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We explore the ferromagnetic quantum critical point in a three-dimensional semimetallic system with upward-
and downward-dispersing bands touching at the Fermi level. Evaluating the static spin susceptibility to leading
order in the coupling between the fermions and the fluctuating ferromagnetic order parameter, we find that the
ferromagnetic quantum critical point is masked by an incommensurate, longitudinal spin density wave phase. We
first analyze an idealized model that, despite having strong spin-orbit coupling, still possesses O(3) rotational
symmetry generated by the total angular momentum operator. In this case, the direction of the incommensurate
spin density wave propagation can point anywhere, while the magnetic moment is aligned along the direction of
propagation. Including symmetry-allowed anisotropies in the fermion dispersion and the coupling to the order
parameter field, however, we find that the ordering wavevector instead breaks a discrete symmetry and aligns
along either the [111] or [100] direction, depending on the signs and magnitudes of these two types of anisotropy.
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I. INTRODUCTION

For decades it has been understood that electron interactions
may lead to interesting consequences at low-energy scales in
three-dimensional (3D) semimetallic systems, in which spin-
orbit coupling combines with cubic crystalline symmetries,
leading to a band degeneracy at the Fermi energy [1–8]. Such a
band structure has long been known to occur in HgTe and α-Sn
(gray tin) and has possibly been discovered more recently in
the pyrochlore Pr2Ir2O7 [9–14]. Since the low-energy effective
theory for these systems was first developed by Luttinger [1],
it has been argued using various approaches that interactions
could lead to an excitonic instability at low temperatures [2,6],
or that the system may be described by an exotic non-Fermi
liquid phase, characterized by nontrivial power-law scaling of
various physical quantities with temperature [3–5]. In more
recent work, the properties of such a system near an Ising
antiferromagnetic quantum critical point were explored, and
the critical theory was found to be governed by unusual
critical exponents and emergent spatial anisotropy of the
fermion dispersion [7]. The theory describing the quantum
phase transition into an insulating nematic phase has also been
developed recently [8].

In this work we explore the fate of a 3D semimetal in
the vicinity of a ferromagnetic (FM) quantum critical point.
Working at zero temperature and approaching the quantum
critical point from the paramagnetic side, we find that it is
unstable toward an incommensurate spin density wave (SDW)
phase. In the most symmetric version of the theory, there is
a combined O(3) rotational symmetry for spin and spatial
degrees of freedom, which is spontaneously broken by the
SDW wavevector. The O(3) symmetry is reduced to a discrete
symmetry by either of two sources of anisotropy: the Yukawa
coupling of the fermions to the fluctuating FM field, or the
dispersion of the fermions themselves. (Throughout this work,
by anisotropy we shall mean terms preserving the lattice point
group symmetries, but not O(3) symmetry.) Either of these
sources of anisotropy reduces the O(3) symmetry breaking to
a discrete symmetry breaking, with the ordering wavevector
lying along one of several high-symmetry directions. In

contrast to the more typical case of an incommensurate SDW
driven by Fermi surface nesting, the incommensurability of
the SDW found in our work is unrelated to Fermi surface or
doping effects. Rather, the ordering wavevector depends on
nonuniversal parameters, such as the temperature and strength
of the boson-fermion coupling.

In the following section we introduce the model Hamilto-
nian for a 3D parabolic semimetal coupled to a fluctuating FM
order parameter field and discuss its relevant symmetries. In
Sec. III we use this model to study the effects of fermionic
fluctuations on the bosonic order parameter field, beginning
with the O(3)-symmetric case and then moving on to the
anisotropic case, with details of these calculations provided in
the Appendix. In both cases we obtain a negative contribution
to the boson self-energy that is linear in momentum, leading to
an instability to an incommensurate SDW phase. In Sec. IV we
investigate the possibility of a fluctuation-induced first-order
phase transition directly from the paramagnetic to the FM
phase, evading both the FM quantum critical point and the
incommensurate SDW phase. Computing the free energy
of the FM order parameter, we find that the sign of the
fluctuation-induced nonanalytic term is such that no first-order
transition results, in contrast with the metallic case in which
there is a nonvanishing density of fermions at the Fermi energy
[15–17]. Finally, in Sec. V we discuss the results and their
possible relevance to real materials.

II. THE MODEL

The following action describes a theory of fermions coupled
to a fluctuating FM order parameter �φ at temperature T = 0:

S =
∫

dτ d3x

{
ψ†[∂τ + H0(−i∇)]ψ + �φ · [

Ĝ
(0)
φ

]−1 · �φ

+ u√
N

ψ†( �M1 cos α + �M2 sin α)ψ · �φ]

}
. (1)

The fermion fields ψ have 4N components, where N =
1 in the physical case. The action Eq. (1) is similar to
the one studied in the Ising antiferromagnetic case [7] but

1098-0121/2015/92(3)/035137(11) 035137-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.035137


JAMES M. MURRAY, OSKAR VAFEK, AND LEON BALENTS PHYSICAL REVIEW B 92, 035137 (2015)

ISDW

Paramagnet

T

rrc0

(preempted) 
FM QCP

FIG. 1. (Color online) Schematic phase diagram showing the
onset of incommensurate spin density wave (ISDW) order that
preempts the quantum phase transition to a ferromagnetic (FM) phase
at r < 0. The nature of the phase transition between the ISDW and
FM phases (not shown) is not specified by our theory.

with some important differences. Most obviously, the FM
order parameter �φ is a vector, rather than a scalar as in
the AF case. The mass r0 ≡ [G(0)

φ (0,0)]−1
ii of this field is

tuned to zero at the FM quantum critical point, as shown
in Fig. 1. Finally, as pointed out previously [1,5], there
are two symmetry-allowed terms through which FM order
can couple to the fermions. Hence u describes the overall
strength of the coupling between the fermions and the field �φ,
while α parametrizes the relative strength of the two allowed
couplings. The 4×4 matrices appearing in Eq. (1) are related
to the S = 3/2 spin matrices [1,18] by �M1 = (Sx,Sy,Sz) and
�M2 = (S3

x ,S
3
y ,S

3
z ).

