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Signatures of indirect K -edge resonant inelastic x-ray scattering on magnetic excitations
in a triangular-lattice antiferromagnet
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We compute the K-edge indirect resonant inelastic x-ray scattering (RIXS) spectrum of a triangular-
lattice antiferromagnet in its ordered coplanar three-sublattice 120◦ magnetic state. By considering the
self-energy corrections to the spin-wave spectrum, magnon decay rates, bimagnon interactions within the ladder
approximation Bethe-Salpeter scheme, and the effect of three-magnon contributions up to 1/S order, we find
that the RIXS spectra are nontrivially affected by magnon damping and anisotropy. For a purely isotropic model,
the appearance of a multipeak RIXS structure is primarily dictated by the damping of magnon modes. A unique
feature of the triangular-lattice indirect RIXS spectra is the nonvanishing intensity at both the zone center �

point and the antiferromagnetic wave-vector K point. Additionally, we find that a single-peak RIXS spectrum
forms at the roton momentum which can be utilized as an experimental signature to detect the presence of
rotonlike excitations. However, including XXZ anisotropy leads to additional peak splitting, including at the
roton wave vector. The observed splitting is consistent with our earlier theoretical prediction on the effects of
spatial anisotropy on the RIXS spectra of a frustrated quantum magnet [C. Luo, et al., Phys. Rev. B 89, 165103
(2014)].
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I. INTRODUCTION

Contrary to the historical prediction of the spin- 1
2 triangular-

lattice antiferromagnet (TLAF) as a canonical example of a
spin-liquid state [1], extensive theoretical [2–4], numerical
[5–11], and experimental [12–20] studies on the nearest-
neighbor Heisenberg model have established the ground-state
configuration as a 120◦ long-range coplanar three-sublattice
arrangement. The predicted ordering pattern persists for all
values of spin S, including the S = 1

2 state where quantum
fluctuations lead to a 60% suppression of the magnetic order
parameter from its classical Néel value [5–8]. At present there
exists a plethora of real TLAF materials, with both isotropic
and anisotropic interactions, which provide a motivation to
study triangular-lattice frustrated magnets [12,15–21]. Further
impetus to investigate and delineate the physical properties
of the TLAF stems from the flurry of recent theoretical and
numerical investigations to clarify the ground- and excited-
state properties of both isotropic and anisotropic triangular-
lattice systems [22–31].

Traditionally, information on the magnetic ground state and
single-magnon excitations is inferred from inelastic neutron
scattering (INS) experiments [32,33]. However, with enhance-
ments in instrumental resolution of the next-generation syn-
chrotron radiation sources resonant inelastic x-ray scattering
(RIXS) spectroscopy offers the condensed-matter and materi-
als science community an alternate option to experimentally
probe magnetic excitations in correlated magnets [34]. As
a photon-in, photon-out spectroscopic technique, RIXS can
offer direct information on both single-magnon and multi-
magnon excitations. Present efforts to understand the K-edge
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indirect RIXS spectra are primarily directed towards the study
of square-lattice compounds in the Néel antiferromagnetic
and collinear antiferromagnetic phases [35–41]. In a recent
publication [40], the authors of this paper have shown that in
the case of an anisotropic square lattice with strong frustrating
farther-neighbor interactions the RIXS spectrum can split into
a robust two-peak structure over a wide range of transferred
momenta in both magnetically ordered phases. It was also
predicted that the unfrustrated model contains a single-peak
structure.

In RIXS spectroscopy single- and three-spin-flip processes
are allowed at the L and M edges due to the presence
of spin-orbit coupling [42–45]. But in a square lattice,
excitations of odd magnons are prohibited at the K edge
[34], and the spectra originate purely from the bimagnon
contribution. In the absence of an external magnetic field the
spin ordering in a square-lattice system is collinear, and the
magnon excitations are long-lived without any damping. In
contrast, in the TLAF the noncollinear ground state contains
inherent three-magnon excitations (odd spin-flip terms). The
coupling of the longitudinal and transverse spin excitations
gives rise to the finite quasiparticle lifetime (see Fig. 1), which
introduces an intrinsic damping of the magnon modes [46,47].
Hence, the presence of the trimagnon interaction, even at the
K edge, motivates several unanswered questions within the
context of quantum magnetism and RIXS spectroscopy. How
does the presence of an intrinsic damping affect the indirect
K-edge RIXS spectra? What role does the interplay between
geometrical frustration and spin anisotropy have on the RIXS
spectra? In this paper, we predict the effects of bimagnon
and trimagnon processes in indirect RIXS spectroscopy of a
geometrically frustrated TLAF, a topic which is unexplored
both theoretically and experimentally.

The microscopic mechanism underlying magnetic excita-
tions in the indirect RIXS process involves a local modification
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FIG. 1. (Color online) Intensity maps of the 1/S spin-wave
spectrum for the S = 1/2 triangular-lattice antiferromagnet with
(top) easy-plane anisotropy α = 1 and (bottom) α = 0.95. (a) and
(c) Renormalized magnon energy ω̄k. (b) and (d) Magnon decay
rate �k. � = (0,0), � = (2π/3,0), X = (π,0), K = (4π/3,0), M =
(0,2π/

√
3), and Y = (0,π/

√
3) points in (a) are highlighted. Note

the overall damping of spin waves is strongly reduced, and the
decay region shrinks with increasing anisotropy. The realistic magnon
decays disappear at α ≈ 0.92 [56].

of the superexchange interaction mediated via the core
hole [48,49]. The resulting RIXS spectrum is expressed as
a momentum-dependent four-spin correlation function which
can probe bimagnon excitations across the entire Brillouin
zone (BZ) [37–39]. Hence, RIXS is complementary to optical
Raman scattering, which is restricted to zero momentum
[50–53]. From a theoretical perspective elucidating the nature
of the bimagnon dispersion affected by both two-magnon
ladder scattering processes and three-magnon interactions is
challenged by the appearance of several nontrivial dynamical
properties in the spin-wave excitation spectrum [47,54–56].
Namely, (i) strong renormalization of magnon energies with
respect to the linear spin-wave theory result, (ii) finite lifetime
due to spontaneous magnon decays at zero temperature, and
(iii) the appearance of rotonlike minima at the edge center of
the BZ [M point; see Fig. 1(a)].

