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Loop braiding statistics in exactly soluble three-dimensional lattice models
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We construct two exactly soluble lattice spin models that demonstrate the importance of three-loop braiding
statistics for the classification of three-dimensional gapped quantum phases. The two models are superficially
similar: both are gapped and both support particlelike and looplike excitations similar to those of charges and
vortex lines in a Z2 × Z2 gauge theory. Furthermore, in both models the particle excitations are bosons, and in
both models the particle and loop excitations have the same mutual braiding statistics. The difference between the
two models is only apparent when one considers the recently proposed three-loop braiding process in which one
loop is braided around another while both are linked to a third loop. We find that the statistical phase associated
with this process is different in the two models, thus proving that they belong to two distinct phases. An important
feature of this work is that we derive our results using a concrete approach: we construct string and membrane
operators that create and move the particle and loop excitations and then we extract the braiding statistics from
the commutation algebra of these operators.

DOI: 10.1103/PhysRevB.92.035115 PACS number(s): 05.30.Pr, 75.10.Pq, 05.50.+q, 71.10.−w

I. INTRODUCTION

The discovery of quantum Hall states and, more recently,
topological insulators [1,2] has taught us that there are many
different types of gapped quantum many-body systems. In
order to understand the relationship between these systems,
it is useful to divide them into classes in such a way that the
members of each class share the same qualitative properties.
Typically these classes are defined as follows: two gapped
Hamiltonians H and H ′ are assigned to the same class if they
can be adiabatically connected to one another, that is, if there
exists a one-parameter family of interpolating Hamiltonians
H (s) with (1) H (0) = H , H (1) = H ′ and (2) a finite energy
gap for all s, 0 � s � 1. The different classes of Hamiltonians
are then called “gapped phases.”

The precise definition of gapped phases depends on what
type of systems we wish to consider. For example, if we
are interested in systems with particular symmetries, then
it is natural to assign H and H ′ to the same phase if there
exists an interpolating Hamiltonian H (s) which is both gapped
and invariant under the relevant symmetries. Including such
symmetry constraints typically leads to a finer classification
of gapped phases, as illustrated by the example of topological
and conventional insulators [1,2].

In this paper, we consider the coarsest possible classi-
fication scheme: that is, we do not impose any symmetry
constraints and we say that two gapped Hamiltonians H and H ′
belong to the same phase if they can be adiabatically connected
by any interpolating Hamiltonian H (s) with local interactions.
Our starting point is a basic question: How can we tell whether
or not two gapped Hamiltonians belong to the same phase?

This question has an appealing answer in the case of
two-dimensional (2D) systems.1 To determine whether two
gapped 2D Hamiltonians belong to the same phase, one can

1The one-dimensional (1D) case is less interesting since it is known
that in the absence of symmetry all 1D bosonic systems belong to the
same phase [26–30,37] while all 1D fermionic systems belong to one
of two phases [27].

simply compare the braiding statistics2 of their quasiparticle
excitations. If the braiding statistics data do not match,
then the two Hamiltonians must belong to different phases
since braiding statistics cannot change under an adiabatic
deformation. Conversely, if the braiding statistics do match,
then we can almost conclude that the two Hamiltonians belong
to the same phase. To reach this conclusion, we simply
need to compare one other quantity, namely, the thermal
Hall conductance [3]. Indeed, according to a plausible (but
unproven) conjecture, if two Hamiltonians have the same
braiding statistics and the same thermal Hall conductance,
then they must be adiabatically connected to one another in
the absence of any symmetry constraints.

In the three-dimensional (3D) case, our understanding is
much more limited. One way to attack the classification
problem is to try to generalize the concept of quasiparticle
braiding statistics to the 3D case. The simplest generalization
begins with the observation that many 3D Hamiltonians
support looplike excitations in addition to particles. Given
this observation, we can consider several different types of
braiding statistics. First, we can look at the exchange statistics
of particlelike excitations. These exchange statistics can take
only one of two values for each particle: every particle must
be either bosonic or fermionic.3 Second, we can consider the
statistical phase associated with braiding a particle around
a loop [4–7]. Finally, we can look at the statistical phase
associated with braiding one loop excitation around another
[Fig. 1(a)] [8–10]. If we combine all of these types of braiding
statistics, we can indeed distinguish many different 3D gapped
phases.

Interestingly, however, these data are incomplete: Refs.
[11,12] argued that we also need to consider the statistical
phase associated with a three-loop braiding process. In this

2Here, when we say braiding statistics, we mean the complete set
of algebraic data for anyon systems, including quantum dimensions
and fusion rules. For more details, see, e.g., Appendix E of Ref. [38].

3Here, we implicitly exclude 3D layered systems, like a stack of
fractional quantum Hall states, from our discussion.
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FIG. 1. (a) Two-loop braiding process. (b) Three-loop braiding
process. The gray curves show the paths of two points on the moving
loop.

process, one loop is braided around another loop while both
are linked to a third loop [Fig. 1(b)]. It is unclear whether
the three-loop braiding data are the last piece of the puzzle
or whether there exist further distinctions between 3D gapped
phases that can only be seen if we consider other braiding
processes or other types of probes. However, either way,
three-loop braiding statistics has already proven to be useful
in certain cases [13–16].

One weakness of previous studies of three-loop braiding
statistics is that this quantity has only been calculated using
indirect and abstract arguments. For example, Ref. [11] com-
puted the three-loop braiding statistics of 3D Dijkgraaf-Witten
gauge theories using a dimensional reduction argument which
relates the braiding statistics of loops in 3D Dijkgraaf-Witten
models to the braiding statistics of particles in 2D Dijkgraaf-
Witten models [17]. The approaches of Refs. [12,13] were
also indirect: Refs. [12,13] computed loop braiding statistics
by relating this quantity to modular transformations on a
three-dimensional torus.

In this paper, we study three-loop braiding statistics using a
more concrete approach. We focus on two exactly soluble
lattice models and we compute their three-loop braiding
statistics by explicitly implementing the loop braiding process
on the lattice. Our approach is similar to how quasiparticle
braiding statistics is commonly calculated in 2D lattice models
[18–20]: we construct membrane operators that create and
move looplike excitations, and then we extract the three-loop
statistics from the commutation algebra of these operators.

The two spin models that we analyze provide an explicit
demonstration of the importance of three-loop braiding statis-
tics for distinguishing 3D gapped phases. Indeed, we show that
the models share the same particle exchange statistics as well
as the same particle-loop and loop-loop braiding statistics. The
only difference between the models is that they have different
three-loop braiding statistics. Thus, it is only this quantity that
reveals that the two models belong to different phases.

The models that we study are not completely new and have
appeared previously in the literature in different forms. In
particular, the first model is essentially identical to the 3D
generalized toric code model [18,20–22] corresponding to the
group Z2 × Z2. Thus, the low-energy properties of this model
are similar to those of conventionalZ2 × Z2 gauge theory [23].
The second model can be thought of as a different type of
Z2 × Z2 gauge theory. More specifically, this model can
be obtained by starting with the spin model in Ref. [24]
which describes a nontrivial symmetry-protected topological
phase [25–31] with Z2 × Z2 symmetry, and then coupling this
system to a Z2 × Z2 lattice gauge field [23]. We will explain

FIG. 2. (Color online) Both models are built out of two species
of spins. The blue spins σp live on the plaquettes p of the cubic lattice,
while the red spins σp̂ live on the plaquettes p̂ of the dual cubic lattice.

this connection in more detail in a separate publication [32].
In addition to its connection with the spin model in Ref. [24],
we believe that the second model belongs to the same phase as
one of the exactly soluble Z2 × Z2 Dijkgraaf-Witten models
[17,33]. This conjecture is based on the fact that the braiding
statistics in the two systems seem to match one another.

The connection between our models and symmetry-
protected topological phases is not accidental: we specifically
designed our models to be equivalent to gauged symmetry-
protected topological phases because, according to the results
of Refs. [11,12], such gauge theories can support different
types of three-loop braiding statistics. The reason that we
chose to gauge the spin model from Ref. [24] is that this is one
of the simplest known models for a 3D symmetry-protected
topological phase with unitary symmetry group.

The rest of the paper is organized as follows. In Sec. II,
we introduce the two exactly soluble 3D spin models that
we will analyze. In Sec. III, we study the particlelike and
looplike excitations of these models by explicitly constructing
the string and membrane operators that create and move these
excitations. We then compute the braiding statistics of these
particles and loops in Sec. IV. Some technical details can be
found in the Appendixes.

II. MODELS

A. Hilbert space for the models

The models that we will discuss are spin- 1
2 systems made

up of two species of spins: “blue spins” and “red spins.” The
blue spins live on the plaquettes p of the cubic lattice and will
be denoted by σp, while the red spins live on the plaquettes p̂

of the dual cubic lattice and will be denoted by σp̂ (Fig. 2). In
this notation, the Sz eigenstates |{σ z

p,σ z
p̂}〉 provide a complete

basis for the Hilbert space.
We will often find it convenient to describe spin states

using an alternative language based on “membranes.” In the
membrane language, each Sz eigenstate |{σ z

p,σ z
p̂}〉 corresponds

to a spatial configuration of red and blue membranes on the
cubic lattice and dual cubic lattice. The dictionary between
spin states and membrane configurations is as follows: if
σ z

p = −1 we say that the plaquette p is occupied by a blue
membrane, while if σ z

p = +1 we say that the plaquette p is
empty. Similarly, if σ z

p̂ = −1 then p̂ is occupied by a red
membrane, while if σ z

p̂ = +1, then p̂ is empty. In this way,
each spin state can be equivalently described as a membrane
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state. We will label our membrane states as |Xb,Xr〉 where
Xb denotes the subset of plaquettes that are occupied by blue
membranes, and Xr denotes the subset of plaquettes occupied
by red membranes.

B. Ground-state wave functions

The two models that we will discuss have been engineered
to have particular ground states. These ground states are easiest
to describe if we assume an infinite (nonperiodic) geometry.
In such a geometry, the ground state of the first model is

|�0〉 =
∑

closed Xb,Xr

|Xb,Xr〉, (1)

where the sum runs over all closed membrane states |Xb,Xr〉.
Here, by a closed membrane state, we mean a membrane
configuration (Xb,Xr ) in which all the blue and red membranes
form closed surfaces, i.e., surfaces without boundaries. More
precisely, a closed membrane state is defined to be a state in
which every edge l in the cubic lattice and every edge l̂ in the
dual cubic lattice is adjacent to an even number of occupied
plaquettes.

The ground state of the second model has a similar form

|�1〉 =
∑

closed Xb,Xr

(−1)Ng (Xb,Xr )|Xb,Xr〉, (2)

where again the sum runs over all possible closed membrane
states |Xb,Xr〉. The quantity Ng(Xb,Xr ) is defined as fol-
lows: for each closed membrane configuration (Xb,Xr ), the
intersections between the red and blue membranes Xb ∩ Xr

form a collection of disconnected closed curves, which we
will call “green loops.” The quantity Ng(Xb,Xr ) is defined to
be the number of the green loops in Xb ∩ Xr . As discussed
in the Introduction, the ground state |�1〉 is closely related
to the ground state of the spin model in Ref. [24] which
describes a nontrivial symmetry-protected topological phase
with Z2 × Z2 symmetry.

C. Sheared cubic lattice

The reader may notice that there is a technical problem
with the above definition of Ng(Xb,Xr ): the problem is
that the closed membrane condition allows for membrane
configurations in which an edge l is adjacent to four occupied
plaquettes. Geometrically, such configurations correspond to
the case where two blue membranes touch one another along
the edge l. This membrane touching is problematic because
it means that the “green loops” defined by the intersections
of red and blue membranes can also touch one another at
corners. As a result, there is some ambiguity in determining
the number of disconnected green loops corresponding to a
membrane configuration (Xb,Xr ).

To deal with this issue, we now describe a way to
infinitesimally deform the cubic lattice so as to eliminate
membrane touching. Before describing this deformation, we
first warm up with an analogous deformation of the square
lattice. The basic idea is to think of the square plaquettes
that make up the square lattice as rigid blocks that can be
shifted around. The deformation we have in mind corresponds
to shifting the position of the square plaquettes so that their

FIG. 3. (Color online) (a) The sheared square lattice is formed by
shifting the corners of the square plaquettes (the blue dots) according
to (i,j ) → (i + εj,j ) with ε > 0. (b) Top view of the sheared cubic
lattice. The solid/dashed squares denote cubes on two neighboring
layers. The sheared cubic lattice is formed by shifting the corners
of the cubes according to (i,j,k) → (i + εj + ε ′k,j + ε ′k,k) with
ε ′ > ε ′ > 0.

corners move from (i,j ) → (i + εj,j ). The resulting lattice,
which we call the sheared square lattice, is shown in Fig. 3(a).

We are now ready to consider the cubic lattice. In this case,
we think of the cubes that make up the cubic lattice as rigid
blocks and we shift these cubes so that their corners move
from

(i,j,k) → (i + εj + ε′k,j + ε′k,k), (3)

where ε′ > ε > 0. The resulting sheared cubic lattice is shown
in Fig. 3(b).

