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We study the ground-state properties of an extended periodic Anderson model to understand the role of Hund’s
coupling between localized and itinerant electrons using the density-matrix renormalization group algorithm. By
calculating the von Neumann entropies we show that two phase transitions occur and two new phases appear as
the hybridization is increased in the symmetric half-filled case due to the competition between Kondo effect and
Hund’s coupling. In the intermediate phase, which is bounded by two critical points, we found a dimerized ground
state, while in the other spatially homogeneous phases the ground state is Haldane-like and Kondo-singlet-like,
respectively. We also determine the entanglement spectrum and the entanglement diagram of the system by
calculating the mutual information thereby clarifying the structure of each phase.
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I. INTRODUCTION

The colossal magnetoresistance observed in certain man-
ganites has attracted much attention in condensed matter
physics [1,2]. Typically perovskite manganites, for example
La2/3Ca1/3MnO3, exhibit this enormous enhancement of the
magnetoresistance [1]. It is now generally accepted that
the colossal magnetoresistance originates from the strong
correlation between electrons, namely the double exchange
and superexchange interactions, Jahn-Teller effect, etc. play
an important role, although this phenomenon is far from being
understood [3]. In these compounds due to the crystal field, the
fivefold degenerate d orbitals are split into twofold degenerate
(eg) and threefold degenerate (t2g) orbitals which are coupled
to each other via Hund’s coupling. The electrons in the eg

orbitals are delocalized while the t2g electrons are localized
[4]. To understand the compounds in question, it is crucial to
investigate models with more than one orbital. Hybridization
between different orbitals is claimed to be important also
in other compounds like Ca2−xSrxRuO4 [5]. This compound
exhibits several remarkable phenomena like orbital-selective
Mott transition [6] or heavy-fermion [7] behavior as the
chemical concentration or temperature is varied. To account
for these effects, multiorbital systems have been the focus
of intensive research recently [8–12]. Our purpose here is to
consider further the properties of multiorbital systems.

The starting point of our investigations is the periodic
Anderson model [13–15], which is a minimal model with two
kinds of electrons:

HPAM =
∑

kσ

εk ĉ
†
kσ ĉkσ + εf

∑

jσ

f̂
†
jσ f̂jσ

+
∑

j kσ

(Vk e−ikRj f̂
†
jσ ĉkσ + V ∗

k eikRj ĉ
†
kσ f̂jσ )

+Uf

∑

j

n̂
(f )
j↑ n̂

(f )
j↓ . (1)

Here ĉ
†
kσ (ĉkσ ) creates (annihilates) an electron with spin

σ in a wide band with dispersion curve εk. This band
will be described in the tight-binding approximation with

nearest-neighbor overlap only. Furthermore, f̂
†
jσ (f̂jσ ) creates

(annihilates) localized electrons at site j with spin σ and
the corresponding particle number operator is n̂

(f )
jσ = f̂

†
jσ f̂jσ .

They can be mixed to the states of the wide band by the matrix
element Vk. When the states of the wide band are written in
a real-space representation, this mixing is in general nonlocal,
however, we neglect its k dependence in the following Vk = V .
The Coulomb interaction between localized electrons is Uf ,
and their on-site energy is εf .

Our goal is to study the interactions between the two kinds
of electrons, whose general form in momentum space can be
written as

H = HPAM + 1

2V

∑

kk′q
σσ ′

Uσσ ′(q)c†k+qσ f
†
k′−qσ ′fk′σ ′ckσ , (2)

which is visibly nonlocal in real space for a general Uσσ ′(q)
interaction. In what follows we consider only on-site in-
teractions between the two kinds of electrons, taking into
account the interorbital Coulomb interaction and the direct
exchange between them, described by the rotationally invariant
Kanamori Hamiltonian [16]. In addition to that we also include
an on-site repulsion for the delocalized electrons. To write
the Hamiltonian in a convenient form, we use the real-space
representation for the creation and annihilation operators of the
electrons in the wide band (ĉ†jσ , ĉjσ ), then the total Hamiltonian
becomes