The objective of this paper is to elucidate the role of
magnon-magnon interaction, spontaneous magnon decays,
the effect of the rotonlike minima, and spin anisotropy on
the indirect RIXS spectra of a TLAF. For this purpose, we
consider an easy-plane XXZ triangular-lattice model. In the
isotropic limit, the XXZ model can provide an accurate
description of the Ba3CoSb2O9 system [12,57]. In addition,
it provides a starting point for the discussion of RIXS effects
in anisotropic TLAF [15–20]. We compute the RIXS intensity
utilizing the 1/S spin-wave expansion technique within the
Bethe-Salpeter scheme in which interaction effects arising
from both the quartic terms via the ladder scattering process
and the contributions of the cubic anharmonic terms up to 1/S

order are included.

The main results of our paper can be summarized as follows.
First, in the case of an isotropic nearest-neighbor TLAF
we find that the spontaneous magnon decay and kinematic
constraints of the phase space inherent to the model are the
primary cause for the creation of a multipeak (more than
two-peak) structure in the RIXS spectra. Second, contrary
to the K-edge RIXS intensity of the square-lattice case, in
the TLAF the RIXS intensity does not vanish at the � point
and at the K point. At the � point, the bimagnon intensity
is zero, and the single-peak spectrum results purely from
the trimagnon contribution, approximately at energy scale of
6JS corresponding to the three-magnon energy. This provides
experimentalists with a means to detect purely trimagnon
excitations at the K edge. At the antiferromagnetic wave vector
K point the RIXS intensity is dominated by the bimagnon
excitations. Third, an important conclusion of our work is the
proposal of utilizing RIXS as a probe to detect the presence
of the roton mode. We show that at a scattering wave vector
equal to the roton momentum q = M the RIXS spectrum has
a single-peak structure. Barring the � point peak which occurs
at higher energy, at all other special high-symmetry points
of the magnetic BZ the RIXS spectra split into a multipeak
structure. The appearance of the single-peak structure can
serve as an experimental signature to detect the appearance
of a roton mode in a TLAF. Fourth, including the XXZ

anisotropy leads to further peak splitting including at the
roton scattering wave vector. Fifth, we find that the conceptual
signature of slow-moving bimagnons as an indicator of RIXS
peak splitting (instability), as proposed in our earlier work
on the two-peak splitting theory within the context of the
anisotropic square-lattice Heisenberg model [40], still holds
(see Fig. 8 below).

This paper is organized as follows. In Sec. II, we introduce
the XXZ model, present the expression for the effective
bosonic Hamiltonian within an interacting spin-wave formal-
ism, and compute the intensity maps for the renormalized
energy and magnon decay rate, up to 1/S corrections. In
Sec. III, we state the definition and the expression of the TLAF
RIXS scattering operator containing both the bimagnon and tri-
magnon contributions. In Sec. IV, we display our results, state
the formalism and numerical approach for computing RIXS
intensity, and discuss the implications of our result within the
context of a TLAF (geometric frustration). First, in Sec. IV A,
we present the results for the noninteracting bimagnon and
trimagnon RIXS intensity and spectral weight. In Sec. IV B, we
outline our formalism and calculate the interacting bimagnon
intensity. In Sec. IV C, we calculate the full RIXS spectrum.
In Sec. V, we present our concluding remarks and discuss the
appearance of slow-moving bimagnons as a signature of peak
splitting. Finally, to preserve clarity in the main body of the
text, we state the details of the spin-wave-theory derivation of
the effective Hamiltonian in Appendix A and display results
to validate our numerical approach in Appendix B.

II. TLAF MODEL AND MAGNON DECAY

INS data of a TLAF reveal well-defined sharp modes
in the low-energy excitation spectrum accompanied by a
broad continuum at intermediate and high energies [57–59].
A number of competing theoretical proposals, ranging from
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a proximate spin-liquid phase [25,28] to enhanced magnon-
magnon interactions [60–62], have been proposed to explain
the nature of the spin-wave excitation spectrum. Our starting
point is the spin S, nearest-neighbor XXZ antiferromagnetic
model on the triangular lattice. The spin-wave-theory Hamil-
tonian in the local (x − z) rotating frame associated with the
ordering wave vector Q = (4π/3,0), the K point in the BZ,
takes the following form [56]:

H = J
∑
〈ij〉

[
αS

y

i S
y

j + cos(θi − θj )
(
Sz

i S
z
j + Sx

i Sx
j

)
+ sin(θi − θj )

(
Sz

i S
x
j − Sx

i Sz
j

)]
, (1)

where θi = Q · ri and we have also introduced an easy-plane
anisotropy parameter α ∈ [0,1]. In Appendix A we outline the
derivation of the effective interacting spin-wave Hamiltonian
Heff in the first-order 1/S expansion with respect to linear
spin-wave theory. The resulting expression is

Heff =
∑

k

(εk + δεk)b†kbk + 1

2!

∑
{ki }

Va(b†1b
†
2b3 + H.c.)

+ 1

3!

∑
{ki }

Vb(b†1b
†
2b

†
3 + H.c.) +

∑
{ki }

Vcb
†
1b

†
2b3b4, (2)

where b† (b) is the magnon creation (annihilation) operator
and we have adopted the convention that 1 = k1, 2 = k2, etc.,
with momentum conservation being assumed for various k
summations. The bare magnon dispersion given by the linear
spin-wave theory is expressed as

εk = 3JS
√

(1 − γk)(1 + 2αγk), (3)

with γk = 1
3 [cos kx + 2 cos(kx/2) cos(

√
3ky/2)]. The explicit

forms for the interacting vertices δε, Va,b, and Vc are detailed in
Appendix A. At zero temperature the bare magnon propagator
is defined as

G−1
0 (k,ω) = ω − εk + i0+. (4)

The first-order 1/S correction to the magnon energy is
determined by the Dyson equation

ω − εk − �(k,ω) = 0, (5)

with the one-loop self-energy �(k,ω) = �a(k,ω) +
�b(k,ω) + �c(k), where �c(k) = δεk is a frequency-
independent Hartree-Fock correction, while �a,b(k,ω) are
calculated as [4,47,55,56]

�a(k,ω) = 1

2

∑
p

|Va(p,k − p; k)|2
ω − εp − εk−p + i0+ , (6)

�b(k,ω) = −1

2

∑
p

|Vb(p, − k − p,k)|2
ω + εp + εk+p − i0+ . (7)

The on-shell solution consists of setting ω = εk in the self-
energy (6), and (7) leads to the following expression for the
1/S renormalized spectrum:

ωk ≡ ω̄k − i�k = εk + �(k,εk), (8)

where ω̄k = Re[ωk] is the renormalized spin-wave energy and
�k = −Im[ωk] represents the magnon decay rate. In Fig. 1 we

display the intensity maps for ω̄k and �k scaled by 3JS for
the S = 1/2 triangular antiferromagnet with α = 1 (isotropic)
and α = 0.95 (anisotropic). From Fig. 1(d) we observe that
the magnon decay rate decreases drastically in the presence
of anisotropy. This is due to the reduced phase volume where
the kinematic constraint εk = εp − εk−p in the self-energy (6)
is satisfied. The magnon decay intensity maps in Figs. 1(b)
and 1(d) play an important role in our understanding of the
origins of the multipeak RIXS structure (shown in Figs. 6 and
7 below).