Now, let us imagine performing the same shearing defor-
mation to both the original cubic lattice and the dual cubic
lattice. We can then deform an arbitrary closed membrane
configuration (Xb,Xr ) on the cubic lattice (and dual cubic
lattice) to a membrane configuration on the sheared cubic
lattice (and sheared dual cubic lattice). The result is a closed
membrane configuration without any membrane touching of
any kind. In what follows, we will always think of membrane
configurations as living on the sheared cubic lattice rather than
the cubic lattice so we do not have to worry about membrane
touching.

D. Hamiltonians

1. H0

We are now ready to write the Hamiltonians for the two
models. The Hamiltonian for the first membrane model is a
sum of four terms

H0 = −
∑

l

Al −
∑

l̂

Al̂ −
∑

c

B0
c −

∑
ĉ

B0
ĉ , (4)

where the indices l,l̂ run over the links of the cubic lattice
and dual cubic lattice, respectively, while c,ĉ run over the
“cubes” of the cubic lattice and dual cubic lattice. To define
the operators Al,Al̂,Bc,Bĉ, it suffices to explain how they act
on the membrane basis states |Xb,Xr〉. The Al,Al̂ operators
are given by

Al = 1
2 (1 + Al), Al̂ = 1

2 (1 + Al̂), (5)
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where

Al|Xb,Xr〉 = (−1)Nl |Xb,Xr〉,
Al̂|Xb,Xr〉 = (−1)Nl̂ |Xb,Xr〉. (6)

Here, Nl and Nl̂ are defined to be the number of occupied
plaquettes adjacent to l and l̂, respectively. The B0

c ,B
0
ĉ

operators are defined by

B0
c = 1

2

(
1 + B0

c

)
, B0

ĉ = 1
2

(
1 + B0

ĉ

)
, (7)

where

B0
c |Xb,Xr〉 = |Xb + c,Xr〉,

B0
ĉ |Xb,Xr〉 = |Xb,Xr + ĉ〉. (8)

Here, the notation Xb + c is meant to denote a kind of Z2

addition on membrane configurations. More specifically, given
the membrane configuration Xb, the configuration Xb + c

is obtained by flipping the occupation numbers of the six
plaquettes of the cube c: that is, one changes the plaquettes
from unoccupied to occupied and vice versa.

There is a simple physical picture for the A and B in terms of
the membrane language: the A terms favor closed membrane
configurations, while the B terms provide an amplitude for
the membranes to fluctuate. Together these terms ensure that
the ground state is a superposition of many different closed
membrane configurations.

Alternatively, we can express the A and B operators in the
spin language:

Al = 1

2

⎛
⎝1 +

∏
p∈l

σ z
p

⎞
⎠, Al̂ = 1

2

⎛
⎝1 +

∏
p̂∈l̂

σ z
p̂

⎞
⎠, (9)

where these products run over the four plaquettes adjacent to
l,l̂, respectively. Similarly,

Bc = 1

2

(
1 +

∏
p∈c

σ x
p

)
, Bĉ = 1

2

⎛
⎝1 +

∏
p̂∈ĉ

σ x
p̂

⎞
⎠, (10)

where these products run over the six plaquettes adjacent to
c,ĉ respectively.

2. H1

The Hamiltonian for the second membrane model is similar:

H1 = −
∑

l

Al −
∑

l̂

Al̂ −
∑

c

B1
c −

∑
ĉ

B1
ĉ . (11)

The first two terms are defined as above, while the last two
terms are defined by

B1
c = 1

2

(
1 + B1

c

)
Pc, B1

ĉ = 1
2

(
1 + B1

ĉ

)
Pĉ. (12)

Here, Pc is a projector that projects onto states obeying the
closed membrane constraint in the neighborhood of the cube
c. More specifically,

Pc =
∏
l∈c

Al

∏
l̂⊥c

Al̂, (13)

where the first product runs over the twelve edges l of c and the
second product runs over the six edges l̂ that are perpendicular

FIG. 4. (Color online) (a) A blue cube intersects a red membrane;
their intersection consists of a single red loop. (b) A blue cube
intersects/overlaps with a blue membrane; their intersection consists
of a single blue region. (c) A blue cube intersects with both a red
membrane and a blue membrane; their intersection consists of one
red loop and one blue region. (d) For the membrane configuration
shown in (c), the integer mc = 1 because there is one red loop while
nc = 2 because there are two intersections (denoted by green dots)
between the red loop and the boundary of the blue region (thick blue
line).

to the six plaquettes of the cube c. Similarly,

Pĉ =
∏
l̂∈ĉ

Al̂

∏
l⊥ĉ

Al. (14)

The B1
c and B1

ĉ operators have a similar structure as (8), but
their matrix elements have some additional phase factors:

B1
c |Xb,Xr〉 = (−1)mc inc |Xb + c,Xr〉,

B1
ĉ |Xb,Xr〉 = (−1)mĉ inĉ |Xb,Xr + ĉ〉. (15)

Here, mc,mĉ,nc,nĉ are integer-valued functions of (Xb,Xr ),
which we will now define. In fact, we will only define mc,nc

for membrane states (Xb,Xr ) that satisfy Pc = 1, and we will
only define mĉ,nĉ for states with Pĉ = 1; it suffices to discuss
these subsets of states since the projectors Pc,Pĉ ensure that
the matrix elements of B1

c and B1
ĉ vanish for all other states.

We begin with mc. To define the value of mc for some
(Xb,Xr ), consider the intersection between the set of red
membranes Xr and the cube c. This intersection defines a
collection of closed loops that live on the surface of the cube
c [Fig. 4(a)]. (The fact that the loops are closed follows from
the closed membrane constraint Pc = 1.) We will call these
loops “red loops.” The integer mc is defined to be the number
of these red loops, i.e.,

mc(Xb,Xr ) = #{red loops on c} (16)

[see Fig. 4(d) for an example].
To define the value of nc for some (Xb,Xr ), consider the

intersection between the set of blue membranes Xb and the
cube c. Because the blue membranes Xb and the cube c both
live on the same cubic lattice, the intersection Xb ∩ c consists
of 2D regions instead of loops. These 2D regions live on the
surface of the cube c [Fig. 4(b)]. Consider the boundary of these
2D regions. This boundary consists of a collection of closed
loops. We will call these loops “blue loops.” The integer nc

is defined to be the number of intersections between the blue
loops and the red loops defined above:

nc(Xb,Xr ) = #{blue-red intersections on c} (17)

[see Fig. 4(d) for an example]. Notice that nc is always even.
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FIG. 5. (Color online) (a) The integer mc is a function of the 12
spins σ z

p̂ that are closest to the cube c. (b) The integer nc is a function
of the 6 blue spins σ z

p and 12 red spins σ z
p̂ around the cube c.

The integers mĉ and nĉ are defined in an identical way but
with the colors reversed:

mĉ(Xb,Xr ) = #{blue loops on ĉ} (18)

and

nĉ(Xb,Xr ) = #{red-blue intersections on ĉ}. (19)

Here, the blue loops are defined by the intersection between
the blue membranes Xb and the red cube ĉ, while the red
loops are the boundaries of the intersections between the red
membranes Xr and the cube ĉ.

Alternatively, we can express mc,mĉ,nc,nĉ in the spin
language. In this language, the operator mc can be written
as a function of the 12 spins σ z

p̂1
, . . . ,σ z

p̂12
that are closest to c

[Fig. 5(a)], and similarly for mĉ:

mc = f
(
σ z

p̂1
,σ z

p̂2
, . . . ,σ z

p̂12

)
,

mĉ = f
(
σ z

p1
,σ z

p2
, . . . ,σ z

p12

)
. (20)

Here, f is a finite polynomial, but the explicit form of f is
not illuminating so we do not show it here. Likewise, we can
write nc as a function of the 6 blue spins σ z

p1
, . . . ,σ z

p6
and 12

red spins, σ z
p̂1

, . . . ,σ z
p̂12

surrounding the cube c [Fig. 5(b)], and
similarly for nĉ:

nc = g
({

σ z
p

}
,
{
σ z

p̂

})
,

nĉ = g
({

σ z
p̂

}
,
{
σ z

p

})
. (21)

As above, the expression for g is complicated so we do not
show it here.

While the Hamiltonian H0 is essentially identical to the
well-known 3D toric code model [18,20–22], some readers
may be curious about the origin of the Hamiltonian H1. As we
mentioned previously, this Hamiltonian has been designed to
have a particular ground state, namely, |�1〉. The state |�1〉
is in turn motivated by the ground state of the spin model
in Ref. [24] which describes a nontrivial symmetry-protected
topological phase with Z2 × Z2 symmetry. Thus, the main
question is how to design an exactly soluble Hamiltonian with
a particular ground state |�1〉. One way to do this is to follow
a similar approach to the string-net construction of Ref. [20].
We recall that the string-net models of Ref. [20] can be written
as a sum of two types of operators: a Q operator and a B

operator. The Q operator prefers closed string configurations
and the B operator creates a closed loop. While the form
of the Q operator is simple and intuitive, the B operator is
more complicated, and its matrix elements are obtained by

fusing a closed loop onto the lattice using 2D local rules. The
Hamiltonian H1 can be constructed using a similar approach:
in this case the Hamiltonian is built out of A operators which
prefer closed membrane configurations and B operators which
create a cube. Similarly to the string-net models, the precise
form of the B operator can be obtained by writing local rules
obeyed by |�1〉, and then fusing a cube onto the lattice using
3D local rules. This is one way to obtain H1. Another way
is to use membrane operators: as we will see in Sec. III C 4,
the Bc,Bĉ are examples of spherical membrane operators (35)
and (38).

E. Properties of the Hamiltonians

The two Hamiltonians H0,H1 have many nice properties.
One property is that all the operators {Al,Al̂,B

0
c ,B

0
ĉ ,B

1
c ,B

1
ĉ }

are Hermitian so that H0 and H1 are also Hermitian. Indeed, the
Hermiticity of {Al,Al̂,B

0
c ,B

0
ĉ } is clear from the definitions (9)

and (10), while the Hermiticity of B1
c and B1

ĉ can be seen
by noting that the matrix elements of B1

c and B1
ĉ , as defined

in (15), are both symmetric and real.
Another important property is that all the terms in H0,H1

commute with one another, so that the two models are exactly
soluble. For the case of H0, the fact that {Al,Al̂,B

0
c ,B

0
ĉ } all

commute with one another follows easily from the defini-
tions (9) and (10) of these operators. For the case of H1, more
work is required to verify this commutativity: while simple
algebra shows that

[Al,Al′ ] = [Al̂,Al̂′ ] = 0 (22)

and [
Al,B

1
c

] = [
Al̂,B

1
c

] = [
Al,B

1
ĉ

] = [
Al̂,B

1
ĉ

] = 0, (23)

the fact that[
B1

c ,B
1
c′
] = [

B1
ĉ ,B

1
ĉ′
] = [

B1
c ,B

1
ĉ′
] = 0 (24)

is not obvious. We leave the derivation of the latter identity (24)
to Appendix A.

A third property of H0,H1 is that the operators
{Al,Al̂,B

0
c ,B

0
ĉ ,B

1
c ,B

1
ĉ } have eigenvalues 0 or 1:

al,al̂,b
0
c ,b

0
ĉ ,b

1
c ,b

1
ĉ = 0,1. (25)

(The first two eigenvalue spectra can be derived from A2
l =

Al , etc.) A final property of these models is that |�0〉 is a
simultaneous eigenstate of {Al,Al̂,B

0
c ,B

0
ĉ } with

al = al̂ = b0
c = b0

ĉ = 1. (26)

Similarly, |�1〉 is a simultaneous eigenstate of {Al,Al̂,B
1
c ,B

1
ĉ }

with

al = al̂ = b1
c = b1

ĉ = 1. (27)

A derivation of the relations (26) and (27) is given in
Appendix A.

F. Solving the models

In this section, we show that H0 and H1 are gapped, and
that |�0〉 and |�1〉 are ground states of these Hamiltonians. We
begin with H0. To find the energy spectrum of H0, recall that the
operators {Al,Al̂,B

0
c ,B

0
ĉ } commute with one another and can
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therefore be simultaneously diagonalized. Let us label these
simultaneous eigenstates by |al,al̂,b

0
c ,b

0
ĉ 〉 where al,al̂,b

0
c ,b

0
ĉ

denote the eigenvalues. It is clear that these states are energy
eigenstates with energy

E = −
∑

l

al −
∑

l̂

al̂ −
∑

c

b0
c −

∑
ĉ

b0
ĉ . (28)

Now, since the eigenvalues {al,al̂,b
0
c ,b

0
ĉ} take values in 0,1,

it follows that the ground state(s) of H0 have al = al̂ = b0
c =

b0
ĉ = 1, while the excited states have at least one al,al̂,b

0
c ,b

0
ĉ

equal to 0. We conclude that there is a finite energy gap � = 1,
separating the ground state(s) and excited states. Furthermore,
we can see that |�0〉 is a ground state of H0 since it obeys (26).
All that remains is to determine the ground-state degeneracy
of H0. This degeneracy depends on the global topology of
the system on which H0 is defined. In an infinite nonperiodic
geometry, one can show that H0 has a unique ground state,
namely, |�0〉. On the other hand, in periodic (3D torus)
geometry, it can be shown that the ground-state degeneracy is
43 = 64. These degenerate ground states are characterized by
different parities of noncontractible red and blue membranes
along the x, y, and z directions of the 3D torus.

