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The process of resonance energy transfer (RET) in a nanostructure influenced by a vicinal, nonabsorbing third
body is studied within the framework of molecular quantum electrodynamics. Direct RET and the influence of
neighboring matter have been studied previously, mainly for molecules. However, a complete study or unified
understanding of direct and indirect RET in nanostructures with different dimensionalities is still lacking.
Therefore, there is a strong need for a complete theory that models RET for the cases of quantum wells,
nanowires, and quantum dots. We construct a detailed picture of excitation energy transfer in nanostructures and
how it is affected by another quantum object, which includes the derivation of quantum amplitudes based on
second- and fourth-order time-dependent perturbation theories, and the derivation of transfer rates and distance
dependencies, providing a complete picture and understanding of RET in nanostructures. The results of the
derivations indicate that the dimensionality of the nanostructure determines the controllability of the RET rate.
Furthermore, third-body mediation leads to a nonvanishing RET in the coupling of nanowire to nanowire and
quantum dot to quantum dot.
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I. INTRODUCTION

Resonance energy transfer (RET), also often known as
electronic energy transfer (EET), is a process in which
electronic energy may be transferred nonradiatively between
basic building blocks such as atoms and molecules, as well
as functional blocks such as quantum wells (QWs), nanowires
(NWs), or quantum dots (QDs). RET is well known to play
an important role in the photodynamics of multichromophoric
assemblies, and it mediates the storage and migration of energy
in photosynthetic systems [1,2]. This has spawned recent
interest in artificial light harvesting antenna devices [3–9] and
nanoemitters, especially spasers [10]. Moreover, the process
plays a vital role in biological science [11], where it is used
mainly to determine either interactions or conformational
dynamics within large biological structures [12], through
its use as a spectroscopic ruler [13]. The electrodynamic
mechanism and rate features of resonance energy transfer are
now known for all internuclear separation distances R, beyond
wave-function overlap and extending out to infinity. In the
near zone, where R is much smaller than the wavelength,
the well-known theory that enables the efficiency of RET
to be predicted was proposed by Förster [14] in 1948. The
significance of Förster’s formulation is that it yields a rate
of RET proportional to the inverse sixth power of distance
in the near-field regime. Although the Förster energy transfer
mechanism remains the most precise and widely employed
concept in molecular energy transport, its deviations under
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some conditions have been often studied over the past few
decades [15–18].

Since RET processes are fully quantum mechanical in
nature, they can be formally described within the framework
of quantum electrodynamics (QED). Within the context of
QED, both matter and radiation are quantized and together
they constitute a closed quantum mechanical system. Here, the
RET process is mediated by the intermolecular propagation
of virtual photons [19,20]. Although energy conservation
is satisfied between the start and the end of the process,
the intermediate state may violate the law of conservation
of energy. This is entirely consistent with the time-energy
uncertainty principle, and is usually illustrated by Feynman
diagrams [21,22].

The development of a QED theory of RET, pioneered by
Avery, Gomberoff, and Power [23,24], and continued by Craig
and Thirunamachandran [20], culminated in a unified theory
by Andrews [25,26]. Although the basic principles of RET are
well established, there still exist open questions regarding the
mechanisms of the RET phenomenon in many aspects. One
of the important issues is to study RET in nanostructures of
different dimensionalities. Moreover, introducing additional
quantum objects to the system can significantly modify the
RET efficiency. In this paper we specifically focus on the
influence of a third functional building block (e.g., QDs or
nanowires) when two particles exchange energy through a
RET process.

The third-body mediated RET for basic building blocks,
where the neighboring matter relays energy between the
transmitter and receiver, has been previously studied in
Refs. [27–31]. Nevertheless, modifying the electromagnetic
(EM) modes according to the dimensionality [32,33] of the
nanostructure should impose a degree of controllability over
the RET efficiency. Our main aim in this paper is to construct
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a detailed picture of how individual photon behavior is
modified by vicinal, nonabsorbing quantum objects such as
QWs, NWs, and QDs. We seek to discover what particular
effects arise in the matrix element and transfer rate when
the input excitation is located in the neighborhood of other
constitutionally different nanostructures, in terms of atomic
transition frequency and relative distance. In Sec. II of this
paper, the background molecular QED theory of RET is
reviewed for both direct and indirect (third-body modified)
energy transfer. In Secs. III and IV, direct and indirect RET
for three types of nanostructures are presented. Results are
discussed in Sec. V, followed by the conclusions in Sec. VI.

