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Applicability of point-dipoles approximation to all-dielectric metamaterials
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All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered
as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of
the point electric and magnetic dipoles approximation to dielectric meta-atoms on the example of a dielectric ring
metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for
accurate prediction of the metamaterials properties for the rings with diameters up to ≈0.8 of the lattice constant.
The results provide important guidelines for design and optimization of all-dielectric metamaterials.
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I. INTRODUCTION

In recent years metamaterials have aroused great attention
as a tool for achieving desired electromagnetic properties,
which might not exist in nature [1–5]. Among them a special
attention has been paid to all-dielectric metamaterials [6–8],
which are less restricted by dissipation losses compared
to the metal-based ones. All-dielectric metamaterials with
various constitutive units, such as spheres [9], cubes [10],
and rods [11,12], were shown to exhibit negative magnetic
permeability as well as negative [13–15] and zero refractive
index [16]. Silicon nanodimers, exhibiting both electric and
magnetic dipole responses, have recently been experimentally
demonstrated to enhance electric and magnetic fields in the
optical range [17]. High permittivity dielectric rings are of
particular interest, because they possess a strong broadband
magnetic response [18–20]. In addition, they have more
degrees of freedom for tuning the resonance frequency by
geometrical parameters than, for example, spheres, cubes or
cylinders. Furthermore, they exhibit resonances on the THz
frequencies [19–22], a very promising range for emerging ap-
plications. Appearing most frequently as periodical structures
composed of subwavelength elements (the metamaterial lattice
constant is on the order of λ/20 − λ/4), three-dimensional
metamaterials are often treated as continuous media (the
procedure referred to as homogenization) described by some
effective parameters, e.g., permittivity ε, permeability μ,
refractive index n, and impedance z, which simplifies their
description. Various methods of homogenization have been
suggested based on, for instance, field averaging, single-
interface scattering, nonlocal dielectric function, and other
approaches (see the brief overview of the methods in [23]). The
most popular practical way of retrieving the effective parame-
ters remains the Nicolson-Ross-Weir (NRW) or S-parameters
method based on inversion of formulas for Fresnel’s reflection
and transmission coefficients. It was originally proposed for
conventional media [24] and then extended to metamaterials
[25]. The NRW method was accused of the loss of the
retrieved effective parameters’ physical meaning, since they
do not satisfy the locality principle [26–29] and presence
of the so-called “anti-resonance” [30] [nonphysical for pas-
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sive materials Im(ε) < 0 and Im(μ) < 0; we assume optical
exponential convention exp(−iωt)]. Moreover, introduction
of bulk effective parameters to metasurfaces or few layers
metamaterials is questionable. Obviously the properties of
a single layer or a layer with only few neighbors can be
substantially different from the properties of a layer with
many neighbors. In some cases of strong interaction between
meta-atoms it is not possible to introduce any meaningful
effective parameters [31].

We use another approach in which meta-atoms are replaced
with point electric and magnetic dipoles [27,28,32–39]. The
advantage of such an approach is that the interaction of dipoles
can be explicitly taken into account either numerically for the
arrays up to a few hundred by a few hundred elements or
analytically for an infinite array [33].

Artificial magnetism of three-dimensional metamaterials
composed of high-index dielectric spheres or cubes has been
recently studied within the framework of modal analysis,
NRW method, as well as single and dual dipole approximation
[35–38]. It was concluded that the dual dipole approximation
leads to rather accurate results. Nevertheless, the limitations
of the applicability of the point-dipoles approximation to
all-dielectric metamaterials are still a matter of dispute. In
order to achieve strong resonant features, high refractive index
dielectrics are typically used, and thus even geometrically sub-
wavelength meta-atoms may become electrically (optically)
larger than a wavelength exhibiting rapid field variations within
their volume.