Now, let us consider Hamiltonian H1. Similarly to H0, we
can simultaneously diagonalize {Al,Al̂,B

1
c ,B

1
ĉ } and label their

eigenstates as |al,al̂,b
1
c ,b

1
ĉ 〉. Following the same reasoning as

above, we conclude that there is a finite energy gap � = 1,
separating the ground state(s) and excited states. Furthermore,
we can see that |�1〉 is a ground state of H1 since it obeys (27).
Like H0, it can be shown that H1 has a unique ground state in
an infinite nonperiodic geometry (|�1〉), and the ground-state
degeneracy is 64 in a 3D torus geometry.

G. Particlelike and looplike excitations

If we examine Eq. (28), we can see that H0 supports
both particlelike and looplike excitations. An example of a
particlelike excitation is a point defect where b0

c or b0
ĉ is equal to

0 instead of the ground-state value of 1. Likewise, an example
of a looplike excitation is a line defect along which al or al̂

is equal to 0 instead of the ground-state value of 1. These
linelike defects always form closed loops: to see this, note that
the quantum numbers al and al̂ obey the local constraints∏

l∈s

(1 − 2al) = 1,
∏
l̂∈ŝ

(1 − 2al̂) = 1 (29)

for every site s in the cubic lattice and ŝ in the dual cubic lattice.
Here, the first product runs over the six edges l that are adjacent
to s and similarly for the second product. The above constraints
guarantee that each site s is adjacent to an even number of
line-line defects, so that the defects always form closed loops.
[To derive these constraints, note that they follow from the
corresponding operator identities

∏
l∈s(1 − 2Al) = ∏

l̂∈ŝ(1 −
2Al̂) = 1 which in turn follow from the definition (9).] In
exactly the same way, one can see that the Hamiltonian H1

supports particlelike excitations with b1
c or b1

ĉ equal to 0, and
looplike excitations where al or al̂ is equal to 0 along some
closed loop.

Following, we will see that in both models, these particle-
like and looplike excitations have nontrivial braiding statistics
with one another and have similar properties to the charges

and vortex loops in Z2 × Z2 gauge theories. In view of this
connection, we will refer to the particlelike excitations with b0

c

or b1
c equal to 0 as “blue charges” and the excitations with b0

ĉ

or b1
ĉ equal to 0 as “red charges.” Similarly, we will refer to the

looplike excitations with al = 0 as “blue vortex loops” and the
excitations with al̂ = 0 as “red vortex loops.” In the following,
we will study these charge and vortex-loop excitations in more
detail, with a focus on their topological properties.

III. EXCITATIONS AND THE ASSOCIATED
CREATION OPERATORS

In this section, we find operators that create the charge and
vortex loop excitations of H0 and H1. These operators are
useful because their commutation algebra contains informa-
tion about the braiding statistics of the associated particles and
loops.

A. General picture for string and membrane operators

In general, topologically nontrivial particle excitations
cannot be created using local operators. Instead, the easiest
way to create these excitations is to use stringlike operators.
In the following sections, we will find stringlike creation
operators for each topologically distinct charge excitation α in
H0 and H1. We will denote these operators by Wα(P ) where P

is the path along which the string operator acts. These operators
satisfy two key properties. First, if P is an open path, then when
Wα(P ) is applied to the ground state |�〉, it creates an excited
state |�ex〉 with two charge excitations α at the two ends of P :

Wα(P )|�〉 = |�ex〉.

(Here, the excited state |�ex〉 only depends on the end points of
P and not on the choice of path.) Second, if P is a closed path,
then Wα(P ) does not create any excitation at all: Wα(P )|�〉 ∝
|�〉.

In addition to these string operators, which create charge
excitations, we will also find membrane operators that create
vortex loop excitations. That is, for each topologically distinct
vortex loop excitation α in H0 and H1, we will find a
corresponding membrane creation operator, which we will
denote by Mα(S) with S being the surface where the membrane
operator acts. These membrane operators satisfy similar
properties to the string operators. First, if S is a cylindrical
surface, then when Mα(S) is applied to the ground state |�〉 it
creates an excited state with two loop excitations at the ends
of the cylinder:

Mα(S)|�〉 = |�ex〉.

(Similarly to before, the excited state |�ex〉 only depends on
the two boundaries of S and not on the choice of surface that
joins them.) Second, if S is a toroidal surface, then Mα(S) does
not create any loop excitations at all: Mα(S)|�〉 ∝ |�〉.

We can also consider membrane operators with other
topologies beyond the cylinder and torus case: for example,
later we will discuss spherical membrane operators. However,
the structure of membrane operators is different for different
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topologies4 and thus each case has to be treated separately.
Here, we will focus on cylindrical and toroidal cases as they
are sufficient for our purposes.

The string and membrane operators have simple physical
interpretations: the string operator Wα(P ) describes a process
in which a pair of charge excitations is created and then moved
to the two ends of the path P . Likewise, the membrane operator
Mα(S) describes a process in which a pair of loops is created
and then moved to the two ends of the cylinder S. On the other
hand, if P is a closed path, then Wα(P ) describes a process in
which a pair of charge excitations is created and then moved
around P and annihilated with each other. Similarly, if S is
a toroidal surface, then Mα(S) describes a process in which a
loop-antiloop pair is created, moved around S, and annihilated
with one another.

B. String and membrane operators for H0

1. String operators

It is easy to find string operators W 0
b , W 0

r that create the blue
and red charge excitations of H0. These operators are given by

W 0
b (P ) =

∏
p⊥P

σ z
p, W 0

r (P ) =
∏
p̂⊥P

σ z
p̂, (30)

where P is a path on the dual cubic lattice in the first expression
and a path in the cubic lattice in the second expression. The
two products run over plaquettes that are perpendicular to these
two paths. Equivalently, in the membrane representation, W 0

b

and W 0
r are given by

W 0
b (P )|Xb,Xr〉 = (−1)Nb |Xb,Xr〉,

W 0
r (P )|Xb,Xr〉 = (−1)Nr |Xb,Xr〉, (31)

where Nb and Nr are the number of blue and red membranes
that cross the path P .

Let us now verify that when P is an open path, W 0
b (P )

creates blue charge excitations at the two end points of P . From
the definitions (30), it is easy to see that W 0

b (P ) commutes
with all the terms in the Hamiltonian H0 except for B0

c1
and B0

c2

where c1 and c2 are the two cubes at the end points of P . These
two operators anticommute with W 0

b (P ) rather than commute.
We conclude that W 0

b (P )|�0〉 is a simultaneous eigenstate
of Al,Al̂,B

0
p,B0

p̂ with eigenvalues b0
c1

= b0
c2

= 0 and all other
eigenvalues equal to 1. Hence, W 0

b (P )|�0〉 contains two blue
charge excitations at the end points of P . A similar argument
shows that W 0

r also creates red charge excitations at the end
points of P .

2. Membrane operators

It is also easy to find membrane operators M0
b , M0

r that
create the blue and red vortex excitations of H0. These
operators are given by

M0
b (S) =

∏
p∈S

σ x
p , M0

r (S) =
∏
p̂∈S

σ x
p̂ , (32)

4For example, toroidal operators can be decorated by string
operators that encircle the torus while spherical membrane operators
cannot be decorated in this way. See Sec. III C 4 for more details.

where S is a surface made up of plaquettes p living in the
cubic lattice in the first expression and a surface consisting of
plaquettes p̂ in the dual cubic lattice in the second expression.
Equivalently, we can express M0

b and M0
r in the membrane

representation as

M0
b (S)|Xb,Xr〉 = |Xb + S,Xr〉,

M0
r (S)|Xb,Xr〉 = |Xb,Xr + S〉, (33)

where Xb + S denotes theZ2 addition operation defined below
Eq. (8).

We now check that when S is a cylindrical surface, M0
b (S)

creates blue loop excitations at the two ends of S. To establish
this fact, we note that M0

b (S) commutes with all the terms
in the Hamiltonian H0 except for Al when l lies along the
two boundaries of S. These Al operators anticommute with
M0

b (S) rather than commute. It then follows that M0
b (S)|�0〉 is

an eigenstate of Al,Al̂,B
0
p,B0

p̂ with eigenvalues al = 0 along
the boundaries of S, and all other eigenvalues equal to 1. This
establishes the claim. The same argument applies to M0

r (S).
It should be noted that the excitations created by M0

b and
M0

r are not the most general possible vortex loop excitations.
In fact, the H0 model supports three other types of blue
vortex loops and three other types of red vortex loops. These
excitations can be obtained by attaching either a red charge,
a blue charge, or both a red charge and a blue charge, to the
vortex loops created by M0

b and M0
r . We will label the four

types of blue vortex loops by (b,qb,qr ), and the four types of
red vortex loops by (r,qb,qr ) where qb,qr take values in 0,1.
In this labeling scheme, the excitations created by M0

b and M0
r

are denoted by (b,0,0) and (r,0,0), with the other excitations
labeled according to the amount of charge attached to them.
As we will see later, these loop excitations are all topologically
distinct from one another in the sense that they have different
braiding statistics.

It is easy to find membrane operators that create these
more general vortex loop excitations. For example, consider
the operator M0

b (S) in the case where S is a cylinder. When
this operator is applied to the ground state |�0〉, it creates two
vortex loops of type (b,0,0) at the two ends of the cylinder.
We can modify this operator to create other vortex loops
(b,qb,qr ) by multiplying M0

b (S) by the string operators W 0
b (P )

or W 0
r (P ′) or W 0

b (P )W 0
r (P ′) where the paths P,P ′ run along

the length of the cylinder. In the same way, we can construct
membrane creation operators for the red vortex loops (r,qb,qr )
by multiplying M0

r (S) by appropriate string operators.
Before concluding, we should mention that there is yet

another type of vortex loop excitation which we have not
discussed, namely, a composite of a red and blue vortex loop.
This type of loop excitation can be obtained by fusing together
a red and blue loop, and again it comes in four subtypes which
we can denote by (rb,qb,qr ). In what follows, we will generally
ignore this additional kind of vortex loop excitation since its
braiding statistics properties are completely determined by the
properties of the individual red and blue loops.

C. String and membrane operators for H1

In this section, we construct string and membrane operators
for the Hamiltonian H1. The string operators are relatively
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easy: following the same analysis as above, it is simple to
check that the same string operators that create the blue and
red charge excitations in the H0 model can also be used to
create the charge excitations in the H1 model. That is, just as
in (31), we can set

W 1
b (P )|Xb,Xr〉 = (−1)Nb |Xb,Xr〉,

W 1
r (P )|Xb,Xr〉 = (−1)Nr |Xb,Xr〉 (34)

where Nb and Nr are the number of blue and red membranes
that cross the path P .

We will need to do more work to construct membrane
operators for H1. The rest of this section is devoted to this
problem.

1. Cylindrical membrane operators for blue vortex loops

We begin by finding a membrane operator M1
b (S) that

creates blue vortex loops. To proceed, it is convenient to work
in the membrane basis. Let S be a cylindrical surface made up
of plaquettes p living in the cubic lattice. We need to define
the action of M1

b (S) on a general membrane state |Xb,Xr〉. A
natural guess, inspired by (33), is that M1

b (S) should act as

M1
b (S)|Xb,Xr〉 = fb(Xb,Xr,S)|Xb + S,Xr〉 (35)

for some complex-valued function fb(Xb,Xr,S). Indeed, it is
easy to see that any operator of this type has the property
that it anticommutes with the Al terms that lie along the two
boundaries of S and it commutes with every other Al and Al̂

term. Hence, any operator of this type has the property that if
we apply it to the ground state |�1〉, it will create blue vortex
loop excitations at the boundaries of S. The problem is that
most of these operators also create many other excitations
along the surface S since most of these operators do not
commute with B1

c and B1
ĉ . Thus, our task is to choose fb

appropriately so that M1
b (S) does not create any excitations

except at the boundaries of S.
We now describe one choice of fb that does the job.

Following, we will just present the definition of fb without
any motivation. Later, in Sec. III C 5, we will explain why this
choice works and we will provide some motivation as to where
it comes from.