H = HPAM + Uc

∑

j

n̂
(c)
j↑n̂

(c)
j↓ +

∑

jσσ ′
(Ucf − Jδσσ ′)n̂(c)

jσ n̂
(f )
jσ ′

− J
∑

j

[(ĉ†j↑ĉj↓f̂
†
j↓f̂j↑ + ĉ

†
j↑ĉ

†
j↓f̂j↑f̂j↓) + H.c.], (3)

where Uc is the Coulomb repulsion within the wide band,
Ucf denotes the local interaction between the two kinds of
electrons, and J is the Hund’s coupling. It is worth noting
that one can always diagonalize the bilinear part of the
Hamiltonian obtaining two orthogonal bands. However, in that
case the intraorbital interaction becomes nonlocal in terms of
the original operators [17].
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The role of the term Uc and Ucf has been examined in
several papers [18–25]. It has been shown that Uc leads to
significant enhancement of the effective mass in the Kondo
regime, while Ucf causes critical valence fluctuations in
the mixed valence regime and can lead to charge ordering
in infinite spatial dimensions. The full Hamiltonian in Eq.
(3) including J has also been investigated thoroughly by
dynamical mean-field theory (DMFT) in infinite spatial di-
mensions [9,16,26,27], and it was revealed how the Kondo
and Mott insulating states compete with the metallic state in
the half-filled case if the system is assumed to be paramagnetic
[26]. It turned out, however, that magnetic long-range order
can also be present in the model, namely two types of
antiferromagnetic order emerge beside the Kondo insulating
state [27]. The occurrence of these phases originates from
the competition between Hund’s coupling and Kondo effect.
While the former one aligns the spins of localized and itinerant
electrons ferromagnetically at a given site, the latter one tries to
screen the localized spins by forming singlets with the itinerant
electrons. It has also been discussed how the hybridization
affects the orbital-selective Mott localization emerging in
two-orbital Hubbard models [16].

Since the DMFT approach completely neglects the spatial
fluctuations, which is only valid in infinite dimensions, it
is necessary to investigate low-dimensional systems where
quantum fluctuations are known to be much stronger. Our main
goal in this paper is to explore the one-dimensional behavior
of the Hamiltonian in Eq. (3). In earlier papers it has been
shown [25,28,29] that there is no quantum phase transition
in one dimension in the absence of the Hund’s coupling in
contrast to the infinite dimensional case. The competition
between the Hund’s coupling and the Kondo effect may lead to
the appearance of quantum phase transitions and unexpected
phases even if true long-range order cannot be present in one
dimension.

We apply the density-matrix renormalization-group method
(DMRG) [30–34], which is a powerful tool to find the
ground state and to determine the correlation functions.
Further advantage of the DMRG method is that we can easily
determine the von Neumann entropies [35–40] of single and
multisite subsystems, without the need to calculate excited
states, which is in general difficult near a critical point, and
their anomalies can be used to detect quantum phase transitions
[41–44].

In our DMRG calculation we applied the dynamic block-
state selection algorithm [45,46] in which the threshold value
of the quantum information loss χ is set a priori. We have taken
χ = 3 × 10−6. A maximum of 2000 block states is needed to
achieve this accuracy, and the truncation error was in the order
of 10−7. Such low value of χ is necessary in order to obtain
“smooth” data sets close to critical points. We investigated
chains up to a maximum length L = 120 with open boundary
conditions and performed eight sweeps.

The setup of the paper is as follows. In Sec. II we
define the von Neumann entropies of various subsystems used
in our analysis, and the mutual information [38,47,48]. In
Secs. III A, III B, and III C we discuss the properties of the
phases occurring in the model using the mutual information
and the eigenvalue spectra of the two-site density matrices.
In Sec. III D we discuss the differences between the phase

diagram obtained in the DMFT and for the one-dimensional
model. Finally, in Sec. IV our conclusions are presented.

II. VON NEUMANN ENTROPIES

The von Neumann entropies of different subsystems are
known to exhibit anomalies near critical points [39,41,42]. We
examined the one-site si , two-site sij entropies and the block
entropy which is the entropy of the subsystem containing sites
from 1 to L/2. These quantities can be obtained from the
appropriate reduced density matrices [35,36,39]. The entropy
of a single site can be obtained as

si = −Trρi ln ρi, (4)

where ρi is the reduced density matrix of site i, which is
derived from the density matrix of the total system by tracing
out the configurations of all other sites. We also define the
entropies corresponding to the two types of electrons at a site
(s(c)

i , s
(f )
i ) in the following way:

s
(c)
i = −Trρ(c)