The goal of this work is to verify the applicability of the
electric and magnetic dipole approximation for description of
all-dielectric metamaterials. We make the study on the example
of dielectric ring metamaterials. We start with considering a
single layer of meta-atoms and investigate the dependence of
their electric and magnetic polarizabilities of the geometrical
parameters. Then in order to figure out the limits of the dipole
approximation we show how the retrieved polarizabilities
depend on the metamaterial lattice constant. Finally we
consider a few layers of dielectric rings and compare the
analytical predictions for reflectance R with the full-wave
numerical simulations.

The paper is organized as follows. Section II is devoted
to research methodology. The results of numerical simulation
and its comparison with analytical prediction are presented in
Sec. III. Discussion and conclusions are assembled in Sec. IV.
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FIG. 1. (Color online) (a) Dielectric ring metamaterial consists
of rings arranged in a square lattice. The plane wave is incident
perpendicularly to the layers. Electric-field distribution in the unit cell
for magnetic (b) and electric (c) dipole resonances that are excited
with the incident plane wave.

II. METHODS

We consider dielectric rings of the outer and inner radii
R2 and R1, respectively, and thickness t arranged in the
square lattice with lattice constant d within each layer and
distance between the layers h [see the geometrical parameters
in Fig. 1(a)]. The rings consist of dielectric with material
permittivity ε = 100 + i suspended in free space. A plane
wave is normally incident along the z axis and its electric field
directed along the x axis. We are interested in the lowest-order
resonances of the rings classified as magnetic and electric
dipole modes [see Figs. 1(b) and 1(c)].

In order to obtain electric and magnetic dipole polariz-
abilities α̃e and α̃m for an individual meta-atom, we treat
every ring in the array as a combination of point electric
and magnetic dipoles [32] oriented along the x and y axes,
respectively, in correspondence with the polarization of the
incident wave. The equivalent dipoles are positioned in
the center of the rings. The electric p̃ and magnetic m̃ dipole
moments are induced by the external field (amplitude of the
electric and magnetic field are E0 and H0, respectively and
E0 = η0H0, where η0 = √

μ0/ε0 = 120π [�] is the free-space
impedance) as well as by all the neighbors within the infinite
array (interaction field Einter,Hinter). In the case of a single
layer, taking into account the identity of the dipoles, we express
p̃ and m̃:

p̃ = α̃e(E0 + Einter) = α̃e(E0 + ε0d
3β0p̃), (1)

m̃ = α̃m(H0 + Hinter) = α̃m(H0 + μ0d
3β0m̃), (2)

where the interaction constant β0 is

β0 = Re

[
ikd

4

(
1 + 1

ikR0

)
eikR0

]
+ i

(
kd

2
− k3d3

6π

)
, (3)

and R0 = d/1.438 [33].
The amplitude reflection and transmission coefficients can

be split into electric Re and magnetic Rm terms [32]:

R = Re + Rm, T = 1 + Re − Rm, (4)

Re = ikd

2

1
ε0d3

α̃e
− β0

, Rm = − ikd

2

1
μ0d3

α̃m
− β0

. (5)

The polarizabilities of the particles are then expressed as

α̃e = ε0d
3

β0 + ikd
2Re

, α̃m = μ0d
3

β0 − ikd
2Rm

. (6)

We introduce the normalized dimensionless polarizabilities
αe = α̃e/ε0d

3, αm = α̃m/μ0d
3. Then the inverse polarizabili-

ties are

1

αe

= β0 + ikd

R + T − 1
,

1

αm

= β0 − ikd

R − T + 1
. (7)

Such an approach is computationally very efficient, since it
requires simulations of a single unit cell with periodic bound-
ary conditions (thus effectively an infinite two-dimensional
array). It is applicable to meta-atoms with spectrally separated
as well as overlapping electric and magnetic resonances such
as, for example, in [40,41], as long as there is no magneto-
electric coupling. Alternatively the electric and magnetic
polarizabilities of an isolated particle can be retrieved with
the surface integral equation method [34].