III. INDIRECT RIXS CORRELATOR

In Mott-insulating systems, multimagnon excitations can be
created dynamically by the presence of the core-hole potential
in the intermediate state of indirect RIXS process. The effective
scattering operator, in the first order, under the assumption of
the ultrashort core-hole lifetime (UCL) expansion is given
by [37,39]

Rq = J
∑
i,δ

eiq·ri Si · Si+δ, (9)

where ri is the position of the ion absorbing the incident
photon and δ denotes the neighboring vectors. After consecu-
tive Holstein-Primakoff and Bogoliubov transformations, the
magnon creation parts of the RIXS scattering operator can be
expressed in terms of the bosonic operators as

Rq =
∑

1+2=q

M(1,2)b†1b
†
2 +

∑
1+2+3=q

N (1,2,3)b†1b
†
2b

†
3, (10)

where the bimagnon scattering matrix element expression is
given by

M(1,2) = 3JS

2!

{[
1+γq+

(
α − 1

2

)
(γ1 + γ2)

]
(u1v2 + v1u2)

−
(

α + 1

2

)
(γ1 + γ2)(u1u2 + v1v2)

}
, (11)

and the trimagnon scattering matrix element is given by

N (1,2,3) = 3JS

3!
i

√
3

2S

[(
γ̄1 − γ̄2+3 − 1

4
γ̄q

)
(u1 + v1)

× (u2v3 + v2u3) +
(

γ̄2 − γ̄1+3−1

4
γ̄q

)
(u2 + v2)

× (u1v3 + v1u3) +
(

γ̄3 − γ̄1+2−1

4
γ̄q

)
(u3 + v3)

× (u1v2 + v1u2)

]
, (12)

where u, v, and γ̄ are defined in Appendix A. The three-boson
term in our theory has no analog in the collinear phases of
a square-lattice quantum magnet. Note that the corrections
from magnon interactions for the trimagnon intensity appear
at the 1/S2 order and are neglected in the remainder of this
paper.

The frequency- and momentum-dependent magnetic scat-
tering intensity is related to the multimagnon response function
via the fluctuation-dissipation theorem. The full 1/S correction
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to the indirect RIXS susceptibility is the sum of bimagnon and
trimagnon contributions given by

I (q,ω) = − 1

π
Im[χ2(q,ω) + χ3(q,ω)]

= − 1

π
Im[χRIXS(q,ω)], (13)

which involve an interacting two-magnon susceptibility
χ2(q,ω) and a noninteracting three-magnon susceptibility
χ3(q,ω). The susceptibilities can be expressed explicitly from
the corresponding multimagnon Green’s function defined
as

χ2(q,ω) =
∑
kk′

MkMk′�kk′(q,ω), (14)

χ3(q,ω) =
∑

kp;k′p′
Nk,pNk′,p′kp;k′p′(q,ω), (15)

where � and  are denoted as the bimagnon and trimagnon
propagators, respectively. The momentum-dependent two-
magnon and three-magnon Green’s functions in terms of
Bogoliubov quasiparticles are defined as

i�kk′(q,t) = 〈Tbk+q(t)b−k(t)b†k′+qb
†
−k′ 〉, (16)

ikp;k′p′(q,t) = 〈Tbk(t)bq−k−p(t)bp(t)b†k′b
†
q−k′−p′b

†
p′ 〉, (17)

where T is the time-ordering operator and 〈·〉 is the average
of the ground state. In the following sections, using Eqs. (16)
and (17), we will compute the noninteracting and the interact-
ing RIXS spectra.

IV. RESULTS AND DISCUSSION

A. Noninteracting bi- and trimagnon spectra

Using Eqs. (11) and (12) and applying Wick’s theorem to
Eqs. (16) and (17), we obtain the following expressions for the
noninteracting bimagnon [I2(q,ω)] and trimagnon [I3(q,ω)]
scattering intensities:

I2(q,ω) = 2
∑

k

M2
k+q,−kδ(ω − εk+q − εk), (18)

I3(q,ω) = 6
∑
k,p

N2
k,q−k−p,pδ(ω − εk − εq−k−p − εp). (19)

In Fig. 2, we show the results for the S = 1/2 isotropic
Heisenberg model (α = 1) at various points in the BZ. At
the � point the contribution is purely from the trimagnon
excitations [see Fig. 2(a)]. The bimagnon RIXS intensity
displays a nonzero elastic peak at the K point [see Fig. 2(f)].
The indirect RIXS spectra even at the noninteracting level in a
noncollinear quantum magnet exhibit significant differences
from the collinear ordered quantum magnets where the
intensity vanishes at the BZ center and at the antiferromagnetic
wave vector [37–40]. This statement holds true even in the
case of the XXZ TLAF. The noninteracting bimagnon RIXS
intensity in Eq. (18) is proportional to the bare two-magnon
density of states (DOS),

D2(q,ω) =
∑

k

δ(ω − εk+q − εk). (20)

FIG. 2. (Color online) Noninteracting bimagnon [I2(q,ω)] and
trimagnon [I3(q,ω)] RIXS intensity of the isotropic TLAF at
momentum transfer q corresponding to the special high-symmetry
points of a triangular-lattice BZ. The bimagnon DOS D2(q,ω) is also
shown as a dashed line. The nonzero intensity at the � and K points is
a unique RIXS feature of the noncollinear ground-state configuration.

A close inspection of the DOS in Fig. 2 shows that these
Van Hove singularities, which originate from the maximum
or saddle points of the two-magnon continuum εk+q + εk,
partially transfer to the RIXS intensity [see Figs. 2(b)–
2(e)], and the spectrum line shape at q = M [Fig. 2(e)]
resembles the DOS with minimal RIXS matrix element
effects.