i ln ρ
(c)
i , (5)

s
(f )
i = −Trρ(f )

i ln ρ
(f )
i , (6)

where ρ
(c)
i (ρ(f )

i ) is obtained by performing an additional trace
over the remaining f (c) degrees of freedom at site i. The
two-site entropy is written as

sij = −Trρij ln ρij , (7)

where ρij is the two-site reduced density matrix of sites i and
j . We can also introduce the partial two-site entropies for type
a electrons on site i and type b electrons on site j :

s
(ab)
ij = −Trρ(ab)

ij ln ρ
(ab)
ij , a,b ∈ {c,f }, (8)

where ρ
(ab)
ij is derived from ρij by tracing out the states of

the other electrons. The mutual information [49–51] which
measures the entanglement between sites i and j can be
obtained from

Iij = si + sj − sij , (9)

while the mutual information between a and b type electrons
on sites i and j is defined as

I
(ab)
ij = s

(a)
i + s

(b)
j − s

(ab)
ij , (10)

which measures all correlations both of classical and quantum
origin between a and b type electrons on sites i and j . In what
follows we refer to I

(ab)
ij as the entanglement between these

components. Finally, the block entropy is defined as

s(L/2) = −TrρA ln ρA, (11)

where A denotes the subsystem which contains the sites from
1 to L/2. In contrast to the one- or two-site entropies, which
have a finite upper bound, the block entropy grows as O(ln L)
for one-dimensional critical systems [36,37].

III. RESULTS

In what follows we consider the half-filled case and
nearest-neighbor hopping between delocalized electrons
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FIG. 1. The block entropy s(L/2) as a function of hybridization
for different chain lengths and J/U = 0.1. The lines are guides to
the eye.

ε(k) = −2t cos k, and use the half bandwidth W = 2t as the
energy scale of the system and set εf = 0. For simplicity we
assume Uc = Uf = U and U = Ucf + 2J . In the absence of
Hund’s coupling the ground state in one dimension is either
a collective singlet or consists of less entangled local Kondo
singlets depending on the values of Coulomb interactions and
the hybridization [25]. There is no quantum phase transition
between these phases, just a smooth crossover separates
them. To examine the effect of the Hund’s coupling, first we
consider what happens for a finite Hund’s coupling, namely
for J/U = 0.1 and 0.3, with U = 4W as the hybridization is
varied.

First, we investigate the block entropy of one half of the
chain. This quantity is a smooth function of V for any U

when J = 0. For any finite J , however, two peaks appear in
the block entropy as can be seen in Fig. 1 for different chain
lengths for a fixed value of J/U = 0.1, where the two peaks
are around V/W = 0.57. It is clearly observed that the height
of the peaks increases as the chain length is increased. We
know that maxima in the block entropy can be attributed to
quantum critical points [39] if they evolve into anomalies in the
thermodynamic limit. Two peaks may indicate the existence
of two phase transitions separating three different phases. To
check if it is indeed the case, one has to show that the peaks
remain separated and do not merge in the thermodynamic
limit. The finite-size scaling of the position of the peaks is
shown in Fig. 2. We could treat systems with L = 60 sites
near the critical points due to the high value of the block
entropy. To determine the positions of the maxima accurately
we used a cubic spline interpolation. Figure 2 shows that the
position of the peaks as a function of 1/L can be fitted well
with a linear function and the phases remain separated in the
thermodynamic limit having positions

V cr
1 /W = 0.5677(0),

(12)
V cr

2 /W = 0.5704(1)

for J/U = 0.1. As a remark we mention that to estimate the
error of the data points in Fig. 2 we use the following analysis.
The quantum information loss was a priori set to χ = 3 ×
10−6. Therefore, the relative error of the ground state energy is

p
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p
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n
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FIG. 2. The main figure shows the finite-size scaling of the peaks
occurring in the block entropy for J/U = 0.1, while the inset shows
the same for J/U = 0.3. The lines are the best linear fits to the data.
The estimated error is comparable to the size of the symbols.

estimated to be of the same order of magnitude, δErel ∼ 10−6.
Since the ground state energies are of the order of E ∼ 102, the
absolute error of the energies is of the order of δEabs ∼ 10−4,
so the error of the block entropy can be expected to be not
larger than δSabs ∼ 10−4. The block entropy values near the
critical points were sampled with an equidistant step 5 × 10−4

(for better visibility not all are shown in Fig. 1). The error of
the spline fit is also expected to be 10−4. All in all the overall
error is expected to be 10−4, which is comparable to the size
of the symbols in Fig. 2.