Considering two layers of particles one should take into
account the interaction between the layers. The wave propa-
gates as shown in Fig. 1(a), and the coordinate system origin is
placed in the center of a ring in the first layer. The propagation
occurs towards negative z, E(z) = E0exp(−ikz). The system
of equations [33] for the normalized dimensionless dipole
moments p1,2 = p̃1,2/(ε0d

3E0),m1,2 = m̃1,2/(μ0d
3H0) reads

1

αe

p1 = 1 + β0p1 + β−hp2 + β−h
em m2, (8)

1

αe

p2 = exp(ikh) + β0p2 + βhp1 + βh
emm1, (9)

1

αm

m1 = 1 + β0m1 + β−hm2 + β−h
me p2, (10)

1

αm

m2 = exp(ikh) + β0m2 + βhm1 + βh
mep1, (11)

where the interaction coefficients can be found with approxi-
mate formulas (valid up to kd � 1.5) [33]

βh = −Re

{−ikd

4

[(
1 + 1

ik

√
R2

0 + h2

)

+ h2

R2
0 + h2

(
1 − 1

ik

√
R2

0 + h2

)]
eik

√
R2

0+h2

+ d3

4π

(
1

h3
− ik

h2
− k2

h

)
eikh

}
+ i

kd

2
cos(kh),

βh
em = −i

kd

2

h√
R2

0 + h2
eik

√
R2

0+h2
, (12)

and the following equalities are valid:

β−h = βh,βh
em = −βh

me = −β−h
em . (13)
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Thus for two metalayers we get the system of linear
equations for unknown dipole moments:

−

⎡
⎢⎢⎢⎣

β0 − 1
αe

βh 0 βh
em

βh β0 − 1
αe

−βh
em 0

0 βh
em β0 − 1

αm
βh

−βh
em 0 βh β0 − 1

αm

⎤
⎥⎥⎥⎦

⎡
⎢⎣

p1

p2

m1

m2

⎤
⎥⎦

=

⎡
⎢⎣

1
eikh

1
eikh

⎤
⎥⎦. (14)

After finding the dipole moments one can calculate the electric
and magnetic contributions to reflection and transmission
coefficients:

Re = 1
2 ikd(p1 + p2e

ikh), (15)

Rm = − 1
2 ikd(m1 + m2e

ikh), (16)

Te = 1
2 ikd(p1e

ikh + p2), (17)

Tm = 1
2 ikd(m1e

ikh + m2), (18)

and finally obtain R and T:

R = 1
2 ikd(p1 + p2e

ikh − m1 − m2e
ikh), (19)

T = eikh + 1
2 ikd(p1e

ikh + p2 + m1e
ikh + m2). (20)

For larger number N of layers the procedure is analogical.
At first one finds the dipole moments solving the system of
equations

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 − 1
αe

βh β2h
... β(N−1)h

em

βh β0 − 1
αe

βh
... β(N−2)h

em

β2h βh β0 − 1
αe

... β(N−3)h
em

. . . . . . . . .
. . . . . . . . .

−β(N−2)h
em −β(N−3)h

em −β(N−4)h
em

... βh

−β(N−1)h
em −β(N−2)h

em −β(N−3)h
em

... β0 − 1
αm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

p1

p2

p3
...

mN−1

mN

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
eikh

ei2kh

...
eikh(N−2)

eikh(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

and then calculates the reflection and transmission coefficients:

R = 1

2
ikd

N∑
n=1

(pn − mn)eikh(n−1), (22)

T = eikh(N−1) + 1

2
ikd

N∑
n=1

(pn + mn)eikh(N−n). (23)

We performed numerical full-wave simulations with CST
Microwave Studio [42] in the time domain with effectively
periodic (perfect electric along x and perfect magnetic along y

axis) boundary conditions and normally incident plane-wave
excitation.

III. RESULTS

For the rest of the paper we consider the thickness of the
rings fixed to t/d = 0.2, distance between the centers of the
rings in neighboring layers h = d, and variable inner and outer
radii R1,R2. The frequency range is 0–0.3 d/λ in order to stay
within the metamaterial regime. To be noted, formulas (3) and
(12) for the interaction coefficients are applicable for kd � 1.5
[33], which corresponds to d/λ < 0.25.

A. Variation of the outer R2 and inner R1 radii

In this section we investigate the influence of geometrical
parameters, namely, the outer and inner radii on the resonant
properties of the dielectric ring metamaterial. Let us fix
the inner radius R1/d = 0.1 and vary the outer radius in
the range R2/d = 0.2–0.5 (Fig. 2). The resonant peaks and
dips are clearly seen in the reflectance spectra; for example,
follow the blue line in Fig. 2(a). They correspond to the
lower-order modes of the dielectric ring resonators, namely,
the magnetic dipolar (lower frequency) and electric dipolar
(higher frequency) modes. The corresponding electric-field
distributions are shown in Figs. 1(b) and 1(c), respectively.
Consequently, the retrieved electric [Fig. 2(b)] and magnetic
[Fig. 2(c)] polarizabilities exhibit resonance behavior at the
frequencies of the reflection maxima. Increase of the size of
the rings expectedly leads to decrease in the resonant frequency
and increase of the resonance strength [Figs. 2(b) and 2(c)].
Apart from the low-order dipolar modes some higher-order
modes can be excited (see shaded area in Fig. 2); however,
they are lying in the high-frequency zone and will be excluded
from the further analysis.

When R2 is fixed, but inner radius R1 is varied, one of
the reflection peaks stays almost unchanged whereas another
one shifts dramatically [Fig. 3(a)]. Increasing R1 influences
strongly on the location of the electric dipole peak [Fig. 3(b)],
but has weaker impact on the magnetic dipole [Fig. 3(c)].
The magnetic field of the excited resonance is induced by
the circulation of the displacement current. According to the
mode structure [Fig. 1(b)], it is obvious that the dominating
contribution is given by the periphery of the ring. Overall
the modes blueshift with the inner hole radius R1 growth
[Figs. 3(b) and 3(c)] as the result of the decreasing high-
dielectric material filling fraction.

B. Applicability of the dipole approximation and variation
of the array period

For retrieval of ring electric αe and magnetic αm polariz-
abilities, which are the characteristics of a single ring, we use
formula (7) and simulate reflection and transmission for an
infinite periodic array of the rings. The influence of the infinite
number of neighbors is taken into account through interaction
constant β0, for which accurate analytical formulas exist for
the square array of point dipoles [33]. At the same time, the
rings we consider here are not pointlike, but rather comparable
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FIG. 2. (Color online) (a) Absolute value of the reflection R for a
single array of rings, with dimensionless electric (b) and magnetic (c)
polarizabilities. The inner radius is fixed to R1/d = 0.1. The outer
radius R2/d = 0.2 (red), 0.3 (green), 0.4 (blue), and 0.5 (purple).
For clarity of presentation a vertical incremental offset is introduced
to the spectra. The offsets of the spectra are marked with horizontal
dotted lines. This convention is kept throughout the rest of the paper.
The gray-shaded areas mark the range where higher-order modes are
excited.

to the period of the array. This may lead to both deviation of the
field distribution of a certain dipole from the field of the dipole
located in its center (thus, influence on polarizabilities αe and
αm) as well as influence on the interaction field of all other
dipoles (thus, influence on interaction constant β0). We assume
that interaction constant β0 is the same as given by formula
(7), and thus all effects related to the finite size of the rings
are included into retrieved polarizabilities αe and αm. Then,
retrieving the polarizabilities for the arrays of various periods
we are able to characterize how different from the point dipoles
the meta-atoms are (ideally the retrieved polarizabilities should
not depend on the array period). We call the actual period of
the structure d∗ in order to differentiate it from the previously
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FIG. 3. (Color online) (a) Reflection R for a single array of rings
and their dimensionless electric (b) and magnetic (c) polarizabilities.
The outer radius is fixed R2/d = 0.4. The inner radius varies, R1/d =
0 (red), 0.1 (green), 0.2 (blue), and 0.3 (purple).

used constant d, while the latter is now used for normalization
of frequency and polarizabilities only.