The noninteracting part of the fermion Hamiltonian appear-
ing in Eq. (1) is the same as that appearing in Refs. [5,18]:

H0(k) = c0k2 + c1

3∑
n=1

dn(k)�n + c2

5∑
n=4

dn(k)�n, (2)

where

d1(k) =
√

3kykz, d2(k) =
√

3kxkz, d3(k) =
√

3kxky,

d4(k) =
√

3

2

(
k2
x − k2

y

)
, d5(k) = 1

2

(
2k2

z − k2
x − k2

y

)
. (3)

The five � matrices satisfy {�i,�j } = 2δij , and one can build
ten additional matrices using �ij = 1

2i
[�i,�j ]. Together with

the unit matrix these make a complete basis of 4×4 matrices.
We use the �-matrix representation, spin matrices Si , and
basis functions di(k) given in Ref. [18]. For simplicity we
assume particle-hole symmetry (c0 = 0), which was found to
emerge in the low-energy theory from the renormalization
group calculations of Refs. [5,7].

The bare fermion Green function is

Ĝ0(i	,k) = −i	14 − H0(k)

(i	)2 − ε2
k

, (4)

where

εk =
√

c2
1

[
d2

1 (k) + d2
2 (k) + d2

3 (k)
] + c2

2

[
d2

4 (k) + d2
5 (k)

]
. (5)

The twofold degenerate energy bands thus have dispersion
±εk, with a quadratic band touching point at k = 0. In the
isotropic case in which c1 = c2, it is straightforward to show
that [L + S,H0(k)] = 0, where L = r × k, [ri,kj ] = iδij , and
L + S is the generator of rotations. In this case the fermionic
theory has complete rotational invariance, and the dispersion
from Eq. (5) becomes simply εk = c1k2.

III. FERROMAGNETIC POLARIZATION TENSOR
AND SDW INSTABILITY

In this section we calculate the bosonic polarization tensor,
which describes the self-energy of the bosonic field due to
damping of spin fluctuations by fermionic excitations. We
begin with the isotropic case and then consider the anisotropic
case in the following subsections.

A. Polarization tensor: Isotropic case

Let us evaluate the polarization function, first in the
relatively simple case where c1 = c2. Subtracting off the UV-
divergent contribution �

ij

φ (0,0) = −δiju
2�c/(2π2c1) (where

�c is the ultraviolet momentum cutoff), which can be absorbed
into a redefinition of the bosonic mass term by letting r ≡
r0 + �

ij

φ (0,0), one obtains the following:

�
ij

φ (i	,q) − �
ij

φ (0,0) = u2

N

∫ ∞ d3k

(2π )3

∫ ∞

−∞

dω

2π
{Tr[Ĝ0(iω + i	/2,k + q/2)Mi(α)Ĝ0(iω − i	/2,k − q/2)Mj (α)]

− Tr[Ĝ0(iω,k)Mi(α)Ĝ0(iω,k)Mj (α)]}

= u2

N
|q|

{
f1

(
i	

q2

)
Tr[Mi(α)Mj (α)] +

5∑
m,n=1

[
f3

(
i	

q2

)
(q̂ · �m · q̂)(q̂ · �n · q̂) + f4

(
i	

q2

)
q̂ · �m�n · q̂

+ f5

(
i	

q2

)
Tr[�m�n]

]
Tr[�mMi(α)�nM

j (α)]

}
, (6)

where we have set c1 = c2 = 1, and defined q̂ = q/|q|, Mi(α) ≡ (Mi
1 cos α + Mi

2 sin α), and q̂ · �m · q̂ = ∑
ij q̂i�

m
ij q̂j .

The matrices �m (not to be confused with the momentum cutoff �c) are proportional to the five symmetric Gell-
Mann matrices and are given in the Appendix, where we also provide the scaling functions fi(i	/q2). If it is further
assumed that α = 0, so that the magnetic coupling has complete O(3) symmetry, then Eq. (6) becomes the following
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(noting that the traces in Eq. (6) each give a factor of N ):

�
ij

φ (i	,q) − �
ij

φ (0,0)

(α=0)−−−→ u2|q|
{[

5f1

(
i	

q2

)
− f3

(
i	

q2

)
− f4

(
i	

q2

)

+ 15

2
f5

(
i	

q2

)]
δij

+
[

6f3

(
i	

q2

)
+ 21

2
f4

(
i	

q2

)]
q̂i q̂j

}
. (7)

Including the bare kinetic terms, the dressed bosonic stiffness
is thus

[Ĝφ(i	,q)]−1
ij

= [
Ĝ

(0)
φ (i	,q)

]−1
ij

+u2|q|
[
F1

(
i	

q2

)
(δij − q̂i q̂j ) + F2

(
i	

q2

)
q̂i q̂j

]
, (8)

where we have introduced

F1 = 5f1

(
i	

q2

)
− f3

(
i	

q2

)
− f4

(
i	

q2

)
+ 15

2
f5

(
i	

q2

)
,

F2 = 5f1

(
i	

q2

)
+ 5f3

(
i	

q2

)
+ 19

2
f4

(
i	

q2

)
+ 15

2
f5

(
i	

q2

)
.

