Q−k〉 = U

V

∑
k

f̃kQ〈cQ−kcQ+k〉. (41)

Diagonalizing Eq. (40), one obtains

H
Q
FFLO =

∑
k

[
ε(Q + k) − ε(Q − k)

2
+ E(k)

]
ψ

†
kψk

+ 1

2

∑
k

[ξ (k) − E(k)] + V

2U

2, (42)

where

E(k) =
√[

ξ (Q + k) + ξ (Q − k)

2

]2

+ |f̃kQ|2
2. (43)
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A crucial difference between the FFLO and the BCS states
is the term [ε(Q + k) − ε(Q − k)]/2 in the energy of the
FFLO Bogoliubov quasiparticles in Eq. (42). This term is a
consequence of the fact that the states with momenta Q + k
and Q − k are not related by any exact symmetry, unlike k
and −k in the BCS case, which are related by inversion. An
important property of a Weyl metal, however, which may allow
the FFLO state to exist, in principle, is the low-energy chiral
symmetry, which emerges as εF → 0 and which implies that

ε(Q + k) ≈ ε(Q − k), (44)

the equality becoming more and more precise as the energy is
lowered. Let us first assume that Eq. (44) holds exactly, as it
would in a low-energy model of a Weyl metal with an exactly
linear dispersion. Then we obtain

H
Q
FFLO =

∑
k

E(k)ψ†
kψk + 1

2

∑
k

[ξ (k) − E(k)] + V

2U

2.

(45)

The mean-field equation for the pairing amplitude, again
assuming Eq. (44) holds, takes a form identical to the BCS
case:

1 = U

2V

∑
k

|f̃kQ|2
E(k)

. (46)

To proceed, we now evaluate explicitly the FFLO gap
function. After elementary algebra, we obtain

|f̃kQ|2 = 1

8

[
1 − m(Q + kz)m(Q − kz)

ε2
F

+
√

1 − m2(Q + kz)

ε2
F

√
1 − m2(Q − kz)

ε2
F

]
. (47)

Low-energy chiral symmetry implies that

m(Q + kz) ≈ −m(Q − kz). (48)

Assuming this to hold, we finally obtain

|f̃kQ|2 = 1
4 , (49)

which is by a factor of 3/2 larger than the corresponding
result for the Fermi surface average of the BCS gap function,
Eq. (36). This is to be expected, since the FFLO gap function,
unlike the BCS one, does not have nodes. This result might
then suggest that the FFLO state should have a lower energy.
However, this turns out not to be the case. The culprit is another
factor that influences the magnitude of the pairing amplitude,
i.e., the density of states. Since in mean-field theory of the
FFLO state the two Weyl nodes are completely decoupled from
each other, only half of the total density of states determines the
magnitude of the gap for each Fermi surface sheet. We obtain


 = 4ωDe−2/Ug(εF )〈|f̃kQ|2〉 = 4ωDe−8/Ug(εF ). (50)

The extra factor of 2 in the expression above, compared to the
corresponding Eq. (30) in the BCS case, arises precisely from
the fact that the density of states per Weyl node is g(εF )/2,
g(εF ) being the total density of states. It is then clear that the
magnitude of 
 in the FFLO state is exponentially smaller than
in the BCS state in the weak coupling regime, Ug(εF ) � 1.

Summing the identical contributions from the two Weyl
nodes, the total FFLO condensation energy is finally given by

EFFLO − E0

V
= − 1

16
g(εF )
2 = −ω2

Dg(εF )e−16/Ug(εF ).

(51)

Comparing to the corresponding result in the BCS case,
Eq. (39), it is clear that the FFLO state condensation energy is
exponentially smaller in the weak coupling regime, within our
model of a Weyl metal. Since the critical temperature Tc ∼ 


at weak coupling, this also implies that Tc of the BCS state is
higher than Tc of the FFLO state and we thus do not expect
any transitions between them as a function of temperature.

In reality, the situation is even worse for the FFLO state,
however, since we have, so far, been assuming exact chiral
symmetry, expressed by Eq. (44). But chiral symmetry is not
exact, and it is instructive to work out the consequences of that.
While we have already shown that, in our model, the FFLO
state is not favored even when the chiral symmetry exists,
this result is based on comparing energies, and thus may not
be universal. The arguments presented below are of a more
general validity.

Let us expand ε(Q ± k) in Taylor series with respect to the
deviation from the Weyl node location k, assuming k is small.
Let us also take k = kzẑ for the sake of simplicity. We obtain

ε(Q + kz) − ε(Q − kz)

≈ dε

dkz

∣∣∣∣
kz=Q+

kz + dε

dkz

∣∣∣∣
kz=Q−

kz + 1

2

d2ε

dk2
z

∣∣∣∣
kz=Q+

k2
z

− 1

2

d2ε

dk2
z

∣∣∣∣
kz=Q−

k2
z + · · · , (52)

where we have taken into account the fact that the band velocity
dε/dkz is discontinuous and changes sign at the Weyl node
locations. Since

dε

dkz

∣∣∣∣
kz=Q+

= − dε

dkz

∣∣∣∣
kz=Q−

, (53)

the first-order term in the expansion above vanishes, which is
precisely the expression of the approximate chiral symmetry.
The quadratic term, however, does not vanish and is given by

1

2

d2ε

dk2
z

∣∣∣∣
kz=Q+

− 1

2

d2ε

dk2
z

∣∣∣∣
kz=Q−

= d2m(kz)

dk2
z

∣∣∣∣
kz=Q

= d2 b4 − (
t2
S − t2

D

)2

4b3

∼ d2b. (54)

We may expect the FFLO state to exist as a local minimum of
the free energy as long as

max
k

|ε(Q + k) − ε(Q − k)| � 
, (55)

where the maximum is taken over states on the Fermi surface.
Taking kz ∼ εF /ṽF , where ṽF ∼ d tS is the Fermi velocity at
the Weyl nodes, and assuming b � |tS − tD|, Eq. (55) becomes

b ε2
F

/
t2
S < 
, (56)
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where tS should be regarded as the highest energy scale in the
problem, of the order of the total bandwidth. Using Eqs. (35)
and (50), we may rewrite this inequality as

b

ωD

ε2
F

t2
S

� exp

(
−16π2v2

F ṽF

Uε2
F

)
. (57)

Using vF ∼ ṽF ∼ tSd, it becomes clear that this inequality
is very hard, if not impossible, to satisfy for any reasonable
values of the relevant parameters.

The above arguments lead us to the conclusion that, when
the inversion symmetry is present and when the coupling is
weak, nodal odd-parity BCS superconducting state, which is a
close analog of the A phase in 3He, is much more likely to be
realized in a Weyl metal. This state is topologically nontrivial
and is characterized by an interesting edge state structure,
in which Fermi arcs of the “parent” nonsuperconducting Weyl
semimetal coexist with Majorana edge states of the nodal BCS
superconductor, as will be described in detail in the following
section.

IV. MAJORANA AND FERMI ARC EDGE MODES
IN THE NODAL BCS STATE

In this section, we will discuss in some detail the nontrivial
momentum-space topology of the nodal BCS state and the
corresponding Majorana and Fermi arc edge states. Some work
on this has already been done before in Refs. [40,42], and the
discussion below mostly serves to provide a clear connection
between these previously published results and place them in
the context of our model.

To discuss momentum-space topology, which involves not
only states near the Fermi energy, it will be necessary to
consider the BCS Hamiltonian without making the projection
onto the low-energy states only. We will still restrict ourselves
to the r = − states, since these are the bands that touch
at the Weyl nodes in the nonsuperconducting state, but will
take into account both bands that touch. The mean-field BCS
Hamiltonian then takes the form

H =
∑

k

[vF (ẑ × σ ) · k + m(kz)σ
z − εF ]c†kck

− 1

2

∑
k

(
c
†
k↑c

†
−k↓ + 
∗c−k↓ck↑), (58)

where m(kz) ≡ m−(kz),


 = U

V

∑
k

〈c−k↓ck↑〉, (59)

and spin indices were suppressed in the first line of Eq. (58)
for brevity. To analyze Eq. (58), we introduce a Nambu spinor:

ψk = (ck↑,ck↓,c
†
−k↓,c

†
−k↑) ≡ (ψk1↑,ψk1↓,ψk2↑,ψk2↓). (60)

In the Nambu spinor notation, the BCS Hamiltonian takes the
following form:

H = 1

2

∑
k

[vF (ẑ × σ ) · k + m(kz)σ
z − εF κz]ψ†

kψk

− 1

8

∑
k

(
κ+ + 
∗κ−)σ zψ
†
kψk, (61)

where κ is the Nambu pseudospin.

It is instructive to start from the limit of εF = 0, in which
case Eq. (61) reduces to the model of Ref. [40]. In this case, it
is clear that the Nambu pseudospin block of the Hamiltonian
may be diagonalized separately and we obtain

H = 1

2

∑
k

{vF (ẑ × σ ) · k + [m(kz) + p|
|/2]σ z}ψ†
kψk,

(62)

where p = ± labels the two eigenvalues ±|
| of the matrix
(
κ+ + 
∗κ−)/2. Apart from the factor of 1/2 in front,
which expresses the doubling of degrees of freedom in the
Nambu pseudospin notation, Eq. (62) may be viewed as the
Hamiltonian of two massive 2D Dirac fermions with the
masses m(kz) ± |
|/2 varying as functions of parameter
kz. Sign change of the Dirac masses signals quantum Hall
transitions. In particular, when 
 = 0, m(kz) changes sign
at the locations of the two Weyl nodes, given by π/d ± k0.
The topologically nontrivial range of kz, where m(kz) > 0,
corresponds to the range of momenta in which chiral Fermi
arc edge states exist on any sample surface, not perpendicular
to the z axis [12]. Due to doubling of the number of degrees of
freedom in Eq. (62), these chiral Fermi arc edge states come in
degenerate particle-hole symmetric and antisymmetric pairs.
Turning on a nonzero 
, the Dirac mass of the particle-hole
symmetric states decreases by |
|/2 while the mass of the
particle-hole antisymmetric states increases by the same
amount. There is thus an interval of momenta near each Weyl
node location of width

δkz = 1

d

[
arccos

(
t2
S + t2

D − (b + |
|/2)2

2tS tD

)

− arccos

(
t2
S + t2

D − (b − |
|/2)2

2tS tD

)]
≈ |
|

ṽF

, (63)

in which only the particle-hole antisymmetric states are
topologically nontrivial (the last equality holds assuming
|
| � b). These momentum intervals give rise to chiral
Majorana edge modes, which do not have particle-hole
symmetric partners, unlike the “ordinary” Fermi arc edge
states. The Majorana edge states terminate at points at which
m(kz) = ±|
|/2. These are point nodes in the spectrum of
the Bogoliubov quasiparticles. Each Weyl node in the normal
state thus splits into two Bogoliubov-Weyl nodes in the
superconducting state, which inherit the chirality of the parent
Weyl node, as seen from Eq. (62).

When εF > 0, Eq. (61) no longer has the simple form of two
independent massive Dirac Hamiltonians, but the eigenstate
spectrum is still easily found. We obtain

E2
±(k) = ε2(k) + |
|2

4
+ ε2

F ±
√

4ε2(k)ε2
F + |
|2m2(kz).

(64)

The node locations are now given by the solutions of the
equation

|m(kz)| =
√

ε2
F + |
|2

4
. (65)

The edge state spectrum may be easily found numerically, as
shown in Fig. 1. The degeneracy of the Fermi arc doublet is
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FIG. 1. (Color online) Numerically calculated eigenstate disper-
sions for Eq. (61) along the z direction in momentum space for a
sample of finite width in the x direction. Parameters in Eq. (61) are
chosen as follows: tS = 1,tD = 0.9,b = 1,εF = 
 = 0.2. Majorana
modes are pinned to zero energy and exist in intervals of width of
order |
|/ṽF around each Weyl node. Fermi arc edge modes are split
into particle-hole antisymmetric and symmetric branches at ±εF .

FIG. 2. (Color online) Numerically calculated eigenstate disper-
sions for Eq. (61) along the y direction in momentum space for a
sample of finite width in the x direction, at several values of kz.
Parameters in Eq. (62) are chosen as follows: tS = 1,tD = 0.9,b =
1,εF = 0.5,
 = 0.1. (a) kz is outside the Fermi surface. Two pairs
(corresponding to two surfaces) of chiral Fermi arc modes, crossing
at ±εF at ky = 0 are visible. (b) kz is just inside the Fermi surface.
Two chiral Majorana modes are visible now, crossing at ky = 0 at
zero energy. (c) kz is closer to a Weyl node location. Majorana modes
directly connect with the Fermi arcs.

split, with the particle-hole symmetric branch moving down to
−εF in energy, while the particle-hole antisymmetric branch
moves up to εF . The Majorana states, which extend between
the nodes, remain pinned at zero energy (note that zero is at
the Fermi energy here).

In the limit |
| � εF , we may obtain a simple picture of
the Majorana states from the BCS Hamiltonian, projected onto
the low-energy s = + states:

H = 1

2

∑
k

[
ξ (k)κz − 1

2
(
f ∗

k κ+ + 
∗fkκ
−)

]
ψ

†
kψk, (66)

where ψk = (ck,c
†
−k) is the projected Nambu spinor and

ξ (k) =
√

v2
F (k2

x + k2
y) + m2(kz) − εF . This again has the form

of the Hamiltonian of a 2D Dirac fermion, with the mass
ξ (0,0,kz), which depends on kz as a parameter. The mass
changes sign at points, satisfying the equation |m(kz)| = εF ,
which coincides with the locations of the nodes of the
superconducting gap function fk. The topologically nontrivial
momentum range, which in this case corresponds to negative
Dirac mass, coincides with the range of momenta inside the
two Fermi surface sheets, enclosing the Weyl nodes. There are
thus Majorana zero-energy edge states, which exist on arcs,
connecting the gap function nodes of the opposite sides of
each Fermi surface sheet. For sample surfaces perpendicular,
say, to the x direction, the dispersion of the Majorana edge
modes in the y direction is chiral and exist for a given kz

within the energy interval ±|fk
|. Near the center of each
Fermi surface sheet, i.e., close to the locations of the Weyl
nodes along the z axis, the superconducting gap is largest in
magnitude and the Majorana edge state dispersion extends all

FIG. 3. (Color online) Same parameters as in Fig. 2, but values
of kz are taken near (a) and beyond (b) the Weyl node location.
Disappearance of the Fermi arcs necessitates a “flat band” at the
transition point. The chirality of the Majorana modes changes sign
at the transition. The transition itself occurs exactly at the Weyl node
location in the limit 
/εF → 0, but is shifted slightly away for any
finite 
.
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the way to the Fermi surface, where it gets reconnected with
the Fermi arc states, as shown in Fig. 2.

However, there is a subtlety here, since the projected
low-energy Hamiltonian (66) does not actually give the correct
Majorana edge mode dispersion in the y direction. The reason
is that the two Bogoliubov-Weyl nodes on each Fermi surface
sheet have the same chirality, inherited from the Weyl node,
enclosed by the Fermi surface sheet, as discussed above. This
can not be deduced from Eq. (66) and requires analysis of the
full unprojected Hamiltonian (61). Another way to see this is
to notice that the Majorana modes must connect with the Fermi
arcs, which are not low-energy modes and require the full
Hamiltonian Eq. (61) to describe. An interesting consequence
of this, first described in Ref. [42], is a topological transition
that happens when one crosses the Weyl node locations along
the z axis. The Fermi arcs must disappear on approaching
Weyl nodes, which means that the finite-kz crossing points in
the edge state dispersions in Fig. 2 must disappear. This leads
unavoidably to the appearance of a dispersionless “flat band”
at the value of kz at which the Fermi arcs disappear, as shown
in Fig. 3. As kz is further increased, the Majorana dispersion
again becomes chiral, but with chirality of opposite sign, as
seen in Fig. 3.

V. DISCUSSION AND CONCLUSIONS

We will start this section by discussing differences between
our results and the ones obtained previously in Refs. [37,38],
which both claimed that the FFLO state has a lower energy.
In Ref. [38], a specific low-energy linear-dispersion model
for a Weyl metal was used, in which the BCS interaction,
Eq. (9) vanished identically. This is certainly possible in some
realizations of Weyl metals, but can not be a general feature.
Moreover, such an exact cancellation would presumably not
happen even within the model of Ref. [38], if chiral symmetry
violating corrections to the low energy model, which are
always present, as discussed above, were included. However,
in agreement with our results, all superconducting states, found
in Ref. [38], had odd parity.

Reference [37] considered a model, quite similar to ours as
far as its symmetry properties are concerned, also assuming
a strictly linear band dispersion in all calculations. However,
the BCS state, found in this reference, was claimed to have
even parity, which disagrees with our results. The FFLO state
in this reference also appears to be different, with a single
order parameter for both nodes, while in our case there are two
independent (in mean-field theory) order parameters. In fact,
a single order parameter would be impossible in our case: this
would imply internode pair scattering already at the level of
mean-field theory, which violates momentum conservation, as
clearly seen from Eq. (10).

We will conclude by pointing out one possible situation
in which the FFLO, rather than the nodal BCS state, may be
realized. FFLO state may happen to be the ground state if the
inversion symmetry, assumed to be present in the calculations
above, is violated, in addition to TR symmetry. The presence
of at least one of those symmetries, i.e., TR or inversion,

is necessary for the existence of the BCS superconducting
state, since only those symmetries guarantee that the band
eigenstates at momenta k and −k have the same energy.
In a Weyl metal, either TR or inversion must be violated,
to remove the two-fold Kramers degeneracy. In the model
that we have discussed above, TR was violated from the
start. This already puts BCS-type superconductivity under
some strain, which is manifest in the gap function having
nodes. When inversion symmetry is violated as well, the
Weyl nodes will generally be shifted to different energies,
which implies that the states with momenta k and −k will
have different energies. Once the inversion breaking is strong
enough, such that the energy difference between the Weyl
nodes is comparable to the BCS pairing amplitude 
, given
by Eq. (37), the BCS state will be destroyed (possibly going
through an intermediate “ordinary” small-wave-vector FFLO
state, which we will not discuss here). However, the FFLO
state is largely unaffected by this, since its existence relies
not on the exact microscopic inversion symmetry, but rather
on the low-energy chiral symmetry, which is unaffected by
the broken inversion symmetry, unless inversion breaking is
so strong that the energy difference between the Weyl nodes
becomes comparable to the Fermi energy. Thus, provided the
inequality (57) may be satisfied (which, as discussed above,
appears to be hard in the weak coupling regime, but may be
possible at intermediate coupling), the FFLO state will be
realized. However, it is important to keep in mind that since
nonlinear chiral symmetry violating corrections to the band
dispersion are always present in a real Weyl metal, realizing
the FFLO state certainly requires a finite pairing interaction
strength, as the logarithmic divergence of the FFLO pairing
susceptibility will always be cut off by the nonlinearity. From
this viewpoint, a Weyl metal, in which both TR and inversion
are violated, is an example of a metal without any weak-
coupling BCS instability and thus with a true Fermi liquid
ground state at T = 0. Another closely related and interesting
possibility, worthy of further, more detailed study, is a state,
in which the superconducting order parameter is nonzero on
one of the Fermi surface sheets, but is zero on the other one,
since inequality (57) may be satisfied for one of the sheets,
but not the other, when the inversion symmetry is absent. This
would be a helical superconductor, [45,46] coexisting with
a normal Fermi liquid. Helical superconductors have been
studied extensively in the general context of superconductivity
in noncentrosymmetric materials, [47] and their realization in
Weyl metals would be of significant interest.

Our results may be used as a starting point for further studies
of superconductivity in Weyl metals. In particular, since the
nodal BCS state is topologically nontrivial, as discussed in
Sec. IV and in Refs. [40,42], the question of its electromagnetic
response seems to be of interest.
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