II. MOLECULAR QUANTUM ELECTRODYNAMICAL
FORMALISM

The RET process is initiated by an excited donor which
transfers energy to an acceptor because of the Coulomb inter-
action between transition dipoles in the donor-acceptor pair.
A typical schematic illustration of the basic energy transfer
process is shown in Fig. 1. In the multipolar formulation
of molecular QED, the Hamiltonian for the radiation-matter
system can generally be written as [20,34]

Htotal =
∑

ξ

Hint(ξ ) +
∑

ξ

Hmol(ξ ) + Hrad. (1)

α β

0

  Donor (D)

Acceptor (A)

Coloumbic Interaction

Energy transfer

FIG. 1. (Color online) Schematic depiction of energy transfer
from donor to acceptor. The black solid arrows represent emission
and absorption of energy. The horizontal blue dashed arrow illustrates
the Coulomb interaction between the donor and the acceptor. The
horizontal red solid arrow represents the energy transfer from
the donor to the acceptor. The Greek letters indicate the relevant
electronic excited states and 0 the ground state.

The radiation-matter interaction is described using the multi-
polar Hamiltonian in the dipole approximation [20]

Hint =
∑

ξ

−μ(ξ ) · E(Rξ ), (2)

where the interaction Hamiltonian compromises contributions
for each species ξ located at Rξ , the μ(ξ ) is the electric-dipole
moment operator, and the electric field operator is given by
E(Rξ ). The operator Hmol(ξ ) is the molecular Hamiltonian in
the nonrelativistic Born-Oppenheimer approximation and Hrad

is the second-quantized radiation field Hamiltonian.
The probability amplitudes for direct and indirect processes

can both be derived from the time-dependent perturbation
series

MFI = 〈F |Hint|I 〉 +
∑
R

〈F |Hint|R〉〈R|Hint|I 〉
EI − ER

+
∑
R,S

〈F |Hint|R〉〈R|Hint|S〉〈S|Hint|I 〉
(EI − ER)(EI − ES)

+
∑

R,S,T

〈F |Hint|T 〉〈T |Hint|S〉〈S|Hint|R〉〈R|Hint|I 〉
(EI − ER)(EI − ES)(EI − ET )

+ · · · , (3)

where I,F are initial and final states, respectively, and R,S,T
denote intermediate states. If ζ = I,F,R,S,T , then Eζ denotes
the corresponding eigenenergy. The fundamental process of
direct RET, the migration of energy between the donor (D)
and acceptor (A), corresponds to the process

Dα + A0 −→ D0 + Aβ.

Here, the superscripts denote the donor and acceptor states.
This coupling is mediated by a virtual photon. When the
interaction-pair separation is relatively small and within the
Förster range, the photon time of flight becomes small, result-
ing in a large uncertainty in the system energy. Nevertheless, as
the separation of the interaction pair increases, this uncertainty
is reduced, effectively imposing on the virtual photon an
increasingly real character until the virtual characteristics
become indistinguishable [19]. The virtual photon can be
created either at the donor or acceptor. Therefore, the quantum
amplitude Md

FI is calculated from the second term in the
time-dependent perturbation series explicitly given as follows,
with the superscript d on the left denoting “direct”:

Md
FI =

〈
F |Hint|R1

1

〉〈
R1

1 |Hint|I
〉

EI − ER1
1

+
〈
F |Hint|R2

1

〉〈
R2

1 |Hint|I
〉

EI − ER2
1

.

(4)

To represent the energy transfer from donor to acceptor, the
initial, final, and intermediate matter-radiation state vectors are
chosen to be the following eigenvectors with corresponding
eigenenergies [26],

|�I 〉 = |DαA0; 0 (p,λ)〉, EI = ED
α + EA

0 , (5)

|�F 〉 = |D0Aβ ; 0 (p,λ)〉, EF = ED
0 + EA

β , (6)∣∣�R1
1

〉 = |D0A0; 1 (p,λ)〉, ER1
1
= ED

0 + EA
0 + �cp, (7)∣∣�R2

1

〉 = |DαAβ ; 1(p,λ)〉, ER2
1
= ED

α + EA
β + �cp, (8)
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with the energy identity

ED
0α = EA

β0 = �ck, (9)

where p is the photon wave vector, λ denotes the polarization,
and p is the corresponding photon wave number which need
not be equal to k. The rate (probability per unit time) 	tran

of an identified transition process is given by Fermi’s golden
rule [35],

	tran = 2π

�

∣∣Md
FI

∣∣2
ρ, (10)

where ρ is the density of final states.
The third-body mediated energy transfer may be repre-

sented by

Dα + M0 + A0 −→ D0 + M0 + Aβ.