First, we set fb(Xb,Xr,S) = 0 if the membrane config-
uration (Xb,Xr ) violates the closed membrane constraint
anywhere in the neighborhood of S. More precisely, fb = 0 if
any link l,l̂ that touches or intersects S is adjacent to an odd
number of occupied plaquettes. On the other hand, if every
such link is adjacent to an even number of occupied plaquettes,
then fb(Xb,Xr,S) is defined in terms of the two intersections
Xb ∩ S and Xr ∩ S. The dependence of fb on Xb ∩ S and
Xr ∩ S is complicated, and in order to explain it, we first
describe a way to represent Xb ∩ S and Xr ∩ S as a picture
drawn on the surface of the cylinder S. The picture we will draw
consists of a collection of red lines and blue regions with the
red lines denoting the places where membranes in Xr intersect
S, and the blue regions denoting the places where membranes
in Xb intersect/overlap with S. We note that the boundaries of
the blue regions correspond to places where a membrane in
Xb is incident upon the surface S. If this membrane is incident
upon S from above, we will draw the corresponding boundary
as a solid line, while if it is incident from below, we will draw

FIG. 6. (Color online) (a) A blue cylinder S intersects with a red
membrane and two blue membranes (only part of S is shown for
clarity). One of the blue membranes is incident from above S and
the other from below. (b) We represent the intersections as a picture
drawn on the cylinder S. In this case, the picture consists of a red
loop, and two blue regions, one with a solid boundary and one with a
dotted boundary.

the boundary as a dotted line (Fig. 6). (Note that for this step
to be well defined, one needs to specify a convention for what
side of S is defined as “above” S and what side is defined as
“below” S. Equivalently, one needs to choose a normal vector
to S.) Putting this all together, the intersections Xb ∩ S and
Xr ∩ S can be represented by a picture, drawn on the cylinder
S, of the form shown in Fig. 7.

The value of fb(Xb,Xr,S) is completely determined by
the corresponding picture. Thus, fb can be thought of as a
complex-valued function defined on pictures. All that remains
is to specify this function. For reasons that will become clear
later on, it is most natural to describe fb implicitly, through
local constraint equations, rather than providing an explicit
formula. More specifically, we define fb in terms of the
constraint equations

fb = −fb (·) , (36a)

fb = −fb , (36b)

fb = fb (·) , (36c)

fb = fb , (36d)

fb = fb (·) , (36e)

fb = fb , (36f)

fb = fb , (36g)

fb = −fb , (36h)

fb = −fb , (36i)

fb = −fb (36j)
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FIG. 7. (Color online) A typical picture representing the inter-
sections of an (unlinked) blue cylinder with red and blue membranes.
Here, we draw the cylinder as a rectangle with top and bottom
identified and the left and right being the two ends of the cylinder.

where it is understood that the value of fb depends only on the
topology of the picture. That is, any two pictures that can be
smoothly deformed into one another have the same value of fb.
The meaning of the above constraint equations is as follows.
The first equation (36a) states that the value of fb for a picture
with a closed red loop is equal to the value of fb for the same
picture, without the loop, up to a factor of −1. Equation (36b)
states that two pictures that differ by the recoupling of red
curves have values of fb that differ by a factor of −1. The
remaining equations have a similar meaning.

In the above constraint equations, we have left out the
shading of the blue regions. But, it should be understood that
the blue regions are shaded in a consistent way on both sides of
the equations. For example, (36d) represents two constraints
with different shadings

fb = fb ,

fb = fb .

Similarly, (36j) also represents two constraints with different
shadings

fb = −fb ,

fb = −fb .

To complete the definition, we impose a boundary condition
on fb which states that fb = 0 if any of the red lines or
blue regions touch the boundaries of S. With this boundary
condition and the above constraint equations, the value of fb

on any picture can be related to one of the four “basic” pictures
shown in Table I. Thus, once we specify the value of fb on
these basic pictures, we will have completely specified fb and
therefore M1

b (S).
The values for fb on the basic pictures are shown in the

bottom row of Table I. These values are parametrized by
two integers qb,qr ∈ {0,1}. Hence, our construction actually
defines four different membrane operators. In principle, we
should label these operators by M1

(b,qb,qr ) to make the depen-
dence on qb,qr explicit. However, this notation is cumbersome
so we will denote the membrane operators by M1

b with the
understanding that M1

b is not fully defined until we specify
qb,qr . Similarly to the H0 model, these four different blue

TABLE I. (Color online) The function fb that defines the
(unlinked) blue cylinder operator is completely determined by its
values on four basic pictures that are drawn on the surface of the
cylinder. Here, the blue cylinder is represented by a rectangle with
upper and lower edges identified and with the left and right being the
two ends of the cylinder. The corresponding values of fb are shown
below the pictures. The integers qr ,qb = 0,1 define four different
functions fb and therefore four different cylinder operators.

fb 1 −eiπqr eiπqb −eiπ(qr+qb)

membrane operators create four different types of blue vortex
loops. These vortex loops differ from one another by the
amount of charge that they carry and we will label them by
(b,qb,qr ).

At this point, we have fully defined the membrane operator
M1

b (S). All that remains is to show that this membrane operator
has the required properties. That is, we need to show that
M1

b (S) creates blue vortex loops at its two boundaries and
nothing else. We will establish this fact in Sec. III C 5.

2. Cylindrical membrane operators for red vortex loops

To construct cylindrical membrane operators that create red
vortex loops, we follow exactly the same recipe as above but
with the roles of “red” and “blue” reversed. First, we define

M1
r (S)|Xb,Xr〉 = fr (Xb,Xr,S)|Xb,Xr + S〉, (37)

where fr (Xb,Xr,S) is a complex-valued function. We then
define fr (Xb,Xr,S) in terms of the two intersecting sets Xb ∩ S

and Xr ∩ S. As in the definition of fb, we represent Xb ∩ S

and Xr ∩ S in terms of a picture drawn on the surface of the
cylinder S, and we think of fr as a function defined on such
pictures. In this case, each picture consists of a collection
of blue lines and red regions, where the blue lines denote the
intersection Xb ∩ S, and the red regions denote the intersection
Xr ∩ S. We define the value of fr on each picture using
local constraint equations which are identical to Eqs. (36), but
with the red and blue colors reversed. With these constraint
equations, the value of fr on any picture can be related to
one of the four basic pictures shown in Table I (with the
colors reversed). We then define the value of fr on these basic
pictures, just as in Table I but with the colors reversed and qb

and qr exchanged. This procedure completely specifies fr and
therefore M1

r . Note that, like M1
b , this construction actually

gives four different membrane operators that are parametrized
by two integers qb,qr ∈ {0,1}. These membrane operators
create four different types of red vortex loops, which we denote
by (r,qb,qr ).

3. Cylindrical membrane operators for linked loops

We now have all the tools we need to create an excited state
with a pair of vortex loops: to do this we simply apply one
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of the above cylindrical operators to the ground state |�1〉.
But what if we want to build a state with more than two
vortex loops? One might try to make such a state by applying
multiple cylinder operators to the ground state. This approach
will work fine if the state we are trying to build does not
contain any linked loops. However, it will fail if any of the
loops are linked: the above membrane operators are simply
incapable of creating excited states with linked loops. To see
this, imagine we first apply a cylindrical membrane operator
M1

b (S) to the ground state, obtaining M1
b (S)|�1〉. This state

contains two blue vortex loop excitations located at the two
boundaries of the cylinder S. Now, suppose we apply another
cylinder operator M1

b (S ′) where S ′ is linked with one of these
loops. One might hope that the result would be a state with
linked vortex loops. Unfortunately, however, M1

b (S ′) simply
annihilates this state: M1

b (S ′)M1
b (S)|�1〉 = 0. To see this, note

that M1
b (S)|�1〉 is a superposition of membrane states |Xb,Xr〉,

where all the membranes in Xb and Xr form closed surfaces,
except at the two boundaries of S, where a blue membrane
terminates. Since S ′ is linked with one of the boundaries of S,
it follows that each of the two boundaries of S ′ must intersect
with blue membranes an odd number of times. In particular,
each boundary must have at least one intersection with a blue
membrane. But if we look back at the boundary conditions for
fb, we see that any state of this kind has fb(Xb,Xr,S

′) = 0, so
any state of this kind is annihilated by M1

b (S ′).
We therefore need to find another set of membrane operators

to create linked loops. We now define such membrane
operators. Before doing this, we first need to explain the basic
idea behind these operators. In general, we will be interested
in excited states containing a collection of vortex loops that are
all linked with a single “base loop” which can be either blue
or red. We will build such states with the help of two different
cylindrical membrane operators, one for each type of base
loop. The operator associated with the blue base is designed
to be applied to states containing a blue loop that links with
the cylinder S: when the operator is applied to such a state, it
creates two vortex loops at the ends of the cylinder S which
are linked with the original blue loop. On the other hand, when
it is applied to states that do not contain a blue loop that links
with the cylinder S, it simply annihilates them. The operator
associated with the red base has a similar property. This
structure is reminiscent of the cylinder operators constructed
in the previous two sections. In fact, the previously constructed
operators can be thought of as cylindrical membrane operators
associated with a trivial base: they only create loop excitations
when applied to states without any loops linked with S.

With this picture in mind, we now construct cylindrical
membrane operators for a red base loop and a blue base loop.
We begin by defining a cylindrical membrane operator that
creates blue vortex loops that are linked to a red base loop.
This operator is defined in almost exactly the same way as
the blue membrane operator M1

b (S) defined above. The only
difference is that we change the boundary condition on fb so
that it only takes nonzero values on pictures in which a single
red line touches the boundary of S at a fixed position y0, and
no blue regions touch the boundary. [See Fig. 8(a) for a typical
picture of this type.] Given this boundary condition and the
constraint equations (36) we can reduce any such picture to
one of the four basic pictures shown in the top panel of Table II.

FIG. 8. (Color online) Two typical pictures representing the in-
tersections between (linked) blue cylinders and red and blue mem-
branes. Here, we draw the cylinder as a rectangle with top and bottom
identified. Panel (a) shows a typical picture for a blue cylinder linked
with a red base loop. Panel (b) shows a typical picture for a blue
cylinder linked with a blue base loop.

We can therefore completely specify the membrane operator
once we specify the value of fb on these four basic pictures.
The values we choose are shown in Table II.

We next describe a cylindrical membrane operator which
creates a blue vortex loop which is linked to a blue base loop.
Here, we choose a boundary condition on fb so that it only
takes nonzero values on pictures in which a single thin blue
region touches the boundary of S at a fixed position y0, and
no red lines touch the boundary. [See Fig. 8(b) for a typical
picture of this type.] Given this boundary condition and the
constraint equations (36), we can reduce any such picture to
one of the four pictures shown in the bottom panel of Table II.
The value of fb on these four pictures is shown in Table II.

To complete the discussion, we need to explain how
to construct cylindrical membrane operators that create red
vortex loops linked to a blue or red base loop. These operators
are defined exactly like the two operators described above, but
with the roles of “red” and “blue” reversed.

Before concluding, we make one comment about our
notation: we will use the same symbol M1

b (S) to denote all
of the blue membrane operators whether they are associated
with a red base (top panel of Table II), a blue base (bottom
panel of Table II), or no base at all (Table I). Similarly, we will
denote all the red membrane operators by M1

r (S) independent
of what base they are associated with. This abuse of notation

TABLE II. (Color online) The function fb that defines the linked
blue cylinder operator is completely determined by its values on four
basic pictures that are drawn on the surface of the cylinder. The top
panel shows the four basic pictures for a blue cylinder linked to a red
base loop, while the bottom panel shows the pictures for a cylinder
linked to a blue base loop. The corresponding values of fb are shown
below the pictures. Here, qr ,qb = 0,1 define four different functions
fb and therefore four different cylinder operators for each panel.

fb 1 i · eiπqr i · eiπqb −eiπ(qr+qb)

fb 1 eiπqr eiπqb eiπ(qr+qb)
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will not introduce confusion since it will always be clear from
context which operator we have in mind.

4. Toroidal and spherical membrane operators

So far, we have only discussed cylindrical membrane oper-
ators. We now discuss how to construct membrane operators
with other topologies, in particular, toroidal and spherical
operators. We begin with the toroidal operators. Roughly
speaking, these operators can be obtained by connecting the
two ends of our cylinder operators. More precisely, we define
toroidal operators exactly like the cylindrical operators, with
only one modification: we replace the cylindrical boundary
conditions on fb and fr with periodic boundary conditions in
both directions of the torus.

Like cylindrical operators, we can build different torus
operators for different base loops. The blue torus operator
for a trivial base loop is defined by the values of fb shown
in Table I, while the blue torus operator for a red base loop
is defined by the values shown in the top panel of Table II.
Finally, the blue torus operator for a blue base loop is defined
by the values of fb shown in the bottom panel of Table II. Red
torus operators for various base loops can be defined in the
same way but with the red and blue colors exchanged.

It is important to keep in mind that the two coordinates
that describe the torus are not equivalent. One coordinate
parametrizes the movement of the loop in space, while the
other coordinate parametrizes the loop itself. Thus, to define a
torus operator, we not only have to specify the torus S, but we
also have to specify which coordinate has which meaning.

Let us now discuss spherical membrane operators. We can
define blue spherical operators following the same recipe as
the blue cylindrical operators. The only difference is that in the
spherical topology, every picture can be reduced to the vacuum
or (empty) picture by application of the constraints (36), in
contrast with the cylindrical case where every picture can be
reduced to one of the four pictures shown in Tables I or II.
Thus, in the spherical case it suffices to define the value of fb

on the vacuum picture. Here, we define fb(vacuum) = 1. Note
that there is only one type of blue spherical operator, unlike
the cylindrical or toroidal case where there are four types of
operators parametrized by qr,qb ∈ {0,1}.

In fact, we already encountered spherical membrane oper-
ators in the definition of the Hamiltonian H1: the operators
B1

c and B1
ĉ (15) can be thought of small spherical membrane

operators associated with a unit blue cube S = c or unit red
cube S = ĉ. To see that B1

c is a spherical membrane operator,
note that the picture drawn on the surface of the blue unit
cube has the property that the boundaries of the blue regions
are always solid lines, that is, there are no boundaries that are
dotted lines. The reason this is so is that all membranes in Xb

are incident on the cube from the outside, rather than the inside.
Now, since the picture on the surface of the cube does not
contain any dotted blue lines, the local constraints (36) simplify
considerably: in fact, we can throw out Eqs. (36e)–(36g)
and (36i) and (36j). The resulting equations can be solved
explicitly, leading to the following formula for fb:

fb(Xb,Xr,S) = (−1)#{red loops on c}i#{blue-red intersections on c}.

(38)

We can see that this formula, together with the definition (35),
agrees exactly with the definition of B1

c .

5. Showing that the membrane operators
have the required properties

Having defined the membrane operators M1
b (S) and M1

r (S),
we now show that they have the required properties. We will
focus on one case, namely, blue membrane operators M1

b (S)
that create unlinked loop excitations. The arguments for the
linked case are similar.

To begin, we show that if S is a torus, then M1
b (S) does not

create any excitations at all. That is, we show

M1
b (S)|�1〉 ∝ |�1〉. (39)

To establish this result, we first rewrite (39) in a more
convenient form. Multiplying both sides by 〈Xb,Xr | gives

〈Xb,Xr |M1
b (S)|�1〉 ∝ 〈Xb,Xr |�1〉. (40)

Next, using the definition of M1
b (S) (35), we can rewrite this

as

f ∗
b (Xb,Xr,S)�1(Xb + S,Xr ) ∝ �1(Xb,Xr ). (41)

To proceed further, we observe that Eq. (41) is equivalent to
the relation

f ∗
b (Xb,Xr,S)�1(Xb + S,Xr )

f ∗
b (X′

b,X
′
r ,S)�1(X′

b + S,X′
r )

= �1(Xb,Xr )

�1(X′
b,X

′
r )

(42)

for any two closed membrane configurations Xb,Xr and
X′

b,X
′
r . Finally, we use the fact that fb is a pure phase to

rewrite this equation as

fb(X′
b,X

′
r ,S)

fb(Xb,Xr,S)
= �1(Xb,Xr )�1(X′

b + S,X′
r )

�1(X′
b,X

′
r )�1(Xb + S,Xr )

. (43)

Our task is now to prove Eq. (43). First, we claim that it
suffices to prove (43) for the case where (X′

b,X
′
r ) and (Xb,Xr )

only differ locally, i.e., only differ in some small region.
The reason it is enough to consider this case is that we can
get from any membrane configuration (Xb,Xr ) to any other
configuration (X′

b,X
′
r ) by a series of local changes:

(Xb,Xr ) → (Xb1,Xr1) → (Xb2,Xr2) . . . → (X′
b,X

′
r ).

If (43) holds for each pair (Xbi,Xri), (Xb(i+1),Xr(i+1)) then
once we multiply these relations together, we see that it
automatically holds for (X′

b,X
′
r ) and (Xb,Xr ).

There are two cases to consider: the region where (X′
b,X

′
r )

and (Xb,Xr ) differ may overlap S or not overlap S. In
the second case, it is easy to see that (43) holds. Indeed,
in this case the left-hand side of (43) is equal to 1 since
fb only depends on the membrane configuration in the
neighborhood of S and hence fb(X′

b,X
′
r ,S) = fb(Xb,Xr,S).

Similarly, the right-hand side of (43) is also equal to 1 since the
ratio �1(X′

b,X
′
r )/�1(Xb,Xr ) only depends on the membrane

configuration in the region where (X′
b,X

′
r ) and (Xb,Xr ) differ

from one another.
All that remains is the case where (X′

b,X
′
r ) and (Xb,Xr )

differ in a small region that overlaps S. In this case, the ratio
on the left-hand side of (43) is directly determined by the
local constraint equations (36) for fb. The key point is that
these constraint equations were chosen specifically so that a
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FIG. 9. (Color online) A blue torus operator Mb(S) acts on two
slightly different membrane configurations (a) (Xb,Xr ) and (b)
(X′

b,X
′
r ). Here, Xb = X′

b is a blue sphere, while Xr consists of two red
spheres and X′

r consists of a bigger red sphere obtained by merging
the two red spheres in Xr .

solution to these equations will automatically obey (43). This
is easiest to see by example. Consider a blue torus operator
M1

b (S) acting on the two configurations (Xb,Xr ) and (X′
b,X

′
r )

shown in Fig. 9. Here, Xb = X′
b consists of a single blue

sphere, while Xr consists of two red spheres and X′
r consists

of single red sphere obtained by merging together the two
spheres in Xr . In this case,

fb(Xb,Xr,S) = fb

( )
,

fb(X′
b,X

′
r ,S) = fb

( )

so that

fb(X′
b,X

′
r ,S)

fb(Xb,Xr,S)
=

fb

( )

fb

( ) = −1 (44)

according to (36b). On the other hand, it is easy to see that

�1(Xb,Xr )

�1(X′
b,X

′
r )

= 1,
�1(Xb + S,Xr )

�1(X′
b + S,X′

r )
= −1

using the explicit formula for �1 (2). We conclude that

�1(Xb,Xr )�1(X′
b + S,X′

r )

�1(X′
b,X

′
r )�1(Xb + S,Xr )

= −1 (45)

so that Eq. (43) is satisfied in this case.
The above example serves two purposes. First, it demon-

strates, in at least one case, that fb obeys Eq. (43). Second,
it reveals where the constraint equation (36b) comes from: it
should be clear that we chose the factor of −1 in this equation
specifically to ensure that (43) was satisfied. Similarly, one can
check that the other constraint equations (36) ensure that fb

obeys (43) in other cases.
This concludes our argument showing that the torus

operator M1
b (S) does not create any excitations when applied

to the ground state. Next, we need to show that the cylinder
operator M1

b (S) does not create any excitations except at the
two boundaries of S. This claim can be established using a
similar argument to the torus case, but we will not repeat
the derivation here. Instead, we simply observe that the
cylinder and torus operators look identical except near the two
boundaries of the cylinder. Therefore, it is intuitively clear
that since the torus operator does not create any excitations,
the same must be true of the cylinder operator away from its
boundaries.

At this point, we have argued that the cylinder operator
M1

b (S) creates blue loop excitations at its two boundaries

and no other excitations anywhere else. However, we are not
quite finished: we still need to verify one more property of
the cylinder operator M1

b (S). Recall that H1 supports four
topologically distinct types of blue loop excitations (b,qb,qr )
which differ from one another by attaching red and blue
charges (see Sec. III B 2). We need to check that M1

b (S) creates
exactly one of these excitations, and not a linear superposition
of different types of excitations. In other words, we need to
check that M1

b (S) creates loop excitations that are eigenstates
of braiding measurements.

To see that M1
b creates braiding eigenstates, we make use

of a result from Appendix B. In that appendix, we show that
the cylinder operators M1

b (S) are guaranteed to create braiding
measurement eigenstates provided that fb is multiplicative in
the sense that

fb(Xb,Xr,S ∪ S ′) = fb(Xb,Xr,S)fb(Xb,Xr,S
′) (46)

for any two cylinders S and S ′ that share a common boundary
and any membrane configuration (Xb,Xr ) whose intersection
with the common boundary obeys the appropriate cylinder
operator boundary condition.

In view of this result, we only have to show that fb obeys
condition (46). We go through this calculation in Appendix B,
and we show that fb does indeed obey (46) provided that the
values of fb on the four basic pictures are those shown in
Table I. In fact, this is why we picked the particular values
shown in that table: we chose those values to ensure that fb

obeys Eq. (46).
To summarize, we have shown that the cylinder operators

M1
b (S) create blue loop excitations at their two boundaries

and no other excitations anywhere else. We have also shown
that these blue loop excitations are eigenstates of braiding
measurements. This establishes that the cylinder operators
have all the required properties.

D. Labeling scheme for loop excitations

In this section, we discuss some subtleties related to
the labeling of loop excitations. As we have emphasized
previously, both the H0 and H1 models support four different
kinds of blue loop excitations and four different kinds of red
loop excitations. We label the former by (b,qb,qr ) and the latter
by (r,qb,qr ) where qb,qr = 0,1. In practice, we first assign
labels to the membrane operators; we then assign labels to
the loop excitations according to which membrane operator
creates them.

Now, an important question is how we choose which
loop excitations are labeled by (b,0,0) and (r,0,0). We will
call these excitations neutral loops. Once we decide which
blue and red loops should be called neutral, the labeling of
all the other excitations is naturally fixed: for example, we
assign the label (b,qb,qr ) to the loop that is obtained by
attaching qb blue charge and qr red charge to the neutral loop,
(b,0,0).

For the case of unlinked loops, there is a natural choice
for which loop should be called neutral: the neutral loop is the
unique loop that can be shrunk down to a point and annihilated
by a local operator. Thus, for the case of unlinked loops there
is a canonical labeling scheme. This is the labeling scheme we
use here. Indeed, in the case of H0, we assign (b,0,0) to the
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loop created by the operator (32), and one can readily verify
that this loop is the unique blue loop that can be annihilated
locally. Similarly, in the case of H1, we assign (b,0,0) to the
loop created by the membrane operator defined in Table I
with qb = qr = 0 and one can also check that this loop can
be annihilated locally. [One way to see this is to note that if
we shrink the two ends of the cylinder to make a sphere, the
operator defined by Table I reduces to the spherical membrane
operator defined by (38).]

In contrast, for linked loops, there is no canonical way
to define which loops are neutral. Therefore, we make this
assignment arbitrarily. In other words, for each base loop,
we arbitrarily choose one of the blue linked loops and one
of the red linked loops, and we call them neutral. In the case
of H1, this arbitrary choice enters in how we parametrize the
values in Table II which define the membrane operators and
hence define the loop excitations. As we show in Appendix B,
the values in Table II are obtained by solving certain algebraic
equations. These equations have four different solutions, which
define four different membrane operators. All four are on
an equal footing, but we simply picked one and labeled
it by qb = 0, qr = 0. The labeling of the other solutions
is then completely fixed. We could replace qb → qb + 1 or
qr → qr + 1, for either the top or bottom panel of Table II,
and the resulting table would define an equally valid labeling
convention.

The arbitrariness of our labeling scheme has an important
consequence: because we picked the labels in an arbitrary way,
there is no sense in which an unlinked loop of type (b,qb,qr )
is the “same” type as a linked loop of type (b,qb,qr ). More
generally, we cannot sensibly compare loops that are linked
with different base loops. Each base loop effectively defines
its own universe of excitations.

IV. BRAIDING STATISTICS OF EXCITATIONS

In the previous section, we constructed operators that create
charges and vortex loops for the H0,H1 models. In this section,
we will use these operators to compute the braiding statistics
of these excitations. We consider four types of processes: (1)
processes involving two charges, (2) processes involving a
charge and a vortex loop, (3) processes involving two vortex
loops, and finally (4) “three-loop processes” involving two
vortex loops that are both linked with a third loop. We
find that the two models have the same braiding statistics
except for the last process; when we investigate the three-loop
braiding process, we find a distinction between the two
models which implies that they belong to distinct topological
phases.

A. Braiding two charges

To compute the statistics of the charge excitations, we use
the “hopping operator algebra” derived in Ref. [19]. This
algebra relates the exchange statistics of particle excitations to
the commutation properties of the string operators that create
these particles. To see how this works, let us consider the blue
charge excitations in the H0 model. According to the hopping
operator algebra, the exchange statistics of these excitations
can be read off from the phase factor in the commutation

FIG. 10. The exchange statistics of the charge excitations can be
computed from the commutation algebra (47) of three string operators
acting on three paths P1,P2,P3 that share a common end point.

relation

W 0
b (P1)W 0

b (P2)W 0
b (P3)|�0〉

= eiθW 0
b (P3)W 0

b (P2)W 0
b (P1)|�0〉, (47)

where P1,P2,P3 are three paths arranged in the geometry of
Fig. 10 and |�0〉 is the ground state of H0. That is, if θ = 0,
then the blue charges are bosons, while if θ = π , the blue
charges are fermions. (Other values of θ are not possible in
3D.) If we examine the form of the string operators, we can see
that θ = 0 since the string operators W 0

b (P1),W 0
b (P2),W 0

b (P3)
[Eq. (30)] all commute with one another. We conclude that
the blue charges are bosons in the H0 model. Using identical
reasoning, we can see that the blue and red charges are bosons
in both models.

B. Braiding a charge and a vortex loop

Next, we compute the statistical Berry phase associated
with braiding a charge around a vortex loop. More specifically,
let us consider the H0 model and imagine braiding a blue
charge around a blue vortex loop. The statistical phase θ for
such a process can be read off from the commutation algebra
of the corresponding string operator and membrane operator

M0
b (S)W 0

b (P )|�0〉 = eiθW 0
b (P )M0

b (S)|�0〉, (48)

where P is a closed path and S is a cylindrical surface, arranged
as in Fig. 11(a). To see where this relation comes from, note
that the operator M0

b (S) describes a process in which two
vortex loops are created and moved to the ends of the cylinder
S, while the operator W 0

b (P ) describes a three-step process in
which two charges are created out of the vacuum, one of them
is braided around the path P , and then the two annihilated with
one another. With this interpretation, the right-hand side of (48)
describes a process in which two vortex loops are created and

FIG. 11. (Color online) (a) The statistical phase associated with
braiding a charge around a loop can be computed from the
commutation algebra (48) of a string operator acting along a path
P , and a membrane operator acting along a cylinder S. (b) The
phase associated with braiding two loops around one another can
be computed from the commutation algebra (49) of two membrane
operators, one acting on a cylinder S and the other acting on a torus S ′.

035115-13



CHIEN-HUNG LIN AND MICHAEL LEVIN PHYSICAL REVIEW B 92, 035115 (2015)

then a charge is braided around P , while the left-hand side
describes a process in which a charge is braided around P

first, and then two vortex loops are created. Clearly, the phase
difference between these two processes is the statistical phase
associated with braiding a charge around a vortex loop.

Remembering the definition of M0
b (S) and W 0

b (P ), we can
see that these operators anticommute with each other. We
conclude that braiding a blue charge around a blue vortex loop
results in a statistical phase of π . Similarly, we can see that
M0

r (S) and W 0
r (P ) anticommute with each other so braiding a

red charge around a red vortex loop gives a phase of π . On the
other hand, if one braids a red charge around a blue vortex loop
or a blue charge around a red vortex loop, the statistical phase
vanishes since these operators commute with one another.

A similar calculation for the H1 model gives identical
results. Thus, the two models share the same statistics between
charges and vortex loops. We note that these statistical
phases agree with the Aharonov-Bohm phases associated with
braiding a charge around a vortex loop in Z2 × Z2 gauge
theory. This is not a coincidence: as we mentioned in the
Introduction, the two models can be viewed as two different
types of Z2 × Z2 gauge theories.

C. Braiding two vortex loops

1. H0

We now consider, for the H0 model, the statistical phase
associated with braiding a vortex loop around another vortex
loop [Fig. 1(a)]. For example, let us consider braiding a blue
vortex loop around another blue vortex loop. Similarly to
Eq. (48), the statistical phase θ0

bb can be computed from the
commutation relation

M0
b (S ′)M0

b (S)|�0〉 = eiθ0
bbM0

b (S)M0
b (S ′)|�0〉, (49)

where S is a cylinder and S ′ is a torus, arranged as in Fig. 11(b).
Examining the definition of the membrane operators (32), we
can see that they commute with one another so that θ0

bb = 0.
Likewise, we can see that there is no statistical phase associated
with braiding a red loop around a red loop or a red loop around
a blue loop since the corresponding membrane operators all
commute with one another.

The above results apply to the blue vortex loop and red
vortex loops labeled by (b,0,0) and (r,0,0). One might also
wonder about the braiding statistics of more general vortex
loops (b,qb,qr ) and (r,qb,qr ). The braiding statistics of these
more general vortex loops can be computed using the same
approach as above. The only difference is that the membrane
creation operators are slightly different in this case: they
are obtained by multiplying M0

b (or M0
r ) by one of the

string operators W 0
b (P ), W 0

r (P ′), or W 0
b (P )W 0

r (P ′), where the
paths P,P ′ run along the length of the cylinder. Substituting
these modified membrane operators into Eq. (49), a simple
calculation shows that the phase associated with braiding a
blue vortex loop (b,qb,qr ) around another blue vortex loop
(b,q ′

b,q
′
r ) is given by

θ0
bb = π (qb + q ′

b). (50)

Similarly, the phase associated with braiding a red vortex loop
(r,qb,qr ) around another red vortex loop (r,q ′

b,q
′
r ) is

θ0
rr = π (qr + q ′

r ), (51)

while the phase associated with braiding a red vortex loop
(r,qb,qr ) around a blue vortex loop (b,q ′

b,q
′
r ) is

θ0
rb = π (qb + q ′

r ). (52)

These expressions have a natural interpretation in terms of
Aharonov-Bohm phases: the first term in each formula is
the statistical phase associated with braiding the charge on
the first vortex loop around the flux of the second loop,
while the second term is the phase associated with braiding the
flux of the first vortex loop around the charge on the second
loop.

2. H1

Similarly to the H0 case, the statistical phase θ1
bb associated

with braiding a blue vortex loop around a blue vortex loop in
the H1 model can be read off from the commutation algebra
of the corresponding membrane operators:

M1
b (S ′)M1

b (S)|�1〉 = eiθ1
bbM1

b (S)M1
b (S ′)|�1〉. (53)

However, the membrane operators M1
b are more complicated

than their counterparts in the H0 model, so it is more difficult
to apply Eq. (53). To deal with this issue, we now derive a
simpler version of Eq. (53) which is more convenient for our
purposes. The first step is to rewrite Eq. (53) as∑

X

M1
b (S ′)M1

b (S)|X〉〈X|�1〉

= eiθ1
bb

∑
X

M1
b (S)M1

b (S ′)|X〉〈X|�1〉,

where |X〉 ≡ |Xb,Xr〉. Next, we use the fact that
M1

b (S ′)M1
b (S)|Xb,Xr〉 ∝ |Xb + S + S ′,Xr〉, which implies

that all of the states M1
b (S ′)M1

b (S)|X〉 that appear in the above
sum are linearly independent from one another. It follows that
the above equality must hold for each term separately. Hence,
we must have

M1
b (S ′)M1

b (S)|X〉 = eiθ1
bbM1

b (S)M1
b (S ′)|X〉 (54)

for every membrane state |X〉 that has a nonzero amplitude in
the state |�1〉.

We will now use (54) to compute the statistics of the loops
in the H1 model. To this end, we set |X〉 = |0,0〉, the “no-
membrane” state. We then define |Y 〉 = |S,0〉, |Y ′〉 = |S ′,0〉,
and |Z〉 = |S + S ′,0〉. With this notation, the left side of (54)
can be computed as

M1
b (S ′)M1

b (S)|X〉 = M1
b (S ′)fb(X,S)|Y 〉

= fb(Y,S ′)fb(X,S)|Z〉. (55)

Similarly, the term on the right side is given by

M1
b (S)M1

b (S ′)|X〉 = M1
b (S)fb(X,S ′)|Y ′〉

= fb(Y ′,S)fb(X,S ′)|Z〉. (56)
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Comparing these two expressions with (54), we derive

eiθ1
bb = fb(Y,S ′)fb(X,S)

fb(Y ′,S)fb(X,S ′)
. (57)

To complete the calculation, we compute the value of fb for
each of these configurations

fb(X,S) = fb

( )
= 1,

fb(X,S ′) = fb

( )
= 1,

(58)

fb(Y,S ′) = fb

( )
= eiπqb′ ,

fb(Y ′,S) = fb

( )
= eiπqb .

Substituting these values into (57), we find that the statistical
phase associated with braiding a loop (b,qb,qb) around another
loop (b,q ′

b,q
′
b) is

θ1
bb = π (qb + q ′

b). (59)

We note that this result is identical to the statistical phase
θ0
bb (50) in the H0 model. Similarly, it is easy to check that

the phase associated with braiding two red loops around one
another agrees with (51), while the phase associated with
braiding a red loop around a blue loop agrees with (52). Thus,
the two models share the same two-loop braiding statistics. In
fact, the agreement between the two models is not surprising
since the two models are equivalent toZ2 × Z2 gauge theories,
and in such systems the two-loop braiding statistics always has
an Aharonov-Bohm form, as explained in Ref. [11].

D. Three-loop braiding

Finally, we discuss the three-loop braiding statistics in the
two models. Specifically, we consider a braiding process in
which a loop is braided around another loop, while both are
linked to a third “base” loop [Fig. 1(b)]. Unlike the other
processes we have considered until now, we will see that the
two models can be distinguished by their three-loop statistics.

1. H0

First, we compute the statistics in the H0 model. As in the
two-loop case, the three-loop braiding statistics can be read off
from the commutation algebra for the membrane operators. For
example, the statistical phase θ0

bb,r associated with braiding a
blue vortex loop around a blue vortex loop, while both are
linked to a red base loop, can be obtained from

M0
b (S ′)M0

b (S)|�ex〉 = eiθ0
bb,r M0

b (S)M0
b (S ′)|�ex〉, (60)

where S is a cylinder, S ′ is a torus, and |�ex〉 is an excited state
with a red vortex loop that links with both S and S ′ (Fig. 12).
Remembering that the membrane operators M0

b all commute
with each other, we deduce that θ0

bb,r = 0. In the same way, we
can see that θ0

bb,b = 0.
In the above calculation, we implicitly assumed loops of

the form (b,0,0). If we instead consider a process in which a
general vortex loop (b,qb,qr ) is braided around another loop

FIG. 12. (Color online) The statistical phase associated with a
three-loop braiding process can be computed from the commutation
algebra of two membrane operators, one acting along the cylinder S

and the other acting along the torus S ′. Here, both S and S ′ are linked
with a base loop which lies along the boundary of the disk D.

(b,q ′
b,q

′
r ) with either a red base loop or a blue base loop, then,

just as in the two-loop case (50), one finds

θ0
bb,r = θ0

bb,b = π (qb + q ′
b). (61)

Similarly, if we braid a red loop (r,qb,qr ) around another red
loop (r,q ′

b,q
′
r ) with either base, the statistical phase is

θ0
rr,r = θ0

rr,b = π (qr + q ′
r ). (62)

Finally, braiding a red loop (r,qb,qr ) around a blue loop
(b,q ′

b,q
′
r ) with either base gives the phase

θ0
rb,r = θ0

rb,b = π (qb + q ′
r ). (63)

The agreement with the two-loop statistics (50)–(52) is to be
expected since the membrane operators M0

b (S), M0
b (S ′) obey

the same commutation algebra independent of whether they
act on the ground state |�0〉 (as in the two-loop case) or an
excited state |�ex〉 (as in the three-loop case).

2. H1

We begin by computing the statistical phase associated with
braiding a blue vortex loop around another blue vortex loop,
while both are linked with a red base loop. As in the H0 case,
the statistical phase θ1

bb,r is given by

M1
b (S ′)M1

b (S)|�ex〉 = eiθ1
bb,r M1

b (S)M1
b (S ′)|�ex〉, (64)

where S is a cylinder, S ′ is a torus, and |�ex〉 is an excited state
with a red vortex loop that links with both S and S ′ (Fig. 12).
Following the same logic as in Sec. IV C 2, it is straightforward
to deduce an alternative and more convenient form of Eq. (64):

M1
b (S ′)M1

b (S)|X〉 = eiθ1
bb,r M1

b (S)M1
b (S ′)|X〉, (65)

where |X〉 ≡ |Xb,Xr〉 is any membrane state that has nonzero
overlap with |�ex〉. To compute θ1

bb,r , we set |X〉 = |0,D〉
where D is a disk with a boundary along the red vortex loop.
We then define |Y 〉 = |S,D〉, |Y ′〉 = |S ′,D〉, and |Z〉 = |S +
S ′,D〉. With this notation, the left-hand side of (65) can be
computed as

M1
b (S ′)M1

b (S)|X〉 = fb(Y,S ′)fb(X,S)|Z〉, (66)

while the expression on the right-hand side can be written
as

M1
b (S)M1

b (S ′)|X〉 = fb(Y ′,S)fb(X,S ′)|Z〉. (67)

The three-loop statistics is then given by

eiθ1
bb,r = fb(Y,S ′)fb(X,S)

fb(Y ′,S)fb(X,S ′)
. (68)
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To complete the calculation, we need to compute the values of
fb on each of these configurations. We have

fb(X,S) = fb

( )
= 1,

fb(X,S ′) = fb

( )
= 1,

(69)

fb(Y,S ′) = fb

( )
= ieiπq ′

b ,

fb(Y ′,S) = fb

( )
= −ieiπqb ,

where the “minus” sign in the last equation comes from using
the local rules (36) to reduce the picture to one of the basic
pictures in Table II. Substituting these values into (68), we
find that the statistical phase associated with braiding a loop
(b,qb,qr ) around another loop (b,q ′

b,q
′
r ), while both are linked

to a red base loop, is given by

θ1
bb,r = π + π (qb + q ′

b). (70)

In a similar manner, it is easy to show that the phase associated
with braiding a red loop (r,qb,qr ) around another red loop
(r,q ′

b,q
′
r ), while both are linked to a red base, is

θ1
rr,r = π (qr + q ′

r ). (71)

As another example, let us compute the phase associated
with braiding a red loop around a blue loop, with a red base.
The analog of Eq. (65) in this case is

M1
r (S ′)M1

b (S)|X〉 = eiθ1
rb,r M1

b (S)M1
r (S ′)|X〉, (72)

where |X〉 ≡ |Xb,Xr〉 is any state that has nonzero overlap
with |�ex〉 and |�ex〉 is an excited state with a red vortex
loop that links with both S and S ′. Letting |X〉 = |0,D〉,
|Y 〉 = |S,D〉, |Y ′〉 = |0,D + S ′〉, and |Z〉 = |S,D + S ′〉, we
derive

eiθ1
rb,r = fr (Y,S ′)fb(X,S)

fb(Y ′,S)fr (X,S ′)
. (73)

Proceeding as before, we find

fb(X,S) = fb

( )
= 1,

fr (X,S ′) = fr

( )
= 1,

(74)

fr (Y,S ′) = fr

( )
= eiπq ′

b ,

fb(Y ′,S) = fb

( )
= ieiπqr .