In Fig. 3 we show the variation of the total spectral
weight across the BZ for the bimagnon [S2(q)] and trimagnon
[S3(q)] components. By using the bare intensity equations (18)
and (19) we obtain

S2(q) =
∫ ∞

0
dωI2(q,ω) = 2

∑
k

M2(k + q, − k), (21)

S3(q) =
∫ ∞

0
dωI3(q,ω) = 6

∑
k

N2(k,q − k − p; p). (22)

In general, the trimagnon excitation dominates the indirect
RIXS total spectral weight in the vicinity of the BZ center,
while the bimagnon spectral weight becomes overwhelmingly
large at the boundary of the BZ where the three-magnon
intensity is negligible. The most remarkable feature of the
isotropic model [see Fig. 3(a)] is the elastic peak at the
antiferromagnetic wave vector which resembles the longitu-
dinal dynamic structure factor probed by neutron-scattering
experiments [62–64]. Upon inclusion of anisotropy, α = 0.95,
the elastic peak at q = K disappears [see Fig. 3(b)] since a gap
is now introduced in the spin-wave dispersion equation (3) at
the ordering wave vector.

In Fig. 4 we show the pure trimagnon contribution along the
� → M path obtained using the noninteracting three-magnon
susceptibility χ3(q,ω) in Eq. (15). We plot the spectra both
in the presence and in the absence of anisotropy. We observe
that the trimagnon spectra peak occurs at a higher energy ap-
proximately around 6JS around the � point, which downshifts
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FIG. 3. (Color online) The noninteracting bimagnon and tri-
magnon total spectral weight for (a) isotropic (α = 1) and (b)
anisotropic (α = 0.95) TLAF. Irrespective of the presence of
anisotropy, the bimagnon and trimagnon intensity complement each
other at the zone center and at the zone boundary. Introduction of
anisotropy removes the singularity due to the opening up of a gap in
the spin-wave spectrum.

before undergoing an upward shift to 6JS around the M point.
In the presence of anisotropy [see Fig. 4(b)], there is an overall
upward shift of the energy peak. The observed effect could be
an artifact of considering a noninteracting trimagnon spectra.
In the next section we consider the interacting bimagnon RIXS
intensity up to 1/S order.

B. Bimagnon excitations: 1/S corrections

We now proceed with the analysis of the 1/S correction to
the two-magnon Green’s function by taking into account both
the self-energy correction to the single-magnon propagator G

according to the Dyson equation and the vertex insertions to the
two-magnon propagator � which satisfies the Bethe-Salpeter
(BS) equation [65,66]. The diagrammatic representation of
such a procedure is depicted in Figs. 5(a) and 5(b). The total
irreducible bimagnon scattering vertices in Fig. 5(c) fall into
two categories, which we call direct (V4) and indirect (Va−d

3 ).
The direct collision between the two main magnons is

caused by the quartic vertexV4, while the cubic verticesVa−d
3

represent the indirect magnon-magnon interactions. Note that
in the direct ladder interaction events the two main magnons
created in the RIXS process are stable, while virtual decays and
recombination are allowed in the indirect collision process.
Using Feynman rules in momentum space then yields the
following equations for the two-particle propagator and the
vertex function:

�kk′(q,ω) = 2i

∫
dω′

2π
Gk+q(ω + ω′)G−k(−ω′)�kk′(ω,ω′),

(23)

�kk′(ω,ω′) = δkk′ +
∑

k1

2i

∫
dω1

2π
Gk1+q(ω + ω1)G−k1 (−ω1)

×VIR
kk1

(ω′,ω1)�k1k′(ω,ω1), (24)

with the basic one-magnon propagator up to 1/S order defined
as

G−1(k,ω) = ω − ωk + i0+. (25)

The factor of 2 in Eq. (23) and Eq. (24) stems from the two
sets of contributions differing by the interchange of dummy
momenta k(k1) + q and −k(k1) according to the Wick’s
theorem. The lowest order two-particle irreducible interaction

FIG. 4. (Color online) Pure trimagnon contribution to the RIXS intensity of the S = 1/2 triangular-lattice antiferromagnet, (a) without
anisotropy (α = 1) and (b) with anisotropy (α = 0.95).
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(a) ΓkkΠkk (q, ω) =

k + q, ω + ω

−k,−ω

(b) Γkk =
δkk

+ Γk1k

k1 + q, ω + ω1

−k1,−ω1

VIR

(c) VIR =

V4

+

V(a)
3

+

V(b)
3

+

V(c)
3

+

V(d)
3

+ O(1/S2)

FIG. 5. (Color online) Diagrammatic representation for (a) a
two-magnon propagator �kk′ (q,ω), (b) the Bethe-Salpeter equation
of the vertex function �kk′ (ω,ω′), and (c) the 1/S-order irreducible
interactionVIR. Solid lines with an arrow in (a) and (b) stand for the
single-magnon propagators.

verticesVIR, shown in Fig. 5(c), read as

VIR = V4 +V(a)
3 +V(b)

3 +V(c)
3 +V(d)

3 , (26)

where the frequency-independent four-point vertexV4 coming
from the quartic Hamiltonian has the form

V4 = Vc(k1 + q, − k1; k + q, − k), (27)

and the other four vertices V(a−d)
3 in the same 1/S order

which are assembled from two three-point vertices and one
frequency-dependent propagator can be written as

V(a)
3 = 1

(2!)2
[Va(k1 + q,k − k1; k + q)G0(k − k1,ω

′ − ω1)

×V ∗
a (−k,k − k1; −k1)], (28)

V(b)
3 = 1

(2!)2
[V ∗

a (k + q,k1 − k; k1 + q)G0(k1 − k,ω1 − ω′)

×Va(−k1,k1 − k; −k)], (29)

V(c)
3 = 1

(2!)2
[Va(k1 + q, − k1; q)G0(q,ω)

×V ∗
a (k + q, − k; q)], (30)

V(d)
3 = 1

(3!)2
[Vb(k1 + q, − k1,q)G0(−q, − ω)

×V ∗
b (k + q, − k,q)], (31)

where we have retained only the bare propagator G0 for
each intermediate line in V(a−d)

3 in the spirit of 1/S ranking.
We further assume that two on-shell magnons are created
and annihilated in the repeated ladder scattering process
with ω′ ≈ −εk and ω1 ≈ −εk1 [52,53]. This approximation
is best for sharp spectral peaks of the two main magnons in
the scattering process where all the lowest-order irreducible
vertices are not explicitly frequency dependent. Based on the
above simplifications, we now derive the final solution of the
interacting RIXS intensity from the ladder approximation BS
equation.

An approach to solving the coupled BS equations is to
decompose the irreducible vertices into lattice harmonics as
demonstrated for the case of collinear antiferromagnet [38,40].
An inspection of the interaction vertices for the TLAF reveals
thatV(a,b)

3 cannot be separated into the finite sum of products
of the triangular-lattice harmonics; thus Eq. (14) cannot be
algebraically solved in terms of a finite number of scattering
channels. However, a numerical solution can be performed on
finite lattices by summing over N points of k in the first BZ,
leading to a N × N system for the linear solver. We adopt this
numerical approach to compute the interacting intensity plots.

We begin with substituting (23) and (24) into (14),

χ2 =
∑
kk′

MkMk′

⎡
⎣δkk′�k + �k

∑
k1

Vkk1�k1k′

⎤
⎦, (32)

where �k = 2[ω − εk+q − εk + i0+]−1 represents the renor-
malized two-magnon propagator in the absence of vertex
correction. The BZ on finite lattices can be divided into√

N × √
N meshes with the replacement of the continuous

momenta (k,k′,k1) by discrete variables (m,n,l). The elements
for the bimagnon susceptibility matrix are given by

χ̂mn = MmMn

[
δmn�m + �m

∑
l

Vml�ln

]
. (33)

We then obtain the eigenvalue equation for these discrete
momenta,

Amn = Gmn +
∑

l

�mlAln, (34)

where the new functions are defined as

Amn = �̂mnMn, Gmn = δmn�mMn, �ml = �mVml. (35)

A direct solution of (34) gives the final form of the χ̂ matrix
as

χ̂ = D̂[1̂ − �̂]−1Ĝ, (36)

where all the matrices in Eq. (36) have N × N dimensions
with the matrix elements explicitly defined as

1̂mn = δmn, D̂mn = δmnMm, (37)

�̂mn = �mVmn, Ĝmn = δmn�mMn. (38)

The interacting pure bimagnon RIXS susceptibility can then
be computed as

χ2(q,ω) =
∑
m,n

χ̂mn. (39)
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FIG. 6. (Color online) Interacting bimagnon RIXS intensity for (a)–(c) transformed momenta q = M and (d)–(f) q = Y . In (a) and (d) the
evolution of the interacting bimagnon intensity profile with increasing spin value S for the isotropic model is shown. In (a) and (d), S → ∞
(top frame), S = 3/2 (middle frame), and S = 1/2 (bottom frame). In (b) and (e) comparisons of the contribution from the direct (V4), indirect
(V3), and full (V3 +V4) vertex corrections to the RIXS spectrum for S = 1/2 and α = 1 are displayed. In (c) and (f) the effects of easy-plane
anisotropy on the splitting feature of the interacting bimagnon spectrum are shown.

FIG. 7. (Color online) Full indirect RIXS spectra I2 + I3 of the S = 1/2 XXZ triangular-lattice antiferromagnet with (a) and (c) α = 1
and (b) and (d) α = 0.9, along the high-symmetry path � → M and � → K in the BZ.
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In Fig. 6 we plot the results for interacting bimagnon RIXS
intensity. We choose two special BZ momenta values, M and
Y , to illustrate our findings. In Figs. 6(a) and 6(d) we show
the progression of the indirect RIXS spectra shape as the spin
S value is changed from the classical case S → ∞ (top) to
S = 3/2 (middle) to the maximal quantum case of S = 1/2
(bottom). While the classical RIXS spectra from both momenta
contain peaks due to the presence of Van Hove singularities,
introduction of quantum fluctuations causes some of these
spurious peaks to disappear. But observe that in the S = 1/2
case the spectra shape is strikingly different. In the absence
of anisotropy at the q = M (roton transfer momentum), we
observe a single peak at an energy of 4JS. However, at the
q = Y point there is a multipeak structure [see Fig. 6(d)].
Now comparing the appearance of a single- or multipeak
structure with the magnon decay intensity map [Fig. 1(b)], it
is evident that there is a direct correlation between the stability
of spin wave modes and peak splitting. The above-mentioned
comparison is not restricted to these two chosen points. The

RIXS spectra generated from other special high-symmetry
momentum transfer points also have the same features (see
Fig. 7). Based on these observations, we propose that RIXS
can be used as a probe to detect the presence of the roton
mode in a TLAF. Furthermore, to provide a comprehensive
picture of the effects of geometrical frustration and anisotropy
we introduce a small anisotropy α = 0.9 in the system. From
Figs. 6(c) and 6(f) it is clear that inclusion of anisotropy causes
further peak splitting. Thus a proper explanation of the RIXS
spectra features in a TLAF involves analyzing the effects of
both magnon damping and anisotropy.

It is worth noting that the V4 and V3 vertices play an
important role in the generation of the interacting bimagnon
spectra. Especially at the roton point, including only the direct
collision vertex does not renormalize the single-peak structure
in the extreme quantum condition with S = 1/2 [Fig. 6(b)].
The major contribution to the interacting RIXS spectra origi-
nates from the indirect vertices arising from the three-magnon
interaction terms. This indicates that renormalization of the

FIG. 8. (Color online) Contour plot of the bimagnon velocity in the first BZ of TLAF for (top) transferred momenta q = M and (bottom)
q = Y . The first column is the bimagnon velocity in the absence of anisotropy (α = 1). The second column shows the anisotropic (α = 0.9)
case. The lowest velocity contours are indicated by blue and pink bands. Relatively higher velocities are indicated by black regions. The
prevalence of slow-moving bimagnon regions in the presence of anisotropy is an indicator of a multipeak RIXS structure.
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spectrum at the roton point is due to the indirect V3 vertices
which involve virtual decay and recombination of the two main
magnons in the scattering process. This is different from the
q = Y point where both theV4 andV3 vertices contribute, as
seen in Fig. 6(e).