Here, M denotes the nonabsorbing neighboring matter which
participates in relaying energy between D and A. Two virtual
photons can be created and subsequently annihilated either at
the donor, third body, or acceptor with 4! = 24 permutations.
Therefore, the quantum amplitude for “indirect” coupling
Mi

FI is calculated from the fourth term in the time-dependent
perturbation series explicitly given as follows, with the
superscript i on the left denoting “indirect”:

Mi
FI =

∑
R,S,T

〈F |Hint|T 〉〈T |Hint|S〉〈S|Hint|R〉〈R|Hint|I 〉
(EI − ER)(EI − ES)(EI − ET )

.

(11)

The total matrix element is given by the sum of direct and
indirect terms in Eqs. (4) and (11), and the transfer rate is then
seen to be a sum of three terms, namely,

	total
tran = 2π

�

∣∣Md
FI + Mi

FI

∣∣2
ρ

= 2π

�

[∣∣Md
FI

∣∣2 + ∣∣Mi
FI

∣∣2 + 2 Re M
d

FIM
i
FI

]
ρ

= 	d
tran + 	i

tran + 	int
tran, (12)

where the first term of Eq. (12) was given by Eq. (10), and the
third term is a quantum interference contribution to the rate
arising from both direct and indirect mechanisms.

Further, the space around the donor can be divided into four
zones: the Dexter zone, near-field zone, intermediate zone, and
far zone [36]. Therefore, it is worth observing that other forms
of coupling are also possible. Over distances of ∼1 nm or
less, donor-acceptor energy transfer is mediated by an electron
exchange involving wave-function overlap (the ideal dipole
approximation breaks in this region); this mechanism was
first formulated by Dexter to account for the phenomenon
of sensitized luminescence [37].

III. DIRECT ENERGY TRANSFER

For the case of direct energy transfer, electronic energy
transfer from a donor to an acceptor in the absence of a
surrounding medium is depicted in Fig. 2 and described
by the Hamiltonian in Eq. (1) when ξ = D,A. The quantum

FIG. 2. (Color online) Schematics for the direct resonance en-
ergy transfer of (a) QW to QW (b) NW to NW, and (c) QD to QD.

amplitude can be calculated from Eq. (4),〈
R1

1 |Hint|I
〉 = 〈1(p,λ); D0A0| − μ(D) · Em(RD)

−μ(A) · Em(RA)|DαA0; 0〉

= i
∑
m

(
�cp

2V ε0

)1/2

μ0α
i (D)E∗

mi(RD). (13)

Here, m = { p,λ} represents the photonic modes, V is an arbi-
trary quantization volume, and i,j are Cartesian coordinates:

〈
F |Hint|R1

1

〉 = −i
∑
m

(
�cp

2V ε0

)1/2

μ
β0
j (A)Emj (RA), (14)

〈
R2

1 |Hint|I
〉 = i

∑
m

(
�cp

2V ε0

)1/2

μ
β0
i (A)E∗

mi(RA), (15)

〈
F |Hint|R2

1

〉 = −i
∑
m

(
�cp

2V ε0

)1/2

μ0α
j (D)Emj (RD). (16)

The application of Eqs. (13)–(16) on (4) gives the general
formula for the quantum amplitude of direct energy transfer:

Md
FI = μ0α

i (D)μβ0
j (A)

2V ε0

∑
m

E∗
mi(RD)Emj (RA)p

k − p

− Emi(RD)E∗
mj (RA)p

k + p
. (17)

In the case of direct RET, the transfer of electronic
excitation may be illustrated with two Feynman diagrams. One
Feynman diagram is shown in Fig. 3(a). The system’s evolution
through all three stages (initial, intermediate, final) via two
pathways makes one object undergo a transition between states
0,α,β and one photon is either created or annihilated [38].

A. Quantum well to quantum well

The one-dimensional (1D) idealization corresponds to the
interaction of two parallel planar QWs. It is assumed that
the dipole transition moments of the excitons are parallel
and in the plane of the QWs. Therefore, the EM modes are
1D plane waves propagating in the direction z perpendicular
to the QWs (only photonic modes with electric field vectors
parallel to the dipole moments of excitons contribute to these
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FIG. 3. (Color online) Feynman diagrams show one path of each
direct and indirect RET.

calculations) [32]: Ep(Rξ ) = eipzzξ . Directly substituting into
Eq. (17) and converting the discrete summation over pz,∑

pz
⇒ ∫

L
2π

dpz to an integral yields

Md
FI = μ0α(D)μβ0(A)

4πA′ε0

∫ ∞

0

(
eipzRpz

k − pz

− e−ipzRpz

k + pz

)
dpz,

(18)

where A′ is area of the QW and R = RA − RD.