(9)

The factor in Eq. (8) proportional to (δij − q̂i q̂j ) describes
the dynamics of transverse spin fluctuations, while the fac-
tor proportional to q̂i q̂j describes longitudinal fluctuations.
Figure 2 shows the scaling functions appearing in Eq. (8).
While the transverse part remains positive for all values of
|	|/q2, implying that these spin fluctuations have a nonzero
energy cost at all frequencies, the longitudinal part becomes
negative at frequencies |	| < 0.42q2, implying a vanishing
energy cost for longitudinal spin fluctuations at sufficiently
small frequencies and momenta.

|ω|/q2

(2
π
)2

F
1
,2

iω q
2

FIG. 2. (Color online) The scaling functions appearing in the
dressed propagator for the FM field, given by Eq. (8). The solid
line shows F1(i	/q2) and indicates a finite energy cost for transverse
spin fluctuations at all frequencies. The dashed line shows F2(i	/q2),
which describes the energy cost of longitudinal spin fluctuations and
becomes negative for |	|/q2 < 0.30, indicating a phase instability.

To O(q2), the static part of bare boson propagator has the
following analytic form:[

Ĝ
(0)
φ (0,q)

]−1
ij

= rδij + q2
[
v2

1(δij − q̂i q̂j ) + v2
2 q̂i q̂j

]
, (10)

with stability of the bare theory requiring that v2
1 > 0 and

v2
2 > 0 for r � 0. From Eq. (8) it is evident that if one fixes

	 = 0 and decreases momentum |q| with r sufficiently small,
there will be a critical value of |q| where the negative correction
u2F2(0)|q| will overtake the bare term. The consequences of
this become evident upon inverting Eq. (8) at 	 = 0 to obtain
the static spin susceptibility:

χij (0,q) = 1

r + v2
1q2 + F1(0)u2|q| (δij − q̂i q̂j )

+ 1

r + v2
2q2 + F2(0)u2|q| q̂i q̂j , (11)

where the constants are F1(0) ≈ 0.0362 and F2(0) ≈ −0.0042.
Equation (11) makes it clear that the vanishing longitudinal
term for sufficiently small r corresponds to an instability
toward a spin density wave phase at finite wavevector |Q| =
|F2(0)|u2/2v2

2 . This incommensurate instability is similar to
the “spiral SDW” instability that has been noted in previous
theories of itinerant fermion systems near a quantum critical
point described using the spin fermion model [19,20] and to the
behavior recently observed in the metallic ferromagnet PrPtAl
[21]. In the isotropic case that we have so far considered, the
wavevector Q of the SDW order could be along any direction,
and thus breaks an O(3) symmetry, with the spins aligning
along (since the SDW is longitudinal) the direction of Q. The
fact that the spins cannot independently choose a direction
along which to align is a direct consequence of the spin-orbit
coupling built into this model and distinguishes this theory
from the spin fermion theory of itinerant ferromagnets, for
which the SU (2) spin rotation symmetry is independent of spa-
tial rotations. Finally, we note that while our calculations are
performed at T = 0, one can see that at T > 0 the temperature
dependence will enter through the scaling function F2. This
leads to temperature dependence of the ordering wavevector,
which is an unusual feature in an SDW system.

B. Polarization tensor: Yukawa anisotropy

Before proceeding to the fully anisotropic case with both
c1 �= c2 and α �= 0, in this section we investigate the case in
which the Yukawa coupling is anisotropic (α �= 0) but the
fermion dispersion remains isotropic (c1 = c2). In this case
the summations in Eq. (6) may be performed to obtain a
polarization tensor of the following form:

�
ij

φ (i	,q) − �
ij

φ (0,0)

= u2|q|
{[

h1

(
i	

q2
,α

)
+ h2

(
i	

q2
,α

)
q̂2

i + h3

(
i	

q2
,α

)
q̂4

i

]
δij

+
[
h4

(
i	

q2
,α

)
+ h5

(
i	

q2
,α

)(
q̂2

i + q̂2
j

)]
q̂i q̂j

}
. (12)

The scaling functions hi are linear combinations of the fi

appearing in Eq. (6), with coefficients depending on the
Yukawa angle α.
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FIG. 3. (Color online) (a) The polarization tensor eigenvalues
as a function of the Yukawa angle α with δ = 0. Blue (red)
lines correspond to longitudinal (transverse) modes, while solid
(dashed) lines have q ∼ [100] ([111]). The lowest eigenvalue occurs
for the longitudinal mode with q ∼ [111]. (b)–(d) The minimum
eigenvalues πφ(q̂). The direction of the ordering wavevector for the
incommensurate SDW will correspond to one of the potential minima,
shown as red points. (b) Anisotropy in the Yukawa coupling leads
to minima along [111] and equivalent directions. (c) The positive
fermion dispersion anisotropy parameter δ > 0 leads to minima along
[111] and equivalent directions. (d) δ < 0 leads to minima along [100]
and equivalent directions.

In order to determine the nature of the SDW instability
in the anisotropic case, we can obtain the eigenvalues and
eigenvectors of the polarization tensor for these two cases
from the following equation:

1

u2|q| [�̂φ(0,q) − �̂φ(0,0)]ψφ(q̂) = πφ(q̂)ψφ(q̂). (13)

For q ∼ (1,0,0), the eigenvectors are aligned with the principal
axes. In this case the longitudinal mode, for which ψφ(q̂) =
(1,0,0), has eigenvalue π

(L)
φ (q̂) = h1 + h2 + h3, while the

two degenerate transverse modes have π
(T )
φ (q̂) = h1. For

q ∼ (1,1,1), on the other hand, the longitudinal mode has
eigenvalue π

(L)
φ (q̂) = h1 + 1

3h2 + 1
9h3 + h4 + 2

3h5, while the

transverse modes have eigenvalues π
(T )
φ (q̂) = h1 + 1

3h2 +
1
9h3. By tracking the minimum eigenvalue as a function of q̂,
as shown in Fig. 3, we find that the ordering occurs along [111]
and is longitudinal for all values of the Yukawa parameter in
the range 0 � α � π/2.

C. Polarization tensor: Fully anisotropic case

Considering now the more general case in which both c1 �=
c2 and α �= 0, in this subsection we show the way in which
these two types of anisotropy favor ordering along certain
crystalline axes. The polarization tensor for the FM field φ in
this general case is given by

�
ij

φ (i	,q) − �
ij

φ (0,0)

= u2

N
|q|

{
�1

(
i	

q2
,q̂

)
Tr[Mi(α)Mj (α)]

+
5∑

n=1

�
(n)
2

(
i	

q2
,q̂

)
Tr[Mi(α)�nM

j (α)]

+
5∑

m=1

�
(m)
3

(
i	

q2
,q̂

)
Tr[Mi(α)Mj (α)�m]

+
5∑

m,n=1

�
(m,n)
4

(
i	

q2
,q̂

)
Tr[�mMi(α)�nM

j (α)]

}
. (14)

The scaling functions appearing in Eq. (14) are given in
the Appendix [Eqs. (A2)–(A4)]. Introducing the anisotropy
parameter δ for the fermion dispersion by letting c1,2 = 1 ± δ,
these scaling functions can then be obtained perturbatively in
δ, as shown in the Appendix.

As pointed out in the two previous subsections, the behavior
of spin excitations becomes increasingly dominated by the
contribution from �̂φ(i	,q) at small momenta and frequen-
cies. Due to the anisotropy, certain ordering wavevectors will
be favored when either of these parameters is nonzero. In
order to determine the wavevector of the SDW instability, we
once again investigate the minimum eigenvalue πφ(q̂) from
Eq. (13). This quantity is plotted in Fig. 3 as a function
of the angle of q̂. We find that the ordering occurs along
[111] when δ > 0, while δ < 0 favors ordering along [100].
With such anisotropy taken into account, the ordered state
itself is now an incommensurate SDW with wavevector whose
direction is locked to the crystalline axes, and both the zero
temperature and T > 0 transitions will no longer be in the O(3)
ferromagnetic class as in the naive unrenormalized theory, but
must be reconsidered in this light. For brevity and to maintain
focus we do not do this here.

One can also ask whether the incommensurate SDW
instability survives in the case that δ is not perturbatively
small. In this case the polarization tensor can be evaluated
by directly integrating the scaling functions appearing in
Eq. (14) numerically at 	 = 0 for a given value of δ. As
shown in Fig. 4, the instability occurs for most values of δ

when the Yukawa parameter lies in the physically expected
range 0 � α � π/2. The exception occurs in the case where
δ approaches 1, or equivalently for c1 
 c2. The physical
case, however, is more likely in the opposite limit of δ < 0
(or equivalently c1 < c2), which is the case appearing most
generically for simple tight-binding models on the pyrochlore
lattice [22,23]. Accordingly, the case c1 � c2 was considered
in the anisotropic RG theory of Ref. [7]. Also note that we have

035137-4



INCOMMENSURATE SPIN DENSITY WAVE AT A . . . PHYSICAL REVIEW B 92, 035137 (2015)

FIG. 4. (Color online) Minimum eigenvalue of the polarization
tensor as a function of the dispersion anisotropy, with the wavevector
q̂ along the [100] direction (blue) and [111] direction (orange). The
incommensurate SDW instability occurs at the wavevector for which
the eigenvalue πφ(q̂) is most negative. The angle parametrizing the
Yukawa interaction is set to α = 0 and α = π/3 in (a) and (b),
respectively.

calculated πφ(q̂) only for wavevector directions q̂ ∼ [100] and
q̂ ∼ [111]. Based on the results for small δ shown in Fig. 3 and
general symmetry considerations, it is natural to expect that
the ordering will occur along one of these directions, though
we have not shown this rigorously.

IV. FREE-ENERGY EXPANSION

Previous investigations of itinerant fermionic systems near
an FM quantum critical point have found that the quantum
phase transition can be precluded by either of two types of
instability [24]. The first, in which fluctuations contribute a
negative term to the bosonic self-energy, leading to an SDW
instability at finite wavevector |Q|, was already discussed in
the previous section. The second is a fluctuation-induced first-
order phase transition into the FM phase, the possibility of
which can be inferred by the presence of a nonanalytic term
in the order parameter in the free-energy expansion [15–17].
In this section we derive the Landau free energy for the FM
order parameter, showing that, although a fluctuation-induced
nonanalytic term is present, its sign is such that no first-order
instability results. (The absence of such a transition has also
been found in the Ising antiferromagnetic case [7].)

The following effective action is obtained by integrating
out the fermions from the original action Eq. (1):

Seff = 1

2

∫
dτ

∫
ddx

( �φ · [
Ĝ

(0)
φ

]−1 · �φ + b| �φ|4)
− Tr ln

[
Ĝ−1

0 − u√
N

�M(α) · �φ
]
. (15)

The trace in the second term is a trace over matrix elements,
as well as over frequency and momentum. The quartic term
∼b| �φ|4, with b > 0, is included since it is allowed by symmetry
and arises in the low-energy effective theory from integrating
out high-energy modes. Due to the gapless fermionic excita-
tions, one cannot simply follow Hertz [25] and expand the
logarithm in powers of �φ to obtain an effective theory for the
order parameter field. Rather, a useful first step is to differen-
tiate Eq. (15) with respect to the order parameter. And because
we are interested in uniform states, we can evaluate the result at
zero external momentum and frequency, so one has [Ĝ(0)

φ ]−1
ij =

rδij , i.e., the bare mass of the bosonic field. The result is

δF [ �φ]

δφi

= δSeff

δφi

∣∣∣∣
iω=k=0

= rφi + b �φ2φi + u√
N

∫
d	

2π

∫
d3q

(2π )3

× Tr

{[
Ĝ−1

0 (i	,q) − u√
N

�M(α) · �φ
]−1

Mi(α)

}
.

(16)

If we take the matrix inverse and specialize to the isotropic
case in which α = 0, this becomes

δF [ �φ]

δφi

= rφi + b �φ2φi + u2

N
φi

∫
d	

2π

∫
d3q

(2π )3
f (i	,q, �φ)

=
[
r + u2

N

∫
	,q

f (i	,q,0)

]
φi + b �φ2φi

+ u2

N
φi

∫
	,q

[f (i	,q, �φ) − f (i	,q,0)], (17)

where f (i	,q, �φ) is a complicated function, and in the second
line we have added and subtracted the UV-divergent piece.

By rescaling 	 → |�φ|	, q →
√

| �φ|q in the second integral,
and taking advantage of the fact that—due to rotational
symmetry—the integral must only depend on the magnitude
of �φ but not its direction, Eq. (17) becomes

δF [ �φ]

δφi

=
[
r + b �φ2 + u2

N

∫
	,q

f (i	,q,0)

]
φi

+ u2

N
φi

√
| �φ|

∫
	,q

[f (i	,q,1) − f (i	,q,0)], (18)

from which the free energy is

F [ �φ] = a| �φ|2 + c| �φ|5/2 + 1
2b| �φ|4. (19)

By evaluating the integral in Eq. (18) numerically, the second
constant appearing in Eq. (19) is c ≈ 0.019u2/N . Since c > 0,
we conclude that the nonanalytic term does not lead to a
first-order phase transition into the FM phase, and that the FM
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quantum critical point is preempted by an incommensurate
SDW via the mechanism discussed in Sec. III.1

V. DISCUSSION

In this work we have shown that the quantum critical point
in a 3D parabolic semimetal near the onset of FM order is
preempted by an instability to an incommensurate, longitudi-
nal SDW phase. While the wavevector Q characterizing the
SDW order breaks a continuous symmetry in the idealized,
O(3)-symmetric version of the theory, including anisotropy
terms allowed by crystalline symmetry leads to a discrete
symmetry breaking, with Q along either the [111] or [100]
direction, depending on the values of the anisotropy parameters
as shown in Fig. 3. We have shown that the instability is
present over a broad range of anisotropies, apart from the
extremely anisotropic case where c1 
 c2. Investigating this
limit and its RG flows further, along the lines of Ref. [7],
could be an interesting direction for future work. Finally, we
have also investigated the possibility of a fluctuation-induced
first-order transition into the FM phase, finding that, although
a nonanalytic term in the free energy does exist at zero
temperature, its sign is such that no first-order instability
results.

While in this work we have not focused on the role played
by Coulomb interaction, some general statements about its
effects can be made. As pointed out in previous works [5,7],
Coulomb interaction tends to decrease the effective mass

difference between the electron and hole bands, as well as
the rotational anisotropy in the fermion dispersion. Because
the SDW instability dominates the low-energy physics, the
effects of Coulomb interactions will be secondary near the FM
quantum critical point. (A possible exception is in the limit
c1 
 c2, where—as discussed above—the SDW instability
is absent. In this case we cannot rule out the possibility
that the combined effects of Coulomb interactions and spin
fluctuations could in principle lead to a stable anisotropic fixed
point such as the one found in Ref. [7].)

While there is no obvious existing material described by
the critical theory developed in this paper, it is possible
that the vicinity of a (preempted) FM quantum critical point
could be reached by doping existing parabolic semimetals
such as HgTe or α-Sn with magnetic impurities such as Mn.
Half-Heusler and Heusler materials can exhibit narrow-gap or
semimetallic behavior [26,27] as well as ferromagnetic critical
points [28], although to our knowledge the combination of
these two conditions has not been shown to exist in any one
material.
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APPENDIX

In this Appendix we derive the scaling functions determining the polarization tensor given in the main text. In order to compute
the FM polarization tensor, we begin by evaluating the following general outer product of fermionic Green functions:∫

dω

2π

∫
d3k

(2π )3

[
Ĝ0

(
iω + i

	

2
,k + q

2

)
⊗ Ĝ0

(
iω − i

	

2
,k − q

2

)
− Ĝ0(iω,k) ⊗ Ĝ0(iω,k)

]

= |q|
[
�1

(
i	

q2
,q̂

)
14 ⊗ 14 +

∑
n

�
(n)
2

(
i	

q2
,q̂

)
14 ⊗ �n +

∑
m

�
(m)
3

(
i	

q2
,q̂

)
�m ⊗ 14 +

∑
m,n

�
(m,n)
4

(
i	

q2
,q̂

)
�m ⊗ �n

]
, (A1)

where the UV-divergent piece has been subtracted off, as described in the main text. Once this quantity is determined, any
response function (and, in particular, the response function in the FM channel) can be calculated by contracting Eq. (A1) with
appropriate matrices. The scaling functions appearing in Eq. (A1) are given by

�1

(
i	

q2
,q̂

)
=

∫
d3x

(2π )3

⎧⎨
⎩ −(εx+q̂/2 + εx−q̂/2)

2
[
(εx−q̂/2 + εx+q̂/2)2 − (

i	
q2

)2] + 1

4εx

⎫⎬
⎭, (A2)

�
(n)
2

(
i	

q2
,q̂

)
= −�

(n)
3

(
i	

q2
,q̂

)
= ĉn

∫
d3x

(2π )3

i	
q2 dn

(
x − q̂

2

)
2εx−q̂/2

[
(εx−q̂/2 + εx+q̂/2)2 − (

i	
q2

)2] , (A3)

�
(m,n)
4

(
i	

q2
,q̂

)
= ĉmĉn

∫
d3x

(2π )3

⎧⎨
⎩ (εx+q̂/2 + εx−q̂/2)dm

(
x + q̂

2

)
dn

(
x − q̂

2

)
2εx+q̂/2εx−q̂/2

[
(εx−q̂/2 + εx+q̂/2)2 − (

i	
q2

)2] − dm(x)dn(x)

4ε3
x

⎫⎬
⎭. (A4)

From Eq. (A4) it can be noted that �
(m,n)
4 = �

(n,m)
4 . In the above equations we have introduced ĉ1,2,3 = c1 and ĉ4,5 = c2.

1While the sign of c is positive in the isotropic case and will remain positive for perturbatively small anisotropy parameters δ or α, we have
not proved this for arbitrary values of the anisotropy due to the difficulty of obtaining a reliable numerical result for the integral in Eq. (18),
which becomes four-dimensional when angular dependence is included.
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In what follows it is useful to introduce matrices such that

dm(x) =
3∑

i,j=1

xi�
m
ij xj , (A5)

where the matrices �m are

�1 =
√

3

2

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, �2 =

√
3

2

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, �3 =

√
3

2

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠,

�4 =
√

3

2

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, �5 = 1

2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠. (A6)

These are proportional to the five symmetric Gell-Mann matrices [29] λi :

2√
3

(�1,�2,�3,�4,�5) = (λ6,λ4,λ1,λ3,−λ8). (A7)

We shall also make use of the fact that these matrices are traceless (
∑

i �
m
ii = 0).

While it is possible to integrate the scaling function Eqs. (A2)–(A4) numerically for a fixed value of the external momentum q̂,
more convenient expressions can be obtained by separating out the q̂ dependence from these integrals by applying the following
transformation:

xi =
∑

j

[q̂i q̂j + (δij − q̂i q̂j ) cos η + εijkq̂k sin η]x ′
j

≡
∑

j

Aij
η x ′

j , (A8)

and averaging the integrand over the angle η. Because this transformation rotates the integration variable x around the fixed unit
vector q̂ by an angle η, one has x′2 = x2 and q̂ · x′ = q̂ · x. The following product of rotation matrices appears when Eq. (A8) is
substituted into the scaling function integral Eqs. (A2)–(A4):

Aip
η Ajq

η → LijLpq + 1
2TijTpq + (LipTjq + TipLjq) cos η + (εipaLjq q̂a + εjqbLipq̂b) sin η

+ 1
2TijTpq cos 2η + 1

2 (εjqaTipq̂a + εipbTjq q̂b) sin 2η, (A9)

where we have introduced Lij = q̂i q̂j and Tij = δij − q̂i q̂j , and used∑
ab

εipaεjqbq̂aq̂b = TijTpq − TiqTpj . (A10)

We have also used the fact that, due to the structure of the tensors and vectors with which L and T are contracted, we are
permitted to interchange the indices i ↔ j , k ↔ l, p ↔ q, and r ↔ s. [For this reason we use an arrow rather than an equality
in Eq. (A9).] Contracting with the appropriate tensors and averaging over the angle η, we obtain

�m
ij

(
x ± q̂

2

)
p

(
x ± q̂

2

)
q

〈
Aip

η Ajq
η

〉
η

= �m
ij

(
x ± q̂

2

)
p

(
x ± q̂

2

)
q

(
LijLpq + 1

2
TijTpq

)
, (A11)

�m
ij�

n
kl

(
x + q̂

2

)
p

(
x + q̂

2

)
q

(
x − q̂

2

)
r

(
x − q̂

2

)
s

〈
Aip

η Ajq
η Akr

η Als
η

〉
η

→ �m
ij�

n
kl

(
x + q̂

2

)
p

(
x + q̂

2

)
q

(
x − q̂

2

)
r

(
x − q̂

2

)
s

(
LijLpqLklLrs + 1

2
LijLpqTklTrs

+ 1

2
LklLrsTijTpq + 2LikLprTjlTqs + 1

8
TijTpqTklTrs + 1

4
TilTpsTjkTqr

)
. (A12)

In obtaining this last expression, it was necessary to apply the angular rotation and averaging a second time in order to fully
separate out the dependence on q̂.

1. Case of isotropic fermion dispersion

Beginning with the fully isotropic case (c1 = c2 and α = 0), using the rotation of the integration variable described above,
and taking traces with the appropriate matrices, the scaling functions appearing in Eq. (6) are given by the following integrals
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over momentum:

f1

(
i	

q2

)
= 2

(2π )2

∫ ∞

0
drr2

⎧⎨
⎩ 1

4r2
− 1 + 4r2

4
[(

2r2 + 1
2

)2 − (
i	
q2

)2]
⎫⎬
⎭ = 1

64π

(√
1 + 2

i	

q2
+

√
1 − 2

i	

q2

)
, (A13)

f3

(
i	

q2

)
= 1

(2π )2

∫ ∞

−∞
dz

∫ ∞

0
dρ ρ

⎧⎨
⎩

(
ρ2 + z2 + 1

4

)(
z4 − 1

2z2 − 3z2ρ2 + 1
4ρ2 + 3

8ρ4 + 1
16

)
[(

ρ2 + z2 + 1
4

)2 − z2
][(

2ρ2 + 2z2 + 1
2

)2 − (
i	
q2

)2] − z4 − 3z2ρ2 + 3
8ρ4

4(ρ2 + z2)3

⎫⎬
⎭, (A14)

f4

(
i	

q2

)
= 1

(2π )2

∫ ∞

−∞
dz

∫ ∞

0
dρ ρ3

⎧⎨
⎩

(
ρ2 + z2 + 1

4

)(
2z2 − 1

2ρ2 − 1
2

)
[(

ρ2 + z2 + 1
4

)2 − z2
][(

2ρ2 + 2z2 + 1
2

)2 − (
i	
q2

)2] − 2z2 − 1
2ρ2

4(ρ2 + z2)3

⎫⎬
⎭, (A15)

f5

(
i	

q2

)
= 1

(2π )2

∫ ∞

−∞
dz

∫ ∞

0
dρ ρ5

⎧⎨
⎩

(
ρ2 + z2 + 1

4

)
4
[(

ρ2 + z2 + 1
4

)2 − z2
][(

2ρ2 + 2z2 + 1
2

)2 − (
i	
q2

)2] − 1

16(ρ2 + z2)3

⎫⎬
⎭. (A16)

The integration coordinates are related to the original momenta k and q as z = k · q/q2 and ρ2 = k2/q2 − z2. In Eqs. (A14)–(A16)
it is possible to perform the integrals over z numerically, then it is straightforward to perform the remaining integrals numerically,
as they are UV convergent due to the subtraction of �̂φ(0,0) in Eq. (6).

In the case of isotropic fermion dispersion (c1 = c2) but arbitrary Yukawa parameter α, the scaling functions determining the
polarization tensor in Eq. (12) can be expressed as the following linear combinations of fi( i	

q2 ) in Eqs. (A13)–(A16):

h1

(
i	

q2
,α

)
= 5

64
(178f1 + 22f3 + 22f4 + 267f5) − 3

64
(190f1 + 58f3 + 58f4 + 285f5) cos(2α)

+ 1

8
(82f1 − 2f3 − 2f4 + 123f5) sin(2α), (A17)

h2

(
i	

q2
,α

)
= 9

8
(26f3 + 17f4)[cos(2α) − 1] − 9(f3 + f4) sin(2α), (A18)

h3

(
i	

q2
,α

)
= 81

4
f3[1 − cos(2α)], (A19)

h4

(
i	

q2
,α

)
= 3

64
(404f3 + 743f4) − 9

64
(92f3 + 173f4) cos(2α) + 3

8
(28f3 + 67f4) sin(2α), (A20)

h5

(
i	

q2
,α

)
= 9

8
f3[1 − cos(2α)] + 9

2
f3 sin(2α). (A21)

2. Fully anisotropic case

In the more general anisotropic case where c1 �= c2, we introduce the anisotropy parameter δ for the fermion dispersion by
letting c1,2 = 1 ± δ. The integrands in Eqs. (A2)–(A4) can then be expanded perturbatively to leading order in δ. The fermion
dispersion becomes

εx±k̂/2 =
(

x ± k̂
2

)2

+ δ

∑5
m=1 ξmd2

m

(
x ± k̂

2

)
(
x ± k̂

2

)2 + O(δ2), (A22)

where we have introduced ξm = (1,1,1,−1,−1)m. As in the isotropic case, we can separate out the dependence on q̂ in
Eqs. (A2)–(A4) by repeatedly applying the rotation Eq. (A8) and averaging over the angle η. [In some cases products of more
than four rotation matrices appear, leading to a much longer and more tedious calculation in which the transformation Eq. (A8)
must be performed up to four times.] This procedure results in the following expressions:

�1

(
i	

q2
,q̂

)
= �1,1

(
i	

q2

)
+ δ

[
�1,2

(
i	

q2

)
+ �1,3

(
i	

q2

) ∑
a

ξa(q̂ · �a · q̂)2

]
+ O(δ2), (A23)

�
(n)
2

(
i	

q2
,q̂

)
= �2,1

(
i	

q2

)
q̂ · �n · q̂ + δ

[
�2,2

(
i	

q2

)
q̂ · �n · q̂ + �2,3

(
i	

q2

)
q̂ · �n · q̂

∑
a

ξa(q̂ · �a · q̂)2

+�2,4

(
i	

q2

) ∑
a

ξa(q̂ · �a · q̂)(q̂ · �a�n · q̂) + �2,5

(
i	

q2

) ∑
a

ξaq̂ · �a�n�a · q̂
]

+ O(δ2), (A24)
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�
(m,n)
4

(
i	

q2
,q̂

)
= �4,1

(
i	

q2

)
(q̂ · �m · q̂)(q̂ · �n · q̂) + �4,2

(
i	

q2

)
q̂ · �m�n · q̂ + �4,3

(
i	

q2

)
Tr[�m�n]

+ δ

{[
�

(0)
4,4

(
i	

q2

)
+ (ξm + ξn)�(1)

4,4

(
i	

q2

)]
(q̂ · �m · q̂)(q̂ · �n · q̂)

+
[
�

(0)
4,5

(
i	

q2

)
+ (ξm + ξn)�(1)

4,5

(
i	

q2

)]
q̂ · �m�n · q̂

+
[
�

(0)
4,6

(
i	

q2

)
+ (ξm + ξn)�(1)

4,6

(
i	

q2

)]
Tr[�m�n] + �4,7

(
i	

q2

)
(q̂ · �m�n · q̂)

∑
a

ξa(q̂ · �a · q̂)2

+�4,8

(
i	

q2

)
(q̂ · �n · q̂)

∑
a

ξa(q̂ · �a · q̂)(q̂ · �a�m · q̂)

+�4,9

(
i	

q2

)
(q̂ · �m · q̂)

∑
a

ξa(q̂ · �a · q̂)(q̂ · �a�n · q̂)

+�4,10

(
i	

q2

) ∑
a

ξa(q̂ · �a�m · q̂)(q̂ · �a�n · q̂) + �4,11

(
i	

q2

) ∑
a

ξa(q̂ · �a · q̂)(q̂ · �m�a�n · q̂)

+�4,12

(
i	

q2

) ∑
a

ξa(q̂ · �a · q̂)(q̂ · �m�n�a · q̂) + �4,13

(
i	

q2

) ∑
a

ξa(q̂ · �a · q̂)(q̂ · �n�m�a · q̂)

+�4,14

(
i	

q2

)
(q̂ · �n · q̂)

∑
a

ξa(q̂ · �a�m�a · q̂) + �4,15

(
i	

q2

)
(q̂ · �m · q̂)

∑
a

ξa(q̂ · �a�n�a · q̂)

+�4,16

(
i	

q2

) ∑
a

ξaq̂ · �a�m�n�a · q̂ + �4,17

(
i	

q2

) ∑
a

ξaq̂ · �m�a�n�a · q̂

+�4,18

(
i	

q2

) ∑
a

ξaq̂ · �n�a�m�a · q̂ + �4,19

(
i	

q2

)
(q̂ · �m · q̂)(q̂ · �n · q̂)

∑
a

ξa(q̂ · �a · q̂)2

+�4,20

(
i	

q2

)
Tr[�m�n]

∑
a

ξa(q̂ · �a · q̂)2 + �4,21

(
i	

q2

) ∑
a

ξaTr[�m�n�a]q̂ · �a · q̂

}
+ O(δ2).

(A25)

The scaling functions appearing in Eqs. (A23)–(A25) are similar in form to those given in the isotropic case, though we shall not
list them all here explicitly for the sake of brevity.

Once the scaling functions are known, taking the traces in Eq. (14) gives the following expressions for the components of the
polarization tensor:

�xx
φ (i	,q) − �xx

φ (0,0) = u2

32
|q|

{
[328 sin(2α) − 285 cos(2α) + 445]�1

(
i	

q2
,q̂

)

+ [120 sin(2α) + 21 cos(2α) + 75]

[
�

(2,2)
4

(
i	

q2
,q̂

)
+ �

(3,3)
4

(
i	

q2
,q̂

)
− �

(1,1)
4

(
i	

q2
,q̂

)]

+ [216 sin(2α) − 219 cos(2α) + 315]�(4,4)
4

(
i	

q2
,q̂

)

+
√

3[−224 sin(2α) + 132 cos(2α) − 260]�(4,5)
4

(
i	

q2
,q̂

)

+ [−8 sin(2α) − 87 cos(2α) + 55]�(5,5)
4

(
i	

q2
,q̂

)}
, (A26)

�
xy

φ (i	,q) − �
xy

φ (0,0) = u2

16
|q|

{
3[72 sin(2α) − 73 cos(2α) + 105]�(1,2)

4

(
i	

q2
,q̂

)

+ 2
√

3[−80 sin(2α) + 75 cos(2α) − 107]�(3,5)
4

(
i	

q2
,q̂

)}
, (A27)
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�xz
φ (i	,q) − �xz

φ (0,0) = u2

16
|q|

{
[216 sin(2α) − 219 cos(2α) + 315]�(1,3)

4

(
i	

q2
,q̂

)

+ [240 sin(2α) − 225 cos(2α) + 321]�(2,4)
4

(
i	

q2
,q̂

)

+
√

3[80 sin(2α) − 75 cos(2α) + 107]�(2,5)
4

(
i	

q2
,q̂

)}
, (A28)

�
yy

φ (i	,q) − �
yy

φ (0,0) = u2

32
|q|

{
[328 sin(2α) − 285 cos(2α) + 445]�1

(
i	

q2
,q̂

)

+ 3[40 sin(2α) + 7 cos(2α) + 25]

[
�

(1,1)
4

(
i	

q2
,q̂

)
− �

(2,2)
4

(
i	

q2
,q̂

)
+ �

(3,3)
4

(
i	

q2
,q̂

)]

+ [216 sin(2α) − 219 cos(2α) + 315]�(4,4)
4

(
i	

q2
,q̂

)

+ 4
√

3[56 sin(2α) − 33 cos(2α) + 65]�(4,5)
4

(
i	

q2
,q̂

)

+ [−8 sin(2α) − 87 cos(2α) + 55)]�(5,5)
4

(
i	

q2
,q̂

)}
, (A29)

�
yz

φ (i	,q) − �
yz

φ (0,0) = u2

16
|q|

{
[−240 sin(2α) + 225 cos(2α) − 321]�(1,4)

4

(
i	

q2
,q̂

)

+
√

3[80 sin(2α) − 75 cos(2α) + 107]�(1,5)
4

(
i	

q2
,q̂

)

+ [216 sin(2α) − 219 cos(2α) + 315]�(2,3)
4

(
i	

q2
,q̂

)}
, (A30)

�zz
φ (i	,q) − �zz

φ (0,0) = u2

32
|q|

{
[328 sin(2α) − 285 cos(2α) + 445]

[
�1

(
i	

q2
,q̂

)
+ �

(5,5)
4

(
i	

q2
,q̂

)]

+ [120 sin(2α) + 21 cos(2α) + 75]

[
�

(1,1)
4

(
i	

q2
,q̂

)
+ �

(2,2)
4

(
i	

q2
,q̂

)

−�
(3,3)
4

(
i	

q2
,q̂

)
− �

(4,4)
4

(
i	

q2
,q̂

)]}
. (A31)

The remaining off-diagonal components follow from �
ij

φ = �
ji

φ .
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