Substituting these values into (73), we conclude that the
statistical phase associated with braiding a loop (r,qb,qr )
around another loop (b,q ′

b,q
′
r ), while both are linked to a red

base loop, is

θ1
rb,r = −π

2
+ π (qb + q ′

r ). (75)

So far, we have only discussed braiding processes involving
a red base loop. We can find the braiding statistics associated
with a blue base loop, by simply switching the roles of “red”
and “blue”:

θ1
rr,b = π + π (qr + q ′

r ),

θ1
bb,b = π (qb + q ′

b), (76)

θ1
br,b = −π

2
+ π (qr + q ′

b).

Putting together Eqs. (70), (71), (75), and (76), we have found
all the three-loop braiding statistics of the H1 model. (Actually,
one quantity that we have not computed is the exchange
statistics of the loops. However, this quantity is not necessary
for our purposes since the mutual statistics computed above is
sufficient to distinguish the two models.)

Before concluding this section, we would like to mention
that the three-loop statistics for H1 appears to be identical
to the three-loop statistics of one of the Z2 × Z2 Dijkgraaf-
Witten models [17,33]. To see this, we follow the notation of
Refs. [11,15] and we summarize the three-loop statistics for
H1 in terms of the quantity 	ij,k ≡ 2θ1

ij,k where the indices
i,j,k ∈ {r,b}, and 	ij,k are defined modulo 2π . Translating
Eqs. (70), (71), (75), and (76) into the 	 variables gives

	bb,r = 	rr,r = 	rr,b = 	bb,b = 0,

	rb,r = 	br,b = π. (77)

If we compare these data to the results of Ref. [11], we can
see that it matches the three-loop statistics for the Z2 × Z2

Dijkgraaf-Witten model labeled by (p1 = 1, p2 = 1). Based
on this fact, we conjecture that H1 belongs to the same phase
as this Dijkgraaf-Witten model.5

3. Comparing the three-loop statistics in the two models

With the above results, we now show that the H0 and H1

models have distinct three-loop statistics. To see an example
of a difference between the two models, consider the formula
for θ1

rb,r [Eq. (75)]. This formula implies that, in the H1 model,
if we braid a red loop around a blue loop, while both are linked
to a red loop the resulting phase is ±π/2 depending on what
type of red and blue loops are being braided. In contrast, in
the H0 model, we can see from (61), (62), and (63) that if we
braid any two loops around one another, the resulting phase is
always 0 or π , independent of the choice of base loop or what
loops are being braided.

For another example of a difference, consider the formula
for θ1

bb,r [Eq. (70)] for the case where the two blue loops
(b,qb,qr ), (b,q ′

b,q
′
r ) are identical, i.e., qb = q ′

b and qr = q ′
r . In

this case, θ1
bb,r = π . This means that if we braid two identical

blue loops around one another while they are both linked to a
red loop, the resulting statistical phase is π in the H1 model.
On the other hand, in the H0 model, we can see from (61), (62),

5In fact, if our conjecture is correct, then H1 also belongs to the same
phase as the Dijkgraaf-Witten models labeled by (1,0) and (0,1) since
the three Dijkgraaf-Witten models labeled by (1,1), (1,0), and (0,1)
all belong to the same phase, when viewed as spin models rather than
gauge theories.
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and (63) that if we braid any two identical loops around one
another, the resulting phase is always 0, independent of which
loops or base loops are involved.

From the above examples, it is clear that there is no way
to map the loop excitations of H0 onto the loop excitations of
H1 in such a way that the corresponding loops have the same
statistics. Importantly, we can rule out all possible mappings
between the two sets of loop excitations including those that
change the “colors” or “charges” of the loop, e.g., that map the
excitation (b,1,0) in H0 onto (r,0,1) in H1. (This generality
is important because the “colors” and “charges” of the loops
have no physical meaning in this context except as a scheme
for labeling excitations.) We conclude that the two models
have physically distinct three-loop statistics, and hence must
belong to different phases.

V. CONCLUSION

In this paper, we have presented an explicit computation of
the three-loop braiding statistics of two spin models H0,H1.
The key step in our analysis was our construction of membrane
operators that create and move loop excitations. With the help
of these operators, we were able to implement the three-loop
braiding process on the lattice and find the associated statistical
phase in each of the models. While technically complicated,
this membrane operator approach has the advantage that it is
more direct than previous calculations based on dimensional
reduction [11] or modular transformations on a 3D torus
[12,13]. An additional feature of our results is that they provide
a concrete demonstration of the utility of three-loop braiding
statistics for distinguishing 3D gapped phases: indeed, we
have shown that the two models H0 and H1 share the same
particle exchange statistics and the same particle-loop and
loop-loop braiding statistics. The only way to see that these
models belong to distinct phases is to examine their three-loop
braiding statistics.

The discussion in this paper raises an important question,
namely, whether three-loop braiding statistics, together with
particle exchange statistics and particle-loop braiding statis-
tics, provides enough data to uniquely distinguish all 3D
gapped phases. The existence of the 3D cubic code model
[34] suggests that the answer to this question may be “no”
in general. Indeed, the cubic code model does not support
deconfined particlelike and looplike excitations like the models
studied in this paper, so it is not clear whether one can define
particle or loop braiding statistics for this system. In light of
this example, a more natural question may be whether the
above braiding statistics data are sufficient to distinguish an
appropriate subset of 3D gapped phases, such as the “gapped
quantum liquids” defined in Ref. [35]. As far as we know, this
is an open question: we are not aware of any counterexamples
or arguments one way or the other.

One direction for future work would be to investigate the
implications of our results for symmetry-protected topological
(SPT) phases. Indeed, as discussed in the Introduction, both
H0 and H1 can be thought of as Z2 × Z2 gauge theories
obtained by gauging the Z2 × Z2 symmetry of two different
spin models. The H1 model comes from a spin model [24]

belonging to a nontrivial SPT phase, while H0 comes from a
spin model in a trivial SPT phase. Following the same approach
as in Ref. [36], it should be possible to derive bulk and surface
properties of the two SPT phases from the braiding statistics
in the associated gauge theories H0,H1. Results of this kind
will be discussed in a separate publication [32].

Another direction would be to construct exactly soluble
lattice models that can realize more general types of 3D
gapped phases. For example, since the two models H0,H1

are built out of two species of intersecting membranes, it may
be possible to build more general models by considering more
species of membranes or by allowing membranes to branch,
in analogy with the string-net models of Ref. [20]. Given our
suspicion that H0,H1 belong to the same phase as Z2 × Z2

Dijkgraaf-Witten models, a key question is whether such a
construction can realize any phases that cannot be realized
by previously known exactly soluble models, such as the 3D
Dijkgraaf-Witten models [17,33] or 3D string-net models [20].
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APPENDIX A: PROVING THE IDENTITIES (24),
(26), AND (27)

In this section, we prove a few identities involving the
operators Al,Al̂,B

0
c ,B

0
ĉ ,B

1
c ,B

1
ĉ and the wave functions |�0〉

and |�1〉. We used these identities when we solved the two
models H0 and H1. The first set of identities state that |�0〉
and |�1〉 are eigenstates of the Al,Al̂ operators:

Al|�0〉 = Al̂|�0〉 = |�0〉,
Al|�1〉 = Al̂|�1〉 = |�1〉. (A1)

Similarly, the second set of identities state that |�0〉 is an
eigenstate of B0

c ,B
0
ĉ and |�1〉 is an eigenstate of B1

c ,B
1
ĉ :

B0
c |�0〉 = B0

ĉ |�0〉 = |�0〉, (A2)

B1
c |�1〉 = B1

ĉ |�1〉 = |�1〉. (A3)

The last identity states that the B1
c ,B

1
ĉ operators commute with

one another:

[
B1

c ,B
1
c′
] = [

B1
ĉ ,B

1
ĉ′
] = [

B1
c ,B

1
ĉ

] = 0. (A4)

We begin by deriving Eqs. (A1). These relations are
obvious since |�0〉 and |�1〉 are linear superpositions of closed
membrane configurations |Xb,Xr〉, which by definition obey
Al|Xb,Xr〉 = Al̂|Xb,Xr〉 = |Xb,Xr〉. The relation (A2) is also
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easy to prove: first, we note that

B0
c |�0〉 =

∑
closed Xb,Xr

B0
c |Xb,Xr〉

=
∑

closed Xb,Xr

|Xb + c,Xr〉

=
∑

closed X′
b,Xr

|X′
b,Xr〉

= |�0〉, (A5)

where we made the change variables X′
b = Xb + c in the

third line. Then, using the fact that B0
c = 1

2 (1 + B0
c ), we

immediately derive the required relation B0
c |�0〉 = |�0〉. The

same argument works for B0
ĉ .

The relation (A3) requires a little more work. First, we note
that

B1
c |�1〉 =

∑
closed Xb,Xr

(−1)Ng(Xb,Xr )B1
c |Xb,Xr〉

=
∑

closed Xb,Xr

(−1)Ng(Xb,Xr )(−1)mc inc |Xb + c,Xr〉,

(A6)

where Ng is the number of green loops in the configuration
Xb,Xr and mc,nc are integer-valued functions of Xb,Xr which
are defined in Sec. II D 2. To proceed further, we use the
following identity:

(−1)Ng(Xb+c,Xr )−Ng (Xb,Xr ) = (−1)mc(Xb,Xr )inc(Xb,Xr ). (A7)

Here, we explicitly show the dependence of mc and nc on
Xb,Xr , for clarity. Equation (A7) says that when we add a blue
cube, i.e., Xb → Xb + c, the resulting change in the parity of
the number of green loops Ng can be computed in terms of mc

and nc. This relation is nontrivial because (−1)Ng depends on
the global properties of the membrane configuration Xb,Xr ,
while mc and nc only depend on local properties of Xb,Xr in
the neighborhood of the cube c.

To derive the above identity (A7), we first recall an
analogous, but simpler, identity involving 2D loop models.
The 2D identity applies to 2D loop configurations X that live
on the links of a 2D planar trivalent lattice. It states that if we
add a loop around the boundary of a single plaquette p to form
a new loop configuration X + p, then

(−1)Nloop(X+p)−Nloop(X) = (−1)inp(X), (A8)

where Nloop(X) and Nloop(X + p) are the number of loops
in the configurations X and X + p, and where np(X) is the
number of occupied legs of the plaquette p. (See Fig. 13
for an example.) The 2D identity (A8) is closely related to
the 2D exactly soluble double-semion model of Ref. [20],
and can be established using the local rules that define that
model.

To derive the 3D identity (A7) from its 2D cousin (A8),
it is helpful to think about the configuration of green loops
in Xb,Xr , for a fixed red membrane configuration Xr . These
green loops lie on the surfaces of the red membranes Xr . When
we add a blue cube, this effectively adds a collection of green
loops along all the red membranes that intersect the cube.

FIG. 13. (Color online) An example of the 2D identity (A8) for
the case of loops living on the honeycomb lattice. Panel (a) shows
a loop configuration X, while panel (b) shows the corresponding
configuration X + p. In this example, Nloop(X) = 2 and Nloop(X +
p) = 1. Also, np(X) = 4 since four of the six legs adjacent to the
plaquette p are occupied by strings. The identity (A8) holds for this
example since (−1)1−2 = (−1)i4.

Adding these green loops is similar to adding the loop p in the
2D identity (A8), so when we add these loops, the change in
the parity of the number of green loops can be calculated by
multiplying the factors on the right-hand side of (A8) over all
the additional green loops. Taking the product of these factors
gives the 3D identity (A7).

Now that we have established the identity (A7), we can
complete our derivation of (A3): substituting (A7) into (A6),
we obtain

B1
c |�1〉 =

∑
closed Xb,Xr

(−1)Ng(Xb+c,Xr )|Xb + c,Xr〉

=
∑

closed X′
b,Xr

(−1)Ng(X′
b,Xr )|X′

b,Xr〉

= |�1〉, (A9)

where we made the change of variables X′
b = Xb + c in the

second line. Finally, using the fact that B1
c = 1

2 (1 + B1
c )Pc

and Pc|�1〉 = |�1〉, we derive the required relation B1
c |�1〉 =

|�1〉. The same argument works for B1
ĉ .

All that remains is the third relation (A4). In principle,
one could establish (A4) by writing out the explicit form of
B1

c ,B
1
ĉ and calculating their commutators. However, such a

calculation would be tedious and not particularly illuminating.
Therefore, we use a different approach to show (A4). We make
use of two properties of the operators B1

c . The first property is
the relation

B1
c |�1〉 = |�1〉, (A10)

which we just established above. The second property is that,
for any closed membrane configuration (Xb,Xr ),

B1
c |Xb,Xr〉 = eiθ(Xb,Xr ,c)|Xb + c,Xr〉, (A11)

where eiθ(Xb,Xr ,c) is a phase factor that depends on Xb,Xr,c.
The latter property follows immediately from the definition
of B1

c .
Using the above two properties (A10) and (A11), we will

now show that the two operators B1
c ,B1

c′ commute with one
another when acting on closed membrane states. The argument
is simple. From property (A11), we compute

B1
c′B1

c |Xb,Xr〉 = B1
c′e

iθ(Xb,Xr ,c)|Xb + c,Xr〉
= eiθ(Xb+c,Xr ,c

′)eiθ(Xb,Xr ,c)|Xb + c + c′,Xr〉.
(A12)
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On the other hand, if we reverse the order we find

B1
cB1

c′ |Xb,Xr〉
= eiθ(Xb+c′,Xr ,c)eiθ(Xb,Xr ,c

′)|Xb + c + c′,Xr〉. (A13)

We need to show that the expressions on the right-hand sides
of (A12) and (A13) are equal. To this end, we note that
property (A10) implies that

〈Xb,Xr |B1
c |�1〉 = 〈Xb,Xr |�1〉. (A14)

Then, using property (A11), we can write this as

e−iθ(Xb,Xr ,c)〈Xb + c,Xr |�1〉 = 〈Xb,Xr |�1〉 (A15)

so that

eiθ(Xb,Xr ,c) = 〈Xb + c,Xr |�1〉
〈Xb,Xr |�1〉 . (A16)

We now substitute (A16) into Eq. (A12). The result is

B1
c′B1

c |Xb,Xr〉 = |Xb + c + c′,Xr〉 〈Xb + c + c′,Xr |�1〉
〈Xb,Xr |�1〉 .

Likewise, if we substitute (A16) into Eq. (A13), we obtain the
same expression:

B1
cB1

c′ |Xb,Xr〉 = |Xb + c + c′,Xr〉 〈Xb + c + c′,Xr |�1〉
〈Xb,Xr |�1〉 ,

implying that B1
c and B1

c′ commute when acting on closed
membrane states.

Now that we know that B1
c and B1

c′ commute when acting
on closed membrane states, we can immediately deduce that
the combinations B1

cPc and B1
c′Pc′ commute when acting on

arbitrary membrane states since the operators Pc and Pc′

project onto states that are closed in the neighborhood of c

and c′. It then follows that the operators B1
c and B1

c′ commute
with one another since B1

c is a linear combination of B1
cPc

and Pc.
We have shown that [B1

c ,B
1
c′ ] = 0 for any cubes c,c′ in the

cubic lattice. This establishes the first identity in Eq. (A4). The
other two identities in Eq. (A4) can be proven in exactly the
same way.

APPENDIX B: SHOWING THAT THE CYLINDER
OPERATORS CREATE BRAIDING EIGENSTATES

In this section, we show that the blue cylinder operator
M1

b (S) creates loop excitations which are eigenstates of
braiding measurements. Our argument consists of two parts. In
the first part, we show that as long as fb obeys condition (46),
then the loop excitations are guaranteed to be eigenstates of
braiding measurements. In the second part, we check that fb

does in fact obey (46). The second part can also be thought
of as a derivation of Tables I and II since we will see that the
values in those tables are completely fixed by the requirement
that fb obey Eq. (46).

1. Connection between Eq. (46) and braiding eigenstates

In this section, we show that if fb obeys condition (46),
then the blue cylinder operator is guaranteed to create loop

excitations which are braiding eigenstates. We reprint Eq. (46)
below for convenience:

fb(Xb,Xr,S1 ∪ S2) = fb(Xb,Xr,S1)fb(Xb,Xr,S2). (B1)

Here, S1 and S2 can be any two cylinders that share a common
boundary while (Xb,Xr ) can be any membrane configuration
whose intersection with the common boundary obeys the
relevant cylinder operator boundary condition.

To begin, it is helpful to consider an example. Let |�ex〉 be
an excited state with a single red loop. We will call this red loop
the “base loop.” Let M1

b (S) be a blue cylinder operator that is
linked with the base loop. Consider the state M1

b (S)|�ex〉. This
state contains two blue loops at the two ends of the cylinder
S, both of which are linked with the red base loop. Now, what
we want to show is that these blue loops are eigenstates of
braiding measurements. That is, we want to show that if we
braid any other loop around one of these loops, the system
returns to its original state multiplied by a complex number
(in fact, a phase factor). We now translate this claim into a
mathematical equation.

Consider, for example, braiding another blue loop around
one of these loops. This braiding process can be implemented
by applying a blue torus operator M1

b (S ′) where the torus
S ′ encircles the loop that we wish to braid around (see
Fig. 12 for a similar geometry). The fact that the blue loop
is an eigenstate of this braiding process is equivalent to the
equation

M1
b (S ′)

(
M1

b (S)|�ex〉
) = const × M1

b (S)|�ex〉. (B2)

Our task is to show that if fb obeys (B1), then the operators
M1

b obey Eq. (B2). To establish this result, we first rewrite (B2)
in a more convenient form. We begin by recalling that since
S ′ is a torus operator, it does not create any excitations; in
other words, M1

b (S ′)|�ex〉 ∝ |�ex〉. Using this fact, the above
equation can be written as

M1
b (S ′)M1

b (S)|�ex〉 = const × M1
b (S)M1

b (S ′)|�ex〉.
Next, multiplying both sides by 〈Xb,Xr | gives

〈Xb,Xr |M1
b (S ′)M1

b (S)|�ex〉
= const × 〈Xb,Xr |M1

b (S)M1
b (S ′)|�ex〉.

Using the definition of M1
b , we rewrite the matrix elements on

the left- and right-hand sides as

〈Xb,Xr |M1
b (S ′)M1

b (S)|�ex〉
= f ∗

b (Xb,Xr,S
′)f ∗

b (Xb + S ′,Xr,S)�ex(Xb + S + S ′,Xr ),

〈Xb,Xr |M1
b (S)M1

b (S ′)|�ex〉
= f ∗

b (Xb,Xr,S)f ∗
b (Xb + S,Xr,S

′)�ex(Xb + S + S ′,Xr ).

Therefore, what we need to prove is

fb(Xb,Xr,S
′) · fb(Xb + S ′,Xr,S)

= const × fb(Xb,Xr,S)fb(Xb + S,Xr,S
′)

or, equivalently,

fb(Xb + S ′,Xr,S)

fb(Xb,Xr,S)

fb(Xb,Xr,S
′)

fb(Xb + S,Xr,S ′)
= const. (B3)
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We now prove (B3). Focusing on the first ratio in (B3), we
note that the numerator and denominator can be represented
graphically as

fb(Xb + S ′,Xr,S) = fb

( )
,

fb(Xb,Xr,S) = fb

( )
.

Here, the thin vertical blue region corresponds to the intersec-
tion S ′ ∩ S, while the gray areas on the left and on the right
are meant to denote some arbitrary pictures corresponding to
Xb ∩ S and Xr ∩ S. [We can assume without loss of generality
that the pictures are of the above simple form since we can use
the path independence property, discussed below Eqs. (36),
to deform S and S ′ as we wish.] Next we use Eq. (B1)
twice to break up the cylinder S into three smaller cylinders,
giving us

fb = fb fb fb ,

fb = fb fb fb .

Taking the ratio of these expressions gives

fb(Xb + S ′,Xr,S)

fb(Xb,Xr,S)
=

fb

( )

fb

( ) .

In particular, we see that fb(Xb+S ′,Xr ,S)
fb(Xb,Xr ,S) is independent

of Xb,Xr . In exactly the same way, one can show that
fb(Xb,Xr ,S

′)
fb(Xb+S,Xr ,S ′) is independent of Xb,Xr . This proves Eq. (B3):
both terms on the left-hand side are independent of Xb,Xr , so
their product must be independent of Xb,Xr as well.

So far, we have shown that (B1) implies the braiding
eigenstate property in one case. The case we considered was
a blue loop linked to a red base loop. We showed that the
blue loop is a braiding eigenstate with respect to braiding
another blue loop around it. To prove the general claim, we
need to establish the same braiding eigenstate property for
all other cases, that is, all other combinations of red and
blue loops. We will not discuss the other cases here, but it
should be clear that the above argument is not specific to the
case considered above and applies equally well to the other
cases.

2. Checking that fb obeys Eq. (46)

In this section, we check that fb obeys Eq. (46) or,
equivalently, (B1). To begin, we note that it suffices to
check (B1) for the case where the intersections Xb ∩ Si and
Xr ∩ Si look like one of the four basic pictures shown in Tables
I and II. The reason that we only need to consider this case is
that the constraint equations (36) that define fb are local, so
if (B1) holds for basic pictures, then it automatically holds for
general Xb,Xr .

Let us start with the simplest case: blue cylinder operators
that create unlinked loops. In this case, the four basic pictures

are those shown in Table I. Specializing to these pictures,
Eq. (B1) reduces to 42 = 16 different relations that we need
to check. Many of these equations are redundant, so we only
write the four independent ones following:

fb fb = fb ,

fb fb = fb ,

fb fb = fb ,

fb fb = fb .

Next, we use the constraint equations (36) to reduce the
pictures in the second and third lines to basic pictures:

fb = fb ,

fb = fb .

Putting this together, we have

fb fb = fb ,

fb fb = fb ,

fb fb = fb ,

fb fb = fb .

Letting

fb = A, fb = B,

fb = C, fb = D,

we can rewrite these equations as

A2 = A, B2 = A,
(B4)

C2 = A, BC = D.

Now, let us compare with the values for A,B,C,D given in
Table I:

A = 1, B = −eiπqr , C = eiπqb , D = −eiπ(qr+qb),

(B5)

where qb,qr = 0 or 1. First, we can see that the above
expressions (B5) do in fact obey Eqs. (B4). Thus, we have
successfully verified (B1) for the case of an unlinked blue
cylinder operator. In fact, we can see that (B5) is actually
the most general possible solution to the Eqs. (B4). Thus,
the above calculation can also be regarded as a derivation of
Table I.

Next, we consider the case of a blue cylinder operator linked
with a red base loop. We proceed in exactly the same way as
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in the unlinked case. First, we note that Eq. (B1) reduces to
42 = 16 different relations, of which 4 are independent:

fb fb = fb ,

fb fb = fb ,

fb fb = fb ,

fb fb = fb .

Next, we use the constraint equations (36) to derive

fb = −fb ,

fb = −fb .

Putting this together gives

fb fb = fb ,

fb fb = −fb ,

fb fb = −fb ,

fb fb = fb .

Letting

fb = A, fb = B,

fb = C, fb = D,

we arrive at the following algebraic equations:

A2 = A, B2 = −A, C2 = −A, BC = D. (B6)

Let us compare with the values of A,B,C,D given in the top
panel of Table II:

A = 1, B = ieiπqr , C = ieiπqb , D = −eiπ(qr+qb).

(B7)

Again, we can see that the above expressions (B7) obey (B6).
Thus, we have proven Eq. (B1) for the case of a blue cylinder
operator linked to a red base loop. We can also see that the
above expressions are the most general solutions to these
equations. Thus, our calculation can also be thought of as
a derivation of the top panel of Table II.

Finally, we consider the case of a blue cylinder operator
linked with a blue base loop. Proceeding in the same way, we
set

fb = A, fb = B,

fb = C, fb = D.

and we derive the algebraic equations

A2 = A, B2 = A, C2 = A, BC = D. (B8)

Again, it is easy to check that the values of A,B,C,D given in
the bottom panel of Table II obey Eqs. (B8). This establishes
Eq. (B1) for the case of a blue cylinder operator linked with a
blue base loop.
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