Performing contour integration and by the residue theorem
c = pzR,

Md
FI = μ0α(D)μβ0(A)

4πA′ε0R

∮
c

eickRc

(kR − c)(kR + c)

+ eicc2

(kR − c)(kR + c)
dc

= μ0α(D)μβ0(A)

2A′ε0
k{sin(kR) − i cos(kR)}. (19)

The plots of Eq. (19) are shown in Figs. 4(a) and 4(d)
for various values of the photon wave number corresponding
to the atomic transition frequency (k) and donor-acceptor
separation distance (R). In the development of the plots for
Sec. III, the following values were used [39]: |μ0α(D)| =
|μβ0(A)| = 5 × 10−30 C m; ρ = 2 × 1025 J−1. Both the real
and imaginary parts of the resonant dipole-dipole interaction
(RDDI) oscillate with k, and the amplitude of the matrix
element increases gradually according to Eq. (19), owing
to the fact that the high corresponding eigenenergy (ED

0α)
is analogous to the high quantum amplitude of coupling
between two QWs. These dependencies of RDDI as a function
of k influence the energy transfer rate to rise gradually, as
illustrated in Fig. 5(a). This is because the energy transfer rate
is proportional to the square modulus of the quantum amplitude
of the RET process (	tran ∝ |Md

FI |2).
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FIG. 4. (Color online) Direct RET: RDDI strengths in 1D, 2D, and 3D free-space environments are shown in (a)–(c), respectively, as a
function of the wave number corresponding to the resonant atomic transition frequency. (d)–(f) show RDDI as a function of the relative distance
between D and A. In each panel, the blue solid line represents the real part of the RDDI while the red solid line shows the imaginary part of
the RDDI.
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FIG. 5. (Color online) Direct RET: Energy transfer rates in 1D, 2D, and 3D free-space environments are shown in (a)–(c), respectively, as
a function of the wave number corresponding to the resonant atomic transition frequency. (d)–(f) show the transfer rate as a function of the
relative distance between D and A. The distance invariance exhibited in (d) signifies lossless unidirectional transfer (see the discussion in text).

Substitution of Eq. (19) into the Fermi’s golden rule
expression yields

	d
tran = π |μ0α(D)|2|μβ0(A)|2k2

2�(A′ε0)2 ρ. (20)

Imposing an effective limitation on the direction of virtual
photon propagation has an element of correlation with the
physics of energy transfer along a waveguide (in principle,
there are no physical losses in such a system, since we assume
the transmission medium is dispersion free). Therefore, both
the real and imaginary parts of the RDDI vary between the
same minimum and maximum quantum amplitudes, resulting
in a constant energy transfer rate, as sketched in Fig. 5(d).

B. Nanowire to nanowire

Idealized two-dimensional (2D) parallel nanowires of
length L separated by a distance R are considered. EM
waves are modeled using the Hankel function of order n [40],
Ep(Rξ ) = ∑

n Hn(pRξ )einα , where R and α are the radial and
angular coordinates, respectively. Directly substituting into
Eq. (17) and converting the discrete summation over the virtual
photon wave vector yields

Md
FI = μ0α(D)μβ0(A)

8π2Lε0

∫ ∞

0

∫ 2π

0

(
H0(pR)p2

k − p

− H ∗
0 (pR)p2

k + p

)
dφdp. (21)

Expanding the Hankel function, performing contour integra-
tion, and by the residue theorem,

Md
FI = μ0α(D)μβ0(A)

2πLR2ε0

∮
c

ic2kRY0(c) + c3J0(kR)

(kR − c)(kR + c)
dc

= μ0α(D)μβ0(A)k2

4Lε0
{Y0(kR) − iJ0(kR)}. (22)

The energy transfer rate can be obtain from Eq. (10),

	d
tran = π |μ0α(D)|2|μβ0(A)|2k4

8L2ε0
2�

{
Y 2

0 (kR) + J 2
0 (kR)

}
ρ. (23)

Figures 4(b) and 5(b) illustrate the functional dependence of
RDDI against k and R. The ensuing results are of a form similar
to the QW case, with the quantum amplitude and the energy
transfer efficiency increasing with wave number (higher
resonant frequencies ωα0 furnish higher RDDIs compared to
lower resonant frequencies). It is observed that due to the
behavior of the virtual photon propagation in a 2D realm, the
real and imaginary parts of RDDI decrease with R by following
the second and first kind of Bessel functions, respectively
[see Fig. 4(e)]. This can be understood from the derivation of
Eq. (22), resulting in a gradual decline of the energy transfer
efficiency with distance, as shown in Fig. 5(e). The energy
transfer efficiency in the donor-acceptor separation distance
from 1 to 15 nm exhibits a higher distance dependence than the
transfer rate beyond 15 nm. This is analogous to the analysis
done in Ref. [25] (with a log-log plot of the transfer function
against distance R), and unified theory [26]. Nevertheless,
our results for NWs deliver a general distance dependence
for the near zone and far zone which is proportional to
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Y 2
0 (kR) + J 2

0 (kR), excluding the Dexter zone, which is more
prominent within the range of wave-function overlap.