Period d∗ influences the restored electric and magnetic
polarizabilities (Fig. 4) and they converge to a certain value
with increasing period d∗. Such behavior is natural, since
the larger the period the smaller is the radius-to-period ratio
R2/d

∗ and, thus, the accuracy of the dipole approximation
improves. Generally convergence of magnetic polarizabilities
αm [Figs. 4(a′)–4(d′)] is faster than electric αe [Figs. 4(a)–4(d)],
which can mean that magnetic interaction of the rings is weaker
than electric. In case of touching rings (d∗ = 2R2) the retrieved
polarizabilities differ much from the asymptotic value, clearly
exhibiting failure of the point-dipoles approximation. Indeed,
touching rings can hardly be considered as a set of separate
rings, but rather as a periodic subwavelength grating or a perfo-
rated dielectric membrane. The polarizabilities convergence is
good for the rings radii up to R2/d = 0.4 [Figs. 4(a)–4(c) and
4(a′)–4(c′)]. For larger rings with R2/d = 0.5 no convergence
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FIG. 4. (Color online) Normalized electric (a)–(d) and magnetic (a′)–(d′) polarizabilities for R2/d = 0.2, 0.3, 0.4, and 0.5, respectively.
The values of the actual period d∗/d are (not on all graphs; only the cases of d∗ � 2R2 are shown) 0.6 (red), 0.8 (green), 1 (blue), 1.2 (purple),
and 1.4 (orange). The real parts of the polarizabilities have positive offset for presentation clarity. The curves for d∗/d = 0.6 (red) in (b) and
d∗/d = 0.8 (green) in (c) are multipled by 1/2 in order to fit the graph.

is observed for the period d∗ up to d∗/d = 1.4 that lies on
the boundary of the metamaterials regime and corresponds to
d∗ ≈ 0.5λ at the normalized frequency d/λ = 0.3 [Figs. 4(d)
and 4(d′)]. Overall we may conclude that dipole approximation
is consistent for the rings radius up to R2/d = 0.4 and lattice
constant d∗/d > 0.8.

C. Several layers structure

Knowing polarizabilities αe and αm of individual rings
retrieved from the simulated reflection and transmission for
a single layer, we may analytically predict the reflection and
transmission for several layers of rings (see the methodology
section for details). Direct comparison of these analytical

predictions to numerical simulations can give us additional
evidences of applicability or nonapplicability of the point-
dipoles approximation. We use the same rings geometrical
parameters as in the previous subsection. Figure 5 shows
the reflection for different R2 for two, three, and four
layers structure with R1/d = 0.1 and R2/d = 0.2,0.3,0.4,
and 0.5.

For smaller radii R2/d = 0.2 and 0.3 and even for R2/d =
0.4 the analytical prediction is in a good correspondence with
the numerical simulations, providing another confirmation
that the dipole approximation works well [Figs. 5(a)–5(c)].
The discrepancy between the predicted and simulated results
increases with R2 and for the case of touching rings R2/d =

035114-5



ANDRYIEUSKI, KUZNETSOVA, AND LAVRINENKO PHYSICAL REVIEW B 92, 035114 (2015)

0

0.5

1

1.5

2

2.5

3

0.05 0.1 0.15 0.2 0.25 0.3

(a)

2
3
4

0

0.5

1

1.5

2

2.5

3

0.05 0.1 0.15 0.2 0.25 0.3

(b)

2
3
4

0

0.5

1

1.5

2

2.5

3

0.05 0.1 0.15 0.2 0.25 0.3

(c)

2
3
4

0

0.5

1

1.5

2

2.5

3

0.05 0.1 0.15 0.2 0.25 0.3
d/λ

(d)

2
3
4

|R
|

|R
|

|R
|

|R
|

FIG. 5. (Color online) Absolute value of reflection |R| for two
(red), three (green), and four (blue) layers of rings. Analytical
predictions (thick solid lines) are compared to full-wave numerical
simulations (thin lines with circles). The inner radius is fixed,
R1/d = 0.1. The outer radius is R2/d = 0.2 (a), 0.3 (b), 0.4 (c),
and 0.5 (d). The gray area corresponds to the frequency range where
high-order resonances are excited.

0.5 [Fig. 5(d)] the reflections given with two methods do not
resemble each other reasonably, especially in the region of
resonant peaks and dips. Interestingly, the reflection is different

not only in the region of polarizabilities resonances (see Fig. 2),
but also in other regions of reflection dips, which we interpret
as appearing due to Fabry-Perot resonances (increasing R2

leads to the high-dielectric materials filling fraction increase
and thus to the increase of the overall optical thickness of the
metamaterial slab).

We may conclude that the electric and magnetic polariz-
abilities restored from a plane square-lattice array are able to
predict the several layers reflectance for R2/d < 0.4, but fail
for larger radius.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed electric and magnetic polarizabilities of
the high-dielectric rings approximating them as point dipoles.
The geometrical parameters and the free-space wavelength are
normalized to the unit-cell size, thus the results of our analysis
are wavelength independent and virtually are applicable to any
frequency range.

Variations of geometrical parameters allow for tuning the
resonance frequencies for αe and αm nearly independently:
outer radius R2 influences the resonance frequencies of both
electric and magnetic polarizabilities (Fig. 2) while the inner
radius predominantly influences electric polarizability αe

(Fig. 3).
We come to a natural conclusion that decreasing the struc-

tural unit size leads to a better prediction of the electromagnetic
properties with the point-dipoles approximation. The dipole
approximation works well for the rings up to R2/d = 0.4
(Fig. 4). This value is surprisingly large, since the electrical
size of the ring at the frequency d/λ = 0.15 is 2R2n ≈ 1.2λ,
thus the ring is not electrically small anymore and the field
varies rapidly in space within the ring.

For larger rings the situation is different. The rings with the
radius R2/d = 0.5 are not isolated—they are literally touching
each other. In this case the dipole approximation is not valid
anymore. The retrieved polarizability changes dramatically
with the lattice constant of the array [Figs. 4(d)–4(d′)] and
cannot predict the electromagnetic response for several layers
[Fig. 5(d)]. Instead of isolated particles separated by the free-
space gaps, we rather get a perforated high-index dielectric
grating. Even though the period of the grating is smaller
than the free-space wavelength, and thus no diffraction to the
free space can happen, the guided mode in such dielectric
membranes can be excited. The power coupled at some point
is no longer localized within the particle, but can propagate
within the dielectric layer, thus the metamaterial cannot be
effectively homogenized.

We have investigated the metamaterial made of high-
dielectric rings. Even though the selected ε = 100 is modest
(the dielectric constant of barium strontium titanate may reach
several hundreds [43]), it is representative enough to make
general enough conclusions. We may accurately anticipate
the behavior of the lower-index dielectrics. They might be
better suited to homogenization, having smaller refractive
index contrast with the background. However, the unusual
properties, based on strong electric and magnetic resonances,
would also be weaker.

In conclusion, the all-dielectric ring metamaterials can be
described with electric and magnetic point dipole approxima-
tion if the meta-atoms size (ring radius) is smaller than 0.8 of
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the period. For the meta-atoms that almost touch each other,
the dipole approximation is not applicable. We believe the
presented methodology and analysis results will be useful for
development of low-loss all-dielectric based metamaterials.
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