Before we end this section it is also important to point out an
important difference between a Raman scattering calculation
and RIXS. In the case of RIXS, the contributions of diagrams
V(c)

3 andV(d)
3 vanish identically when the transferred momenta

belong to the �-M path or related symmetrical lines in the BZ
in accordance with the magnetic Raman scattering study for
which q = 0 [52]. To demonstrate this fact we consider the
contributions of the two-particle irreducible vertices V(c)

3 and
V(d)

3 , which are already in separated forms as functions of k
and k′. The corresponding reducible vertex function (24) with
respect to these diagrams can be directly obtained as

�kk′ = δkk′ + V ∗
a(b)(k)f (q,ω), (40)

where f (q,ω) is a function of only ω and q. Barring the
noninteracting contributions, the vertex correction to the RIXS
susceptibility is given by

χV (q,ω) = f (q,ω)
∑

k′
Mk′

∑
k

Mk�kV
∗
a(b)(k)

= const ×
∑

k

Mk�kV
∗
a(b)(k). (41)

In the above both Mk and �k are even functions of k, while
the function V ∗

a(b)(k) = V ∗
a(b)(k + q, − k,q) is an odd function

with respect to k when momentum q is along the �-M line
(e.g., qx = 0). Thus by virtue of the rotational symmetry of
hexagonal lattices we can conclude that the total contributions
of diagramsV(c)

3 andV(d)
3 vanish identically when transformed

momenta q are located in the lines from the center of the
BZ to the middle of the BZ boundary. This implies that the
simultaneous decay and source processes of the two main

magnons are prohibited in the repeated ladder scattering events
when transferred momenta are along these symmetrical paths.

C. Total RIXS intensity

Using Eq. (13), we compute the full indirect RIXS spectra
up to 1/S order. In Fig. 7 we display the RIXS line plots
along the � → M path and along the � → K path. The
features observed are reminiscent of those discussed for
the noninteracting trimagnon spectra and the full interacting
bimagnon spectra. As noted earlier, we find that at the � point
the spectra originate purely from the trimagnon contribution,
irrespective of the presence or absence of anisotropy. However,
inclusion of anisotropy causes a downshift of the bimagnon
contribution and an upward shift of the trimagnon spectra.
Anisotropy gives rise to further splitting in the bimagnon
case; however, the trimagnon spectra are not affected. The
occurrence of peak splitting observed in the RIXS spectrum
can be predicted by observing the bimagnon velocity plot.
In a previous publication on the square-lattice Heisenberg
magnet [40] we highlighted the connection between bimagnon
velocity and the appearance of a multipeak structure in the
RIXS spectra. Interestingly enough, even within the context
of a TLAF, this relationship persists. To demonstrate this
correlation, in Fig. 8, we show the bimagnon velocity intensity
plot in both the presence and absence of anisotropy for the
q = M and the q = Y points. The black regions represent the
fastest-moving bimagnon velocities, which clearly disappear
with the inclusion of anisotropy. As more puddles of slow-
moving bimagnon velocity appear, so does the multipeak
structure, as shown in Fig. 7. At the q = M point the single
roton peak melts away with increasing anisotropy, which
comes along with low bimagnon velocity. A similar effect is
observed at the q = Y point, where with increasing anisotropy
there are greater pockets of slow moving bimagnon. Hence,
with anisotropy the peak splits further at Y point. Finally, in
Fig. 9 we present the expected constant-ω scans of the total
interacting RIXS intensity for four selected energies from low

FIG. 9. (Color online) Intensity plots of the constant-ω scans of the full RIXS intensity I (q,ω) scaled by (3JS)2 for the S = 1/2 XXZ

triangular-lattice antiferromagnet in the q plane with (top) α = 1 and (bottom) α = 0.9 at four representative energies. The prominent peaks
on the corners are strongly reduced in the presence of anisotropy, in qualitative agreement with the noninteracting total spectral weight.
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energy to high energy. One of the advantages of these constant-
energy scans, which is reminiscent of the INS experiments, is
that prominent peak structures are easy to distinguish [62]. For
the isotropic model the interacting RIXS intensity is strongly
peaked on the corners of the hexagonal BZ at low and high
energies, while these peaks disperse along the edges of the
BZ at intermediate energies. However, the presence of XXZ

anisotropy strongly reduces these prominent features, which is
in qualitative agreement with the noninteracting total spectral
weight shown in Fig. 3.

V. CONCLUSION

At present, no theoretical guidance for experimentalists
on how to analyze and interpret the RIXS spectra of an
ordered phase in a geometrically frustrated quantum magnet
exists. Although a proposal for detecting spin-chirality terms
in triangular-lattice Mott insulators via RIXS has been put
forward [67], there has been no analysis of the effect of
geometrical frustration and anisotropy on the indirect RIXS
spectra. In this paper, using a 1/S expansion spin-wave theory
involving Bethe-Salpeter corrections, we investigated the key
signatures of noncollinear ground-state ordering in the indirect
RIXS spectra of a TLAF. We conclude that in the absence of
anisotropy the root cause of the multipeak structure is magnon
decay. This mechanism is different from that of a square lattice
in which strong frustrating farther-neighbor interactions and
anisotropy are required to cause peak splitting (instability).
In the Introduction we put forward a couple of questions:
(a) How does the presence of an intrinsic damping affect the
indirect K-edge RIXS spectra? (b) What role does the interplay
between geometrical frustration and spin anisotropy have in
the RIXS spectra? Based on our calculations, we conclude that
magnon damping does affect the spectra, causing the RIXS
peak to be either stable (no splitting) or unstable (splitting
leading to multipeak) in the absence or presence of damping,
respectively. Geometrical frustration introduces noncollinear
ordering, which introduces magnon damping. The stability
or instability of the ensuing magnon mode then dictates the
appearance of a single- or multipeak structure. By comparing
the K-edge RIXS intensity of the square-lattice case to that of
the TLAF, we find that the RIXS intensity does not vanish at the
� point or at the antiferromagnetic wave vector. At the � point,
the bimagnon intensity is zero, and the single-peak spectrum
results purely from the trimagnon contribution, approximately
at an energy scale of 6JS, corresponding to the three-magnon
energy. This provides experimentalists with a means to detect
purely trimagnon excitations at the K edge. Our proposed
scheme for detecting trimagnon excitations is different from
that put forward in the paper by Ament and van den Brink [45]
since we are not considering the L edge. The single roton
peak occurs at an energy of 4JS and can be used as an
experimental signature to detect roton modes in a TLAF.
In conclusion, our theoretical investigation demonstrates that
RIXS has the potential to probe and provide a comprehensive
characterization of the microscopic properties of bimagnon
and trimagnon excitations in the TLAF across the entire BZ,
which is beyond the capabilities of traditional low-energy
optical techniques [50–53].
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APPENDIX A: DERIVATION OF INTERACTING
SPIN-WAVE THEORY

We utilize the Holstein-Primakoff transformation to
bosonize the local rotating Hamiltonian (1),

Sz
i = S − a

†
i ai, S−

i = a†
√

2S − a
†
i ai, S+

i = (S−
i )†, (A1)

with subsequent expansion of the square root to first order in
a
†
i ai/2S. This is followed by a Fourier transformation. The

Fourier-transformed Hamiltonian takes the form

H = H0 + H2 + H3 + H4 + O(S−1). (A2)

The first term corresponds to the classical energy, and the
quadratic Hamiltonian reads

H2 =
∑

k

[
Aka

†
kak + 1

2
Bk(a†

ka
†
−k + a−kak)

]
,

Ak = 3JS

[
1 +

(
α − 1

2

)
γk

]
, Bk = −3JS

(
α + 1

2

)
γk,

(A3)

with the structure factor γk defined as

γk = 1

3

(
cos kx + 2 cos

kx

2
cos

√
3

2
ky

)
. (A4)

We then diagonalize the harmonic part H2 by the Bogoliubov
transformation

ak = ukbk + vkb
†
−k, (A5)

with the parameters uk and vk defined as

u2
k,v

2
k = Ak ± εk

2εk
, ukvk = − Bk

2εk
, (A6)

and the linear spin-wave theory dispersion given by

εk =
√

A2
k − B2

k = 3JSεk, (A7)

where we have defined the dimensionless energy

εk =
√

(1 − γk)(1 + 2γk). (A8)

Performing the Bogoliubov transformations in the cubic
interaction term H3, we obtain

H3 = 1

2!

∑
k1+k2=k3

Va(k1,k2; k3)(b†k1
b
†
k2

bk3 + H.c.)

+ 1

3!

∑
k1+k2+k3=0

Vb(k1,k2,k3)(b†k1
b
†
k2

b
†
k3

+ H.c.).

(A9)
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The explicit forms for the three-boson interaction vertices are

Va(1,2; 3) = 3J i

√
3S

2
[γ̄1(u1 + v1)(u2u3 + v2v3)

+ γ̄2(u2 + v2)(u1u3 + v1v3) − γ̄3(u3 + v3)

× (u1v2 + v1u2)], (A10)

Vb(1,2,3) = 3J i

√
3S

2
[γ̄1(u1 + v1)(u2v3 + v2u3)

+ γ̄2(u2 + v2)(u1v3 + v1u3) + γ̄3(u3 + v3)

× (u1v2 + v1u2)], (A11)

where ui and vi are Bogoliubov parameters and the function
γ̄k is defined as

γ̄k = 1

3

(
sin kx − 2 sin

kx

2
cos

√
3

2
ky

)
. (A12)

The three-boson vertices Va and Vb in H3 describe the
interaction between one- and two-magnon states and are called
the decay and the source vertices, respectively.

To derive the explicit forms of the quartic interaction term
H4, it is convenient to introduce the following Hartree-Fock
averages:

n = 〈a†
i ai〉 = 1

2
c0 + 2α − 1

4
c1 − 1

2
, (A13)

m = 〈a†
i aj 〉 = 1

2
c1 + 2α − 1

4
c2, (A14)

� = 〈aiaj 〉 = 2α + 1

4
c2, (A15)

δ = 〈a2
i 〉 = 2α + 1

4
c1, (A16)

with the two-dimensional integrals

cl =
∑

k

(γk)l

εk
(l = 0,1,2). (A17)

After the mean-field decoupling, the quartic part is decom-
posed as

H4 = δH0 + δH2 + H̃4. (A18)

The first term δH0 is the correction to the ground-state energy,
and the quadratic parts reads

δH2 =
∑

k

[
δAka

†
kak + 1

2
δBk(a†

ka
†
−k + a−kak)

]
, (A19)

with

δAk = 3
2 [(1 + 2α)� + (1 − 2α)m − 2n]

+ 3
4 [(1 + 2α)δ + 2(1 − 2α)n − 4m]γk,

δBk = 3
4 [(1 + 2α)m + (1 − 2α)�]

+ 3
4 [(1 − 2α)δ + 2(+2α)n − 4�]γk. (A20)

We then obtain the Hartree-Fock correction to the harmonic
spin-wave spectrum

δεk = (
u2

k + v2
k

)
δAk + 2ukvkδBk. (A21)

The normal-ordered term H̃4 describes the multiparticle
interactions. Here we only display the explicit expression for
the lowest-order irreducible two-particle scattering amplitude,
which is relevant for our calculations as

H̃
2−p

4 =
∑

k1+k2=k3+k4

Vc(k1,k2; k3,k4)b†k1
b
†
k2

bk3bk4 , (A22)

with the vertex function

Vc(1,2; 3,4) = 3JS

16S
{(2α + 1)(γ1 + γ2 + γ4)(u1u2u3v4 + v1v2v3u4) + (2α + 1)(γ1 + γ2 + γ3)(u1u2v3u4 + v1v2u3v4)

+ (2α + 1)(γ2 + γ3 + γ4)(u1v2u3u4 + v1u2v3v4) + (2α + 1)(γ1 + γ3 + γ4)(u1v2v3v4 + v1u2u3u4)

− [2(γ1−3 + γ2−3 + γ1−4 + γ2−4) + (2α − 1)(γ1 + γ2 + γ3 + γ4)](u1u2u3u4 + v1v2v3v4)

− [2(γ1+2 + γ3+4 + γ1−3 + γ2−4) + (2α − 1)(γ1 + γ2 + γ3 + γ4)](u1v2u3v4 + v1u2v3u4)

− [2(γ1+2 + γ3+4 + γ1−4 + γ2−3) + (2α − 1)(γ1 + γ2 + γ3 + γ4)](u1v2v3u4 + v1u2u3v4)}. (A23)

By collecting all these terms together, we finally obtain the effective interacting spin-wave Hamiltonian (2).

APPENDIX B: EXACT VERSUS NUMERICAL SOLUTION TO THE BS EQUATION

To test the validity of our numerical method on finite lattices (N = 69 × 69), we adopt the exact solution approach to solving
a BS equation outlined in Appendix B of Ref. [40]. We obtain a separated form for the four-point vertexV4 for the Heisenberg
model (α = 1) on a triangular lattice, which has the following expression:

V4(k1 + q, − k1; k + q, − k) =
28∑

m,n=1

vm(k)�̂mnvn(k1). (B1)

The channels vn(k) are defined in Table I with the matrix elements of �̂ denoted by

�̂ = 3JS

16S

(
Ŝ1 T̂

T̂ Ŝ2

)
, (B2)

035109-11



LUO, DATTA, HUANG, AND YAO PHYSICAL REVIEW B 92, 035109 (2015)

where the blocks are given by

T̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2λ − 2
3φ − 2

3φ 0 0 0 0 0 0 0 0 0 1

2λ 2 − 2
3φ − 2

3φ 0 0 0 0 0 0 0 0 0 2

− 2
3χ 0 2χ 2χ 0 0 0 0 0 0 0 0 − 8

3χ 0

0 − 2
3χ 2χ 2χ 0 0 0 0 0 0 0 0 0 − 8

3χ

0 2χ − 2
3χ − 2

3χ 0 0 0 0 0 0 0 0 0 0

2χ 0 − 2
3χ − 2

3χ 0 0 0 0 0 0 0 0 0 0
2
3μ 0 −2μ −2μ 0 0 0 0 0 0 0 0 8

3μ 0

0 2
3μ −2μ −2μ 0 0 0 0 0 0 0 0 0 8

3μ

0 −2μ 2
3μ 2

3μ 0 0 0 0 0 0 0 0 0 0

−2μ 0 2
3μ 2

3μ 0 0 0 0 0 0 0 0 0 0
2
3ν 0 −2ν −2ν 0 0 0 0 0 0 0 0 8

3ν 0

0 2
3ν −2ν −2ν 0 0 0 0 0 0 0 0 0 8

3ν

0 −2ν 2
3ν 2

3ν 0 0 0 0 0 0 0 0 0 0

−2ν 0 2
3ν 2

3ν 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ŝ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − 1
3θ 0 1 C0

q
1
3S0

q 0 0 −S0
q − 2

3φ 0

0 0 0 0 − 1
3θ C0

q 1 0 1
3S0

q −S0
q 0 0 − 2

3φ

− 4
3γq −4γq θ θ − 1

3θ − 1
3θ −S0

q −S0
q

1
3S0

q
1
3S0

q 2φ 2φ

− 4
3γq θ θ − 1

3θ − 1
3θ −S0

q −S0
q

1
3S0

q
1
3S0

q 2φ 2φ

− 1
3θ 0 0 0 4

3S0
q 0 0 0 0 0

− 1
3θ 0 0 0 4

3S0
q 0 0 0 0

− 4
3 0 0 0 0 4

3S0
q 0 0

− 4
3 0 0 − 4

3 0 0 0

− 1
3ϑ 0 0 0 0 0

− 1
3ϑ 0 0 0 0

− 4
3

4
3C0

q 0 0

− 4
3 0 0

− 8
3φ 0

− 8
3φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ŝ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 8
3 − 8

3λ 0 0 0 − 8
3χ 0 0 0 8

3λ 0 0 0 8
3ν

− 8
3 0 0 − 8

3χ 0 0 0 8
3μ 0 0 0 8

3ν 0

− 8
3θ 0 0 0 − 8

3ν 0 0 0 − 8
3μ 0 0 0

− 8
3θ 0 0 0 − 8

3ν 0 0 0 − 8
3μ 0 0

− 8
3 − 8

3λ 0 0 0 − 8
3ν 0 − 8

3μ 0 0

− 8
3 0 0 − 8

3ν 0 0 0 − 8
3μ 0

8
3ϕ 0 0 0 − 8

3χ 0 0 0
8
3ϕ 0 0 0 − 8

3χ 0 0

− 8
3 − 8

3λ 0 0 0 − 8
3χ

− 8
3 0 0 − 8

3χ 0
8
3ϕ 0 0 0

8
3ϕ 0 0

− 8
3

8
3λ

− 8
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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TABLE I. Definition of the channels vn(k).

n vn(k) n vn(k)

1 uk+quk 15 uk+qvk cos kx cos
√

3
2 ky

2 vk+qvk 16 vk+quk cos kx cos
√

3
2 ky

3 uk+qvk 17 uk+quk sin kx sin
√

3
2 ky

4 vk+quk 18 vk+qvk sin kx sin
√

3
2 ky

5 uk+quk cos kx 19 uk+qvk sin kx sin
√

3
2 ky

6 vk+qvk cos kx 20 vk+quk sin kx sin
√

3
2 ky

7 uk+qvk cos kx 21 uk+quk cos kx sin
√

3
2 ky

8 vk+quk cos kx 22 vk+qvk cos kx sin
√

3
2 ky

9 uk+quk sin kx 24 uk+qvk cos kx sin
√

3
2 ky

10 vk+qvk sin kx 24 vk+quk cos kx sin
√

3
2 ky

11 uk+qvk sin kx 25 uk+quk sin kx cos
√

3
2 ky

12 vk+quk sin kx 26 vk+qvk sin kx cos
√

3
2 ky

13 uk+quk cos kx cos
√

3
2 ky 27 uk+qvk sin kx cos

√
3

2 ky

14 vk+qvk cos kx cos
√

3
2 ky 28 vk+quk sin kx cos

√
3

2 ky

In the above we have introduced the following notations:

C0
q = cos qx, C1

q = cos
qx

2
, C2

q = cos

√
3

2
qy, (B3)

S0
q = cos qx, S1

q = cos
qx

2
, S2

q = cos

√
3

2
qy, (B4)

λ = C1
qC

2
q , μ = C1

qS
2
q , ν = S1

qC
2
q , χ = S1

qS
2
q , (B5)

θ = C0
q + 1, ϑ = C0

q − 1, (B6)

φ = C1
qC

2
q + 1, ϕ = C1

qC
2
q − 1. (B7)

FIG. 10. (Color online) Interacting bimagnon RIXS intensity
renormalized only by the direct interaction vertex V4 based on
the exact (N → ∞) vs numerical (N = 69 × 69) solution of the
Bethe-Salpeter equation for a S = 1/2 isotropic triangular-lattice
antiferromagnet at various momenta in the BZ.

Only the upper right parts of Ŝ1 and Ŝ2 are shown since the
matrices are symmetrical.

In Fig. 10 we show the results of our computation for
S = 1/2 and α = 1. The numerical solution of Eq. (39) con-
sidering only the V4 vertex is performed with 69×69 lattice
sites, while the integrals arising in the exact solution are solved
on a mesh of size 252×252 and then extrapolated to N → ∞
[40].
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