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Magneto-optics of massless Kane fermions: Role of the flat band and unusual Berry phase
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Hg1−xCdxTe at a critical doping x = xc ≈ 0.17 has a bulk dispersion which includes two linear cones meeting
at a single point at zero energy, intersecting a nearly flat band, similar to the pseudospin-1 Dirac-Weyl system.
In the presence of a finite magnetic field, these bands condense into highly degenerate Landau levels. We have
numerically calculated the frequency-dependent magneto-optical and zero-field conductivity of this material
using the Kane model. These calculations show good agreement with recent experimental measurements. We
discuss the signature of the flat band and the split peaks of the magneto-optics in terms of general pseudospin-s
models and propose that the system exhibits a non-π -quantized Berry phase, found in recent theoretical work.
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Introduction. With the development of condensed matter
Dirac systems, much research has focused on flat bands
and nontrivial Berry phases, among other features. The
macroscopic degeneracy found in dispersionless, or flat, bands
produces a singular density of states, potentially opening
the door to some interesting physics where interactions can
lift this degeneracy. In the presence of a magnetic field,
highly degenerate Landau levels (LL’s) are formed out of
continuous-dispersion systems. At partial filling of these
levels, interactions between electrons give rise to the fractional
quantum Hall effect [1,2]. In addition, room-temperature
superconductivity has been proposed in discussions of flat
bands present on the surfaces of topological media [3]. Another
feature of many Dirac materials is the nontrivial Berry phase.
Such gives rise to both the half-integer Hall conductivity and
magneto-oscillation shift seen in graphene, for example [4,5].
Most recently, a variable Berry phase model has been proposed
which theoretically tunes the magnetic response of a Dirac
system from diamagnetic to paramagnetic [6].

In contemporary literature, Hg1−xCdxTe (MCT) is typically
discussed in the context of quantum wells and the quantum

spin-Hall effect [7,8]. However, a particular phase of the bulk
material that exhibits a nominally flat heavy-hole band at zero
energy is also quite exciting in its similarity to Dirac materials
[9]. This phase exists at critical cadmium concentration x =
xc ≈ 0.17, marking the transition between distinct phases:
semimetal for x < xc and semiconductor for x > xc. The
flat band provides its own signature in the magneto-optical
response of the material, much like in Dirac-Weyl systems
[10]. Within this paper, we provide a numerical calculation
of the bulk optical conductivity for MCT, showing complete
spectral-weight dependence on photon frequency both in the
presence and absence of a magnetic field. This allows for direct
comparison to a recent experimental measurement and analysis
of MCT’s optical properties by Orlita et al. [9]. We are able to
show excellent agreement between theory and experiment and
provide further insight into the signature and role of the flat
band in this material. Moreover, we show that this system can
be linked to the α-T3 model [6] which has a non-π -quantized
Berry phase.

Kane model. MCT at critical concentration xc is described
by a reduced Kane model Hamiltonian [9,11],
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whose parameters include v, a velocity characteristic to the
material; Eg , a small energy gap; �, the spin-orbit splitting
providing a large band separation; and where k± = kx ± iky .
This model is only first order in momentum, which approxi-
mates the broad curvature in the heavy-hole bands of the actual

material as being flat. The form of the Kane Hamiltonian in
Eq. (1) is obtained from a previous presentation [9] through a
simple permutation of the basis states. Note, the limit � → ∞
decouples the fourth and fifth columns from the others, giving
an effective 6 × 6 model which for Eg = kz = 0 maps to a
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FIG. 1. (Color online) Kane fermion dispersion for zero mag-
netic field with the parameters v = 1.06 × 106 m/s, Eg = 4 meV,
and (a) � → ∞, (b) � = 1 eV, (c) � = 0.4 eV.

model with an unusual Berry phase (discussed below). The
presence of a finite nonzero � acts to break particle-hole
symmetry.

Using the parameters of v = 1.06 × 106 m/s and Eg =
4 meV taken from Ref. [9], the so-called Kane fermion
dispersion is shown in Fig. 1 for different values � = 0.4 eV,
� = 1 eV, and the limit � → ∞. Each band in the figure is
doubly degenerate and the upper/lower green/purple bands are
unoccupied/occupied. We see that for the infinite separation
value in �, the dispersion resembles the Weyl system with
pseudospin s = 1 [10,12], although Eq. (1) does not map
exactly onto this Hamiltonian. When in close vicinity, the
bottom band distorts the lower cone away from linearity, while
narrowing the upper cone, seen in the progression between
panels (a)–(c). For all subsequent calculations in modeling
MCT, the value of � = 1 eV was used.

Zero-field optics. Using the general Hamiltonian in Eq. (1),
we can calculate the zero-field conductivity at different photon
energy, �, via the Kubo formula [13],

Re σxx(�) = �e2

8π2

∑
λ,λ′

∫
d3k

�nf

�ε
|〈λ′|v̂x |λ〉|2L(� − �ε,η),

(2)
where the summation is over transitions from a state in the
initial band λ with energy ε to a final state in band λ′ of energy
ε′. v̂x = ∂Ĥ/∂(�kx) is the velocity operator and L(x,η) =
η/[π (x2 + η2)] is a Lorentzian function centered at x = 0
with a full width at half maximum of η, the scattering rate,
taken to be 2 meV. �ε = ε′ − ε and �nf = nf (ε) − nf (ε′),
where nf is the Fermi-Dirac distribution at chemical potential
μ = 0+, which ensures a filled flat band.

The red (solid) line in Fig. 2 is the result of a numerical
calculation of Eq. (2). This is plotted for comparison with
the MCT absorption coefficient, λ =

√
4�σ/ε0�c2, measured

experimentally as the black (solid) line. Note that the ex-
perimental data are cut off below around 40 meV by the
Restrahlen band (see Ref. [9]) and omission of a low-frequency
phonon peak. The blue (dotted) line is λ in the approximation
� → ∞ [9]. The major component of the spectral weight
in the calculated λ is due to flat-to-cone transitions between

FIG. 2. (Color online) Kane fermion absorption coefficient, λ,
for different values of parameter � (solid red and dashed blue) plotted
against the zero-field experimental measurement taken from Ref. [9]
(solid black line). Inset: Cross section of relevant band structures,
showing asymmetry in the red curve, with a typical transition from
the flat band.

bands. Linear behavior is exhibited in both the Kane model
results and the physical MCT measurement, akin to the
3D Weyl system [14] discussed below. In comparison, we
see that the red theoretical curve for � = 1 eV provides a
better match to the slope in the experimental curve, but the
theory remains offset above the data. The nonzero intercept
extrapolated from the experimental data may have arisen from
a small unaccounted-for mismatch in the dielectrics of the
MCT and its substrate [9]. Linear conductivity is seen in some
quasicrystal optical conductivity responses as well, where a
negative vertical intercept has been possibly attributed to an
unusual gapped Dirac point [15]. The better match using finite
� demonstrates the importance of particle-hole asymmetry
whereby the upper cone is narrowed (see inset), reducing the
associated density of states and absorption.

Magneto-optics. At the introduction of a magnetic field
B = ∇ × A = Bêz, a Peierls substitution is made in the
momentum, k → k + eA/�c. This allows one to rewrite
the Hamiltonian in terms of ladder operators, k+ →√

2a†/�B, k− → √
2a/�B . �B = √

�/e|B| is the magnetic
length scale. The operators act on Fock degrees of free-
dom, |m〉, found in the energy eigenvector, with a|m〉 =√

m|m − 1〉, a†|m〉 = √
m + 1|m + 1〉, and [a,a†] = 1. The

wave function for each LL, |ψλ
n 〉, gets labeled with a Fock

number n and a band index λ. In this finite-field case, we can
make use of the 3D Kubo formula written now in the LL basis,

Re σxx(�) = �e2

4π�2
B

∑
ψ,ψ ′

∫ ∞

−∞
dkz

�nf
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× |〈ψ ′|v̂x |ψ〉|2L(� − �ε,η). (3)
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FIG. 3. (Color online) Dispersive Landau levels in the 3D Kane
system under a 16 T magnetic field with Eg = 4 meV and � = 1 eV.
At kz = 0, red (solid) bands reside in sector A and the blue (dashed)
bands in sector B. At zero energy (green) there are many Landau
bands which are in either sector at kz = 0. Illustrated are transitions
that are responsible for the peaks indicated in the next figure.

The summation on ψ in Eq. (3) is taken over band index λ and
Fock number n.

With a finite magnetic field, the double degeneracy of the
bands in Fig. 1 is lifted as they condense into LL’s that disperse
along kz (Fig. 3). These bands carry a large density of states at
each value of momentum kz. At the point kz = 0, the Hilbert
space of Eq. (1) decomposes into two independent sectors,
with the upper 4 × 4 block being referred to as sector A and
the lower block sector B. In the simplified limit of � → ∞ and
Eg = 0, the 2D (kz = 0) sector A provides LL’s quantized with
energies εA

2D = γ
√

4n − 7 (n � 2) in units of γ = �v/
√

2�B .
Sector B, however, allows levels with a different energy
spectrum, εB

2D = γ
√

4n − 1 (n � 1). In Fig. 3, red (solid)
bands belong to sector A at kz = 0 and blue (dashed) bands
to sector B. The green (solid) flat band at zero energy consists
of many LL’s that are in either sector at kz = 0. Restricted
to this 2D limit, optically activated transitions between the
two sectors are strictly forbidden. The result is an optical
conductivity, made up of two congruous spectra from each
sector, shifted in energy. This was calculated using the 2D
version of Eq. (3) for a magnetic field strength of 16 T and is
shown in Fig. 4(a). The conductivity in sector A (red spectrum)
is shifted to lower energy relative to sector B (blue), but
shares the same form. Each peak describes optically activated
transitions between LL’s at particular energies which obey the
selection rule n → n ± 1. The majority of features seen are
due to excitations out of the flat band into the conduction
band. Excitations out of the lower cone begin to appear at
higher energies and are relatively suppressed (see Ref. [10]).
For example, the small shoulder on the left of the red peak
seen near 240 meV and the last two blue peaks all come from

FIG. 4. (Color online) (a) Magneto-optics of the 2D massless
Kane fermion system. Red shading indicates contributions from
transitions in sector A, while blue those from sector B. The sum
of these is the total conductivity in black. (b) Magneto-optical
absorbance for the 3D system in a 16 T magnetic field in red (solid).
In the background is the MCT absorbance measurement in black
(solid) from Ref. [9]. Indicated in both plots are the secondary peaks
straddling 200 meV found in each Weyl-like spectrum and discussed
in the text. In (b), the red arrow indicates the cyclotron resonance
peak.

cone-to-cone transitions. Referring to the flat-to-cone series
of peaks, we see that the reduced height of the second peak
in each sector (indicated by arrows) produces a nonmonotonic
decline in the peak heights. We have recently predicted this
same effect also in the 2D Dirac-Weyl systems with integer
pseudospin-s, where it indicates the presence of a flat band
[10]. The particular signature in the Kane model of a single
reduced peak points specifically to its pseudospin-1 nature.

In moving to the full 3D conductivity, the extra dimension
of dispersion does not change the location of the 2D peaks,
but merely adds a tail to them stretching out toward high
energies. Tails from neighboring peaks add together to build
an overall linear profile, having been described in the context
of the hypothetical 3D pseudospin-1/2 Weyl system by Ashby
and Carbotte [14]. This extension to 3D is seen in the result
of Eq. (3) presented in Fig. 4(b) as absorbance, A = dλ,
for B = 16 T and a sample thickness of d = 3.2 μm. In the
background of the figure is the absorbance of MCT at 16 T
for comparison [9]. By slightly filling the first positive LL, we
have been able to construct the cyclotron resonance peak in the
quantum limit [red arrow in Figs. 3 and 4(b)], which is seen
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at the same energy in the experiment. Also indicated are those
secondary peaks from the flat band, which retain their reduced
height characteristic. The frequency-dependent conductivity
calculated here offers a strong agreement between theory
and experiment and we see that the measured absorbance
too displays the secondary peaks with a reduced height (a
sign of the pseudospin-1 dynamics in MCT). This latter fact
demonstrates the broad curvature of the MCT heavy-hole
band which can be sufficiently approximated as flat. As in
the zero-field calculation shown in Fig. 2, there is a vertical
offset between the two data sets, the possible source of which
is discussed in the preceding section.

Weyl system. Throughout this paper, there has been refer-
ence to the pseudospin-1 nature of the Kane model, particularly
seen in the individual sectors A and B separately. Note,
however, that each sector does not map to the purely s = 1
Weyl Hamiltonian,

Ĥs
W = �vŜSS · kkk, (4)

where ŜSS is the set of pseudospin-s matrices. Instead, in the lim-
its Eg = 0 and � → ∞, the 2D (kz = 0) sectors A and B can
be seen to be an admixture of s = 1 and s = 1/2 Weyl systems.
For instance, around sector A, the 3 × 3 Hamiltonian is

ĤA =
√

2α√
1 + α2

Ĥ1
W + 2(1 − α)√

1 + α2

(
Ĥ1/2

W ⊕ 0
)

(5)

with α = 1/
√

3. As a single matrix, one sees that Eq. (5), up
to a simple unitary transformation, describes the low-energy
physics around the K point in the α-T3 model proposed by
Raoux et al. [6],

Ĥα = �v√
1 + α2

⎛
⎝ 0 k− 0

k+ 0 αk−
0 αk+ 0

⎞
⎠. (6)

Similarly, sector B maps to the K ′ valley index in the Raoux
et al. model. In Eqs. (5) and (6), the value α = 1 corresponds

to the s = 1 Weyl system and α = 0 to the s = 1/2 (graphene)
system with a dormant uncoupled flat band. Intermediate
values of α are an admixture of both and exhibit bands with a
non-π -quantized Berry phase. For α = 1/

√
3 one determines

that the Berry phases assigned to the lower, flat, and
upper cones are (π/2, − π,π/2), respectively. Physical MCT,
existing in three dimensions, couples the two valleys through a
nonzero kz, with additional corrections provided by � and Eg .
Raoux et al. proposed an experimental realization of the α-T3

model in an optical lattice loaded with cold fermionic atoms.
With our new insight, we suggest that MCT could in addition
provide a solid-state analog for this model with a unique
Berry phase, manifest in the relative shift of magneto-optical
absorption peaks between sectors in Fig. 4 [16].

Summary. We have calculated the frequency-dependent
magneto-optical response of the massless Kane fermion MCT
system, providing a rigorous quantitative prediction of the
optical spectral weight under each line. Good agreement with
experimental data was obtained by applying a reduced Kane
model which approximates the material’s heavy-hole band to
be exactly flat. Moreover, we have been able to demonstrate the
kinship that these Kane fermions possess with the appropriate
Dirac-Weyl counterpart in the α-T3 model, which gives rise
to a split-peak magneto-optical spectrum and points to an
unusual Berry phase. In addition, the cyclotron resonance peak
in the quantum limit has been identified in both theory and
experiment. MCT continues to offer many opportunities for
exploration here in the associated field of Dirac materials with
unusual Berry phase.
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