C. Quantum dot to quantum dot

In the three dimensional (3D) realm, a pair of QDs
separated by distance R is considered: Em(Rξ ) = e(λ)( p)ei p·R.
Direct substitution into Eq. (17) and converting the discrete
summation over virtual photon wave vector gives

Md
FI = μ0α

i (D)μβ0
j (A)

2ε0

∫ ∞

0

∫ 2π

0

∫ 1

−1

[
e(λ)
i ( p)e(λ)

j ( p)
]

×
{

ei p·Rp3

k − p
− e−i p·Rp3

k + p

}
d(cos θ )dφdp, (24)

where e(λ)( p) is the polarization vector,

Md
FI = μ0α

i (D)Vij (k,R)μβ0
j (A). (25)

The coupling tensor Vij is given by

Vij (k,R) = 1

4πε0R3
{(δij − 3R̂iR̂j )[cos(kR) + kR sin(kR)]

− (δij − R̂iR̂j )[k2R2 cos(kR)]}
− i{(δij − 3R̂iR̂j )[sin(kR) − kR cos(kR)]

− (δij − R̂iR̂j )[k2R2 sin(kR)]}. (26)

The energy transfer rate between two QDs can be expressed
as

	d
tran = 2π

�
|μ0α(D)|2|μβ0(A)|2Vij (k,R)V ij (k,R)ρ. (27)

This work is similar to the numerous studies reported for
molecules discussed in Refs. [26,41] and previously studied
for QDs in Ref. [42]. In the small separation distances
(kR � 1), the imaginary part of the probability amplitude is
negligibly small compared to that of the real part, as depicted
in Fig. 4(f). Therefore, the energy transfer rate decreases with
respect to R, as illustrated in Fig. 5(f). In the near-zone limit,
when QDs are separated by a distance significantly less than
k−1, though necessarily beyond a significant wave-function
overlap, the interaction strength declines with distance. This
is the well-known inverse sixth-power distance dependence
discovered in the unified theory [26,42]. The variations of the
quantum amplitude and the energy transfer rate as a function
of wave number depicted in Figs. 4(c) and 5(c) bear the
same explanations as above (see Secs. III A and III B). In
the context of unified theory, the initial and final terms of
the real and imaginary parts of Eq. (26) effectively signify an
electromagnetic mediator of completely “virtual” and “real”
characteristics, respectively [26]. Therefore, it is ascertained
that the first term in each real and imaginary part dominates in
the short range (kR � 1), and the last term in the long range
(kR � 1), leading to R−6 and R−2 distance dependencies.

IV. INDIRECT ENERGY TRANSFER

Let us now introduce a third quantum object, M , which has
the same dimensionality as D and A, as shown in Fig. 6. M

FIG. 6. (Color online) Schematics for the third-body modified
resonance energy transfer of (a) QW to QW, (b) NW to NW, and
(c) QD to QD. R is the distance between D and A, and RM is the
distance between D and M .

has the capacity to act as a bridge species between D and A,
relaying the energy from the donor to acceptor, but otherwise
remaining unchanged. Its positioning directly between D and
A may be assumed to preclude direct coupling between the
donor and acceptor. The exchange of an additional virtual
photon q with a passive M is the lowest-order coupling process
that elevates RET to a third-body mediated RET. Therefore, the
fourth-order perturbation theory forms the basis for identifying
passive third-body effects on RET, which is stated in Eq. (11).

The four transition events (W , X, Y , Z) cause five stages of
the system’s evolution, labeled I , R, S, T , F in chronological
order. Each stage is associated with various possible states of
the overall system. Therefore, 24 Feynman graphs contribute
to the quantum amplitude. One such Feynman diagram is
shown in Fig. 3(b) for illustrative purposes. Figure 7 illustrates
the system’s evolution through all five stages with one state-
sequence diagram. Each of the 24 pathways through the
state-sequence network represents one Feynman diagram [22].
For example, consider one pathway, W → X → Y → Z, to
obtain the matrix element. When ξ = D,M,A at each event,
one object undergoes a transition between states 0,α,r,β and
one photon is either created or annihilated:

〈R|Hint|I 〉 = i
∑
m

(
�cp

2V ε0

)1/2

μ0α
i (D)E∗

mi(RD), (28)

〈S|Hint|R〉 = −i
∑
m

(
�cp

2V ε0

)1/2

μr0
k (M)Emk(RM ), (29)

〈T |Hint|S〉 = i
∑

n

(
�cq

2V ε0

)1/2

μ0r
l (M)E∗

nl(RM ), (30)

〈T |Hint|S〉 = −i
∑

n

(
�cq

2V ε0

)1/2

μ
β0
j (A)Enj (RA). (31)

Here, m = { p,λ} and n = {q,λ′} represent the photonic
modes, where p,q are wave vectors and λ,λ′ denote the
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FIG. 7. State-sequence diagram for the third-body modified RET. Time progresses left to right, with each of the 16 boxes representing
one of the possible overall states of the system in one of the five stages I,R,S,T ,F . Each overall state comprises states for each changing
sub-system—the radiation (p,q denote virtual photons), and D, M , A.

polarization. The sum over all 24 event orderings yields

Mi
FI = −

∑
m

∑
n

(
�cp

2V ε0

)(
�cq

2V ε0

)
μ0α

i (D)μβ0
j (A)αkl(M; k)

×
{

Emi(RD)E∗
mk(RM )Enj (RA)E∗

nl(RM )

(p − k)(q − k)
+ Emi(RD)E∗

mk(RM )E∗
nj (RA)Enl(RM )

(p − k)(q + k)

+ E∗
mi(RD)Emk(RM )Enj (RA)E∗

nl(RM )

(p + k)(q − k)
+ E∗

mi(RD)Emk(RM )E∗
nj (RA)Enl(RM )

(p + k)(q + k)

}
, (32)

αkl(M; k) =
∑

r

μr0
k (M)μ0r

l (M)

{
1

Er0 − �ck
+ 1

Er0 + �ck

}
. (33)

Here, αkl(M; k) is the dynamic polarizability of particle M [43,44].
Consider R′ = RM − RD and R′′ = RA − RM , so that R = RA − RD for the next calculations.

A. Quantum well to quantum well in the vicinity of another quantum well

We introduce another planer QW between the two QWs described in Sec. III A. Direct substitution into Eq. (32)
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yields

Mi
FI = −μ0α

i (D)μβ0
j (A)

(2V ε0)2

∑
p

∑
q

αkl(M; k)pzqz

{
e−ipzz

′
eiqzz

′′

(p − k)(q − k)
+ e−ipzz

′
e−iqzz

′′

(p − k)(q + k)
+ eipzz

′
eiqzz

′′

(p + k)(q − k)
+ eipzz

′
e−iqzz

′′

(p + k)(q + k)

}
,

(34)

Mi
FI = −μ0α

i (D)μβ0
j (A)

(2V ε0)2

∑
p

∑
q

αkl(M; k)pzqz

(
e−ipzz

′

p − k
+ eipzz

′

p + k

)(
eiqzz

′′

q − k
+ e−iqzz

′′

q + k

)
. (35)

Converting the discrete summation over pz,qz to an integral yields

Mi
FI = −μ0α

i (D)μβ0
j (A)

(2A′ε0)2

∫ ∞

0

∫ ∞

0
αkl(M; k)pzqz

(
e−ipzz

′

p − k
+ eipzz

′

p + k

)(
eiqzz

′′

q − k
+ e−iqzz

′′

q + k

)
dqzdpz. (36)

In a manner similar to the previous case in Sec. III, the
quantum amplitude, performing contour integration, and using
the residue theorem twice over two virtual photons becomes

Mi
FI = μ0α

i (D)μβ0
j (A)k2

(2A′ε0)2
αkl(M; k)eikR. (37)

This is independent of the relative positioning of the third QW
between D and A. The application of the Fermi’s golden rule
gives rise to the following expression for the transfer rate:

	i
tran = π |μ0α(D)|2|μβ0(A)|2k4

8�(A′ε0)4
αkl(M; k)αkl(M; k). (38)

In the development of the plots in Sec. IV, the fol-
lowing values were used [39]: |μ0α(D)| = |μβ0(A)| = 5 ×
10−30 C m; ρ = 2 × 1025 J−1. αkl(M; k) is the ground state
dynamic polarizability of the third nanostructure M at the
resonant frequency ω0α = ck. Polarizability values are related
to the refractive index by the Clausius-Mossotti equation,
and an in-depth analysis was carried out in Refs. [31,43,44].
Therefore, in the development of the graphs, we assume
|αkl(M; k)| of the included intermediary takes a typical value
of 8 × 10−40 J−1 C2 m2. The plots of Eq. (37) are shown
in Figs. 8(a) and 8(d) for various values of k and R. These
figures exhibit similar patterns to those observed for direct
energy transfer. Nevertheless, the quantum amplitude is lower
than that of a direct interaction due to four light-matter
interactions which arise from the interference of the third QW
[Eq. (36)]. This effect can be observed in the corresponding
energy transfer rate depicted in Fig. 9(a). Similar to the direct
interaction, RDDI oscillates at a constant amplitude with
respect to distance (R) in a dispersion-free medium. Therefore,
the RDDI and the energy transfer rate do not depend on the
position of the third QW [see Figs. 8(d) and 9(d)].

B. Nanowire to nanowire in the vicinity of another nanowire

In a similar manner as to the previous case, we introduce
another 2D idealized NW between the two NWs described in
Sec. III B. Direct substitution into Eq. (32) and converting the

discrete summation over wave vectors p and q yields

Mi
FI = −μ0α

i (D)μβ0
j (A)

(2Lε0)2

∫ ∞

0

∫ 2π

0

∫ ∞

0

∫ 2π

0
αkl(M; k)p2q2

×
(

H ∗
0 (pR′)
p − k

+ H0(pR′)
p + k

)

×
(

H0(qR′′)
q − k

+ H ∗
0 (qR′′)
q + k

)
dqdφdpdϕ. (39)

Performing a contour integration and using the residue theorem
with respect to the properties of the two virtual photons, the
above expression becomes

Mi
FI = −μ0α

i (D)μβ0
j (A)k4

16(Lε0)2
αkl(M; k)

×{[Y0(kR′)Y0(kR′′) − J0(kR′)J0(kR′′)]

− i[Y0(kR′)J0(kR′′) + J0(kR′)Y0(kR′′)]}. (40)

Therefore, the energy transfer rate becomes

	i
tran = π |μ0α(D)|2|μβ0(A)|2k8

128(Lε0)4�
αkl(M; k)αkl(M; k)

×{[Y0(kR′)Y0(kR′′) − J0(kR′)J0(kR′′)]2

+ [Y0(kR′)J0(kR′′) + J0(kR′)Y0(kR′′)]2}ρ. (41)

Figure 8(b) illustrates the variation of the matrix element
as a function of the photon wave number (k) expressed
in Eq. (40). Similar to the previous sections, the quantum
amplitude increases with the wave number, leading to a gradual
increase in the energy transfer rate depicted in Fig. 9(b). In the
presence of a neighboring mediator, the matrix element for the
mechanism of RET is duly modified to Eq. (41). Compared to
the direct interaction of two nanowires in Eq. (22), the creation
and annihilation of two virtual photons reduce the quantum
amplitude of the indirect interaction as a function of the
separation distance (R). Therefore, as illustrated in Figs. 8(e)
and 9(e), the influence of the included intermediary nanowire
(M) becomes more prominent and almost constant in the range
of 20–80 nm of the donor-acceptor separation distance. These
effects of neighboring components, not specifically absorbing
in the same wavelength region as the excitation donor or
acceptor, can be understood in terms of their electronic
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polarizability [αkl(M; k)] [31]. For values of R′,R′′ < 1 nm
that generally signify the possibility of wave-function overlap
(the Dexter zone where electron exchange would occur), the
expressions presented above are less meaningful as the third
body could no longer be regarded as an electronically separate
chemical entity, and in recognition of this, the values of the
matrix element and energy transfer rate in this region should
not be regarded as physically significant.

C. Quantum dot to quantum dot in the vicinity
of another quantum dot

Another QD is inserted between the acceptor-donor QD
pair. Direct substitution into Eq. (32) and converting the
discrete summation over wave vectors p and q yields

Mi
FI = −μ0α

i (D)μβ0
j (A)

(2ε0)2

∫ ∞

0

∫ 2π

0

∫ 1

−1

∫ ∞

0

∫ 2π

0

∫ 1

−1

× e(λ)
i ( p)e(λ)

l ( p)e(λ)
j (q)e(λ)

k (q)αkl(M; k)p3q3

×
(

e−i p·R′

p − k
+ ei p·R′

p + k

)(
eiq·R′′

q − k
+ e−iq·R′′

q + k

)

× d(cos θ )dφdqd(cos ϑ)dϕdp. (42)

Similar to Sec. III, the quantum amplitude, performing contour
integration, and implementing the residue theorem over both
virtual photons results in

Mi
FI = −μ0α

i (D)μβ0
j (A)αkl(M; k)Vil(k,R′)Vkj (k,R′′). (43)

The application of the Fermi’s golden rule leads to the
following expression for the transfer rate:

	i
tran = 2πρ

�
|μ0α(D)|2|μβ0(A)|2|αkl(M; k)|2

×Vil(k,R′)V il(k,R′)Vkj (k,R′′)V kj (k,R′′). (44)

This is similar to the numerous studies reported for molecules
discussed in Refs. [31,39], with one important difference.
Due to the geometric placement and the physical nature of
the components in the present calculation, the inclusion of
component M here signifies that the direct transfer of energy
from D to A is no longer contributing to the overall quantum
amplitude. In a similar manner as discussed above, from
Eq. (43), it is observed that the indirect RDDI is lower than the
direct RDDI due to four matter-radiation interactions which
arise from the influence of the third QD. This impacts on
the indirect energy transfer efficiency, consistent with Fermi’s
golden rule, which can be observed in Figs. 8(c) and 9(c). In
addition, the transfer of electronic excitation via two virtual
photons yields RDDI and the energy transfer rate to vary with
the relative distance RM , as shown in Figs. 8(f) and 9(f). In
the near-zone limit, the indirect transfer rate is proportional to
(R′)−6(R′′)−6. On the other hand, in the long range, applying
limits of kR′ � 1 and kR′′ � 1 yields (R′)−2(R′′)−2 distance
dependence.

V. DISCUSSION

In Sec. III the direct energy transfer rates and corresponding
quantum amplitudes for different nanostructures have been

derived and the results are discussed with figures. The results
have demonstrated the dimensionality of the nanostructure
along with the variation of EM modes determining the
controllability of the resonance energy transfer rate.

The influence of a nonabsorbing neighboring matter of the
same dimensionality on RET efficiency has been studied in
Sec. IV. Figures 8(a)–8(c) show the variation of RDDI with
the photon wave number corresponding to the atomic transition
frequency, exhibiting patterns similar to the ones observed for
direct energy transfer. In the QW case, both Re(RDDI) and
Im(RDDI) do not vary with the RM due to the unidirectional
characteristics of the virtual photons in 1D nanostructures. In
passing, we note the much greater complexity that ensues upon
removal of the directional constraint on the coupling photon.
To this end, we identified a potential alternative method in
terms of essentially discretized transition moment elements. In
that case, each virtual photon trajectory is represented as part
of a conical surface at an arbitrary angle to the normal to the
donor and acceptor planes. However, such an analysis proves
unfruitful, in terms of delivering suitably analytic results; this
represents a scope for further development of the theory.

Exploration of the quantum amplitude is the core contribu-
tion of all derivations. Our calculations for quantum amplitude
are based on the Schrödinger state vector representation of
quantum dynamics, where the matrix element for RET is
represented as a sum of differently time-ordered contribu-
tions [20]. However, one can apply alternative formulations,
for example, in terms of a density matrix in Liouville
space [45]. Furthermore, the coupling between nanostructures
of mixed dimensionality involves discovering the suitable
quantization volume in each case (i.e., QW to QD). Moreover,
the quantum interference is an interesting quantity which,
together with the direct and indirect transfer rates, determines
the total energy transfer (the interference contribution to
the total energy transfer rate for molecules is discussed in
Refs. [30,31]). Thus, the coupling between nanostructures of
mixed dimensionality and the quantum interference for the
direct and indirect energy transfer of nanostructures signify
prospective future developments of the current research.

VI. CONCLUSIONS

In this paper, the direct RET between two nanostructures
and the influence of a third quantum object has been studied
using the theory of molecular quantum electrodynamics. We
envisioned six cases, 1D, 2D, and 3D for QW, NW, and
QD, respectively, as well as the influence of an included
intermediary in each case. The quantum amplitude and rate
equations are derived for all the cases.

The results have demonstrated the intricate interplay of the
relative distance, atomic transition frequency, dimensionality
of the object, and the effect of the neighboring matter in
determining the efficiency of the energy transfer. Although
the Förster theory is very well suited to many situations, the
distance dependence and mediation of EET coupling are more
complicated than the traditional Förster theory predicts. The
origin of these complications is deeply rooted in the nature of
the virtual photons mediating the transfer process.

In conclusion, we have shown the possibility of altering
the strength and the directivity of the matrix element of two
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nanostructures by careful engineering of the EM modes and
introducing an additional quantum object in the vicinity, hence
altering the efficiency of the resonance energy transfer. In
addition, the results obtained here can help in the optimization
and the design of antenna devices for high efficiency light
harvesting and light generation systems.
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