We repeated the same calculation for other values of J/U .
Our results indicate that two separate peaks are present in the
block entropy for any finite J . The distance of the peaks is
shown in Table I for two values of J/U for different chain
lengths. It is clear that their distance grows as J is increased,
furthermore, the critical values of V are also shifted towards
larger values. In what follows we analyze the ground state
properties of each phase for J/U = 0.1 using the mutual
information and correlation functions to check if the peaks
indeed separate different phases.

A. The Kondo singlet phase for V cr
2 < V

First, we consider what happens for large hybridization
where the effect of Hund’s coupling is expected to be small
compared to that of hybridization and the Coulomb interaction
and the properties of the J = 0 model are expected to be
recovered. We examine how the individual system components
are entangled to each other using the mutual information.
We have seen already in Fig. 1 that for large values of

TABLE I. The distance of the peaks of the block entropy
for several chain lengths and J/U ratios. The extrapolation was
performed using chains up to L = 60.

J/U L = 16 L = 24 L → ∞
0.1 0.016 0.011 0.0027(1)
0.3 0.040 0.028 0.006(8)
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FIG. 3. (Color online) Schematic view of all components of the
mutual information (I (cc)

ij , I
(cf )
ij , I

(ff )
ij ) for V/W = 0.8 and L = 16.

The numbers are the site indices. The inner and outer circles denote
type f (localized) and type c (itinerant) electrons.

the hybridization the block entropy decreases rapidly, which
indicates a less entangled state. This is the case indeed, as
is seen in the entanglement map in Fig. 3. We can see that
very strong on-site entanglement appear, while the one-particle
states on different sites are hardly entangled to each other.
To describe the physical origin of this difference in the
entanglement within a site and between neighboring sites we
calculated the eigenvalues (ωγ , γ = 1, . . . ,16) of the two-site
density matrix ρ

(ab)
ij and the corresponding eigenfunctions.

From ρ
(cf )
L/2,L/2 we found that for V/W = 0.8 one of its

eigenvalues is larger by two orders of magnitude than the
others and the corresponding eigenvector is

φ
(cf )
L/2,L/2 = 0.5574

(|↑〉(c)
L/2|↓〉(f )

L/2 − |↓〉(c)
L/2|↑〉(f )

L/2

)

+ 0.4350
(|↑↓〉(c)

L/2|0〉(f )
L/2 + |0〉(c)

L/2|↑↓〉(f )
L/2

)
. (13)

Here |0〉ai , |↑〉ai , |↓〉ai , |↑↓〉ai denote the four possible states
of electron type a on site i. We can see that strong on-
site singlets are formed between localized and delocalized
electrons, which we may refer to as Kondo singlets, since
this is the consequence of the enhanced Kondo effect. The
entanglement between nearest-neighbor sites is smaller by two
orders of magnitude than the on-site entanglement between
localized and delocalized electrons. Therefore, the ground state
is almost a product state. Since the eigensystem of ρ

(cc)
L/2,L/2+1

and ρ
(ff )
L/2,L/2+1 is quantitatively the same, we consider only

the former one. The eigenfunction belonging to the most
significant eigenvalue of ρ

(cc)
L/2,L/2+1 reads

φ
(cc)
L/2,L/2+1 = 0.6900

(|↑〉(c)
L/2|↓〉(c)

L/2+1 − |↓〉(c)
L/2|↑〉(c)

L/2+1

)

+ 0.1545
(|↑↓〉(c)

L/2|0〉(c)
L/2+1 + |0〉(c)

L/2|↑↓〉(c)
L/2+1

)
,

(14)

that is, the nearest neighbor coupling between the spins is
antiferromagnetic. We checked that the mutual information
components have their bulk values at L = 16 already, which is
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FIG. 4. (Color online) The same as in Fig. 3, but for V/W = 0.3.

due to the hardly entangled ground state. Indeed, the properties
of this phase agree with the known behavior of the conventional
periodic Anderson model for large hybridization.

B. The Haldane-like phase for V < V cr
1

A new phase is expected to appear for small hybridization,
where J dominates. Here we discuss the properties of the
phase emerging for V < V cr

1 using the mutual information.
The entanglement diagram containing all types of the mutual
information is shown in Fig. 4 for V/W = 0.3. One can
see that the strongest entanglement is developed between
neighboring delocalized electrons and moderately strong
entanglement is present between more distant sites.

First, we consider how the eigenvalue spectrum looks like
for ρ

(cf )
L/2,L/2 and L = 16. We found that one of its eigenvalues

is threefold degenerate and larger by an order of magnitude
than the others. Its value is very close to 1/3 and the three
corresponding eigenfunctions φ

(cf ),γ
L/2,L/2 γ = 1,2,3 read

φ
(cf ),1
L/2,L/2 = |↑〉(c)

L/2|↑〉(f )
L/2,

φ
(cf ),2
L/2,L/2 = 1√

2

(|↑〉(c)
L/2|↓〉(f )

L/2 + |↓〉(c)
L/2|↑〉(f )

L/2〉
)
, (15)

φ
(cf ),3
L/2,L/2 = |↓〉(c)

L/2|↓〉(f )
L/2.

That is, the electrons on the same site are in a state where the
S = 1 triplet components have the largest weights.

As a next step we examine the entanglement between
nearest-neighbor sites. Since the eigensystems of ρ

(cc)
L/2,L/2+1,

ρ
(cf )
L/2,L/2+1, and ρ

(ff )
L/2,L/2+1 are quantitatively very similar,

we only present results for ρ
(ff )
L/2,L/2+1. The eigenfunction

corresponding to the most significant eigenvalue is

φ
(ff )
L/2,L/2+1 = 0.7071

(|↑〉(f )
L/2|↓〉(f )

L/2+1 − |↓〉(f )
L/2|↑〉(f )

L/2+1

)

+ 0.0014
(|↑↓〉(f )

L/2|0〉(f )
L/2+1 + |0〉(f )

L/2|↑↓〉(f )
L/2+1

)
,

(16)

which means that the entanglement between the neighboring
sites results mainly from the singlet formation. Furthermore,
we investigated how the mutual information components scale
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FIG. 5. The finite-size scaling of the mutual information for V =
0.3W . The dotted lines are quadratic polynomial fits to the data.
The inset drawing denotes a segment of the middle of the chain, the
circles denote the type c and type f electrons on a given site, while
the symbols denote the bonds shown in the main plot.

as the system size is increased. This is shown in Fig. 5. It
is obviously seen that the bonds hardly change as the chain
length becomes larger. The extrapolation was performed using
a quadratic polynomial:

I
(ab)
ij (L) = I

(ab)
ij + A/L + B/L2, (17)

where I
(ab)
ij , A, and B are free parameters.

This confirms that the spins are aligned ferromagnetically
within a site, but they couple antiferromagnetically between
nearest-neighbor sites. The former one is a consequence of the
strong Hund’s coupling which prefers parallel alignment of
the spins, while the latter one is due to the RKKY interaction
mediated by the conduction electrons. The same structure was
confirmed for V = 0. These findings suggest that the model in
this regime can be considered as an S = 1 Heisenberg chain
with antiferromagnetic nearest-neighbor coupling, therefore
this is a Haldane-like phase. The ground state is a singlet,
however, in the thermodynamic limit the ground state of an
open chain becomes degenerate with the first S = 1 excited
state due to the end spins. This is a well-known property of the
Haldane phase [52].

C. The dimerized phase for V cr
1 < V < V cr

2

Finally, we examine the properties of the narrow interme-
diate phase, whose appearance is indicated by the analysis
of the block entropy. Using the tools applied in the previous
subsections we examine the spatial structure of the ground
state. The entanglement map shown in Fig. 6 is drastically
different from that in the previous phase. It is clearly seen
that strong and weak bonds alternate along the chain, which
suggests a spatially inhomogeneous, dimerized ground state.
Before investigating the physical processes that contribute to
the creation of the strong entanglement, it is important to
check if the dimerization remains finite in the thermodynamic
limit. We can introduce two types of order parameters for the
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FIG. 6. (Color online) The same as in Fig. 3, but for V/W =
0.569.

dimerization:

D
(a)
1 (V ) = lim

L→∞
∣∣I (aa)

L/2,L/2+1(V ) − I
(aa)
L/2−1,L/2(V )

∣∣, (18)

D2(V ) = lim
L→∞

|s(L/2,V ) − s(L/2 + 1,V )|. (19)

Since D
(a)
1 (V ) is a local quantity, we expect that it is

less sensitive to the boundary effects. It requires, however,
the calculation of several correlation functions, and their
computation time scales as L2 which can be computationally
demanding. The quantity in Eq. (19) is computationally less
demanding, but since the block entropy is a nonlocal quantity
its convergence to the bulk value may be slower. Instead of
showing D

(a)
1 (V ) directly, we plot the individual values of

the mutual information components (I (aa)
L/2,L/2+1, I

(aa)
L/2−1,L/2)

and investigate their size dependence. In this case we could
consider chains up to L = 120, since in the intermediate phase
the block entropy has a much lower value than near the critical
points and its low value also indicates a less entangled ground
state as expected for a dimerized phase. This is shown in
Fig. 7. In Fig. 7 we used a quadratic polynomial, Eq. (17),

FIG. 7. The same as in Fig. 5, but for V/W = 0.569.
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TABLE II. The extrapolated dimerization order parameters for
different types of fits at V/W = 0.569.

Type of fit D
(c)
1 (V ) D

(f )
1 (V ) D2(V )

Quadratic 0.043(0) 0.215(9) 0.32(4)
Power law 0.03(1) 0.17(8) 0.26(0)

for the extrapolation, which gives an upper bound for the
bond strengths. The data can also be fitted using a power-law
function:

I
(ab)
ij (L) = I

(ab)
ij + A/LB, (20)

where I
(ab)
ij , A, and B are free parameters. The residual sum

of squares is roughly of the same order of magnitude for
both types of fits, O(10−6), therefore we give the values of
the order parameters for both fits in Table II. The quadratic
extrapolation clearly overestimates the order parameters while
the polynomial fit underestimates it, since we expect that the
order parameter begins to saturate as soon as the bulk limit is
achieved.

The other order parameter defined in Eq. (19) is shown
in Fig. 8 for J/U = 0.1 and J/U = 0.3. The extrapolations
using the two different fits are shown in Table II. From these
calculations we conclude that the intermediate phase remains
dimerized in the thermodynamic limit, which is a clear sign of
spontaneous symmetry breaking. Moreover, it is a surprising
phenomenon, since dimerization has not been observed at all
in the periodic Anderson model without the Hund’s coupling.

Now we return to the entanglement patterns in Fig. 6. We
consider first the entanglement between localized electrons
by examining ρ

(ff )
L/2−1,L/2 and ρ

(ff )
L/2,L/2+1 for L = 16. We have

seen that due to the finite-size effects the strengths of the bonds
change, but the qualitative picture, which can be obtained from
the analysis of the density matrices, remains. For ρ

(ff )
L/2−1,L/2

one of the eigenvalues is larger by an order of magnitude than

D
2(

V
,L

)

0

0.2

0.4

0.6

1/L

0 0.02 0.04 0.06 0.08

FIG. 8. Finite-size scaling of the order parameter in Eq. (19).
The symbols •, � belong to V/W = 0.569, J/U = 0.1 and V/W =
1.665, J/U = 0.3, respectively. The dotted and dashed lines denote
the quadratic and power-law fits, respectively.

the others, and the corresponding eigenfunction is

φ
(ff )
L/2−1,L/2 = 0.7071

(|↑〉(f )
L/2−1|↓〉(f )

L/2 − |↓〉(f )
L/2−1|↑〉(f )

L/2

)

+ 0.006
(|↑↓〉(f )

L/2−1|0〉(f )
L/2 + |0〉(f )

L/2−1|↑↓〉(f )
L/2

)
,

(21)

which means that the origin of the strong entanglement
between localized electrons on neighboring sites is the singlet
formation. If we consider the neighboring bond, we obtain
from ρ

(ff )
L/2,L/2+1 that one of the eigenvalues is ω1 = 0.3953

and there is a threefold degenerate eigenvalue ω2 = 0.1500.
The eigenvector corresponding to the former one is essentially
the same as in Eq. (21), while the eigenvectors corresponding
to the latter one are the triplet components described in (15).
Due to the fact that triplet components are mixed with a
larger weight to the singlet component, it destroys the singlet
bond between the localized electrons resulting in a much
weaker entanglement. Qualitatively the above considerations
remain valid for the explanation of entanglement between the
itinerant electrons. Lastly we examine the entanglement within
a site with the help of ρ

(cf )
L/2,L/2. In this case we have again

a nondegenerate eigenvalue ω1 = 0.2467, and a threefold
degenerate one ω2 = 0.2274. The eigenvector corresponding
to ω1 is

φ
(cf )
L/2,L/2 = 0.5885

(|↑〉(c)
L/2|↓〉(f )

L/2 − |↓〉(c)
L/2|↑〉(f )

L/2

)

+ 0.3921
(|↑↓〉(c)

L/2|0〉(f )
L/2 + |0〉(c)

L/2|↑↓〉(f )
L/2

)
, (22)

while the eigenvectors of ω2 are the triplet states in (15).
It can be seen easily that the on-site spin correlation is
still ferromagnetic, but significantly reduced compared to
the Haldane-like phase. While the on-site singlet state has
negligible weight in the Haldane-like phase, in the dimerized
state the on-site triplet and singlet states are mixed with
comparable weights.

D. Discussion

In the light of the above results it is worth examining the
nature of the phase transitions and comparing the properties of
the phases to what has been obtained in infinite dimensions.

As we mentioned, there is no phase transition when J =
0, where the ground state is Kondo-singlet-like discussed in
Sec. III. A. For any finite J two new phases appear, namely
a Haldane-like and a dimerized phase whose properties are
discussed below, and they disappear as J → 0.

We have seen that for V < V cr
1 the ground state is Haldane-

like while for V > V cr
2 Kondo-singlet-like, and both are

gapful and homogeneous. For V cr
1 < V < V cr

2 the translational
symmetry is broken due to the dimerization. It is worth noting
that a similar phase diagram has been obtained in frustrated
spin ladders [53], where on-site and nearest-neighbor antifer-
romagnetic couplings compete with each other.

The existence of different phases can be corroborated by
investigating the entanglement spectrum [54] which is known
to be a useful tool to detect symmetry-protected topological
order [55]. It is obtained from the eigenvalues (
i) of the
density matrix of a half chain. In the Haldane-like phase
the degeneracy of each eigenvalue is an even number [55],
while both even and odd degeneracies may appear in other
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FIG. 9. The entanglement spectrum in the three different phases
for J/U = 0.1 and L = 120 (for better visibility only the lower part
is shown).

phases. For short chains both even and odd degeneracies occur
for any V/W . This picture drastically changes for longer
chains, namely for L > 90. Here the correlation between the
end spins suddenly vanishes, which is marked by a jump
in the block entropy for small V/W . While even and odd
degeneracies remain in the spectrum for V > V cr

1 , the en-
tanglement spectrum contains nearly degenerate eigenvalues
whose multiplicity is even for V < V cr

1 . In the thermodynamic
limit the eigenvalues becomes exactly degenerate. In Fig. 9 the
low-lying eigenvalues and their degeneracies are shown with
a logarithmic scale corresponding to the three different phases
for L = 120. While the spectra of the dimerized and Kondo-
like phases contain eigenvalues with odd and even degeneracy,
only even degeneracy is present in the Haldane-like phase in
agreement with our expectation.

It is interesting to compare these findings with what has
been obtained by DMFT [27]. Surprisingly, three distinct
phases appear also in the DMFT phase diagram, although
their properties are significantly different. In DMFT there is
a phase with antiferromagnetic long-range order in which
the on-site spins are coupled ferromagnetically while the
nearest-neighbor coupling is antiferromagnetic (AF I phase).
Further increase of the hybridization drives the system into
an intermediate phase (V cr

1 < V < V cr
2 ) where another type

of antiferromagnetic order takes place. Here the on-site cou-
pling becomes antiferromagnetic, while the nearest-neighbor
coupling remains antiferromagnetic (AF II phase). Finally, for
V cr

2 < V Kondo-like behavior is realized.
In one dimension we cannot expect true long-range mag-

netic order, only slow decay of the correlation functions. For
V < V cr

1 the on-site spins are parallel due to the strong Hund’s
coupling. This Haldane-like phase might be the residue of
the AF I ordered phase obtained in the DMFT calculation.

Above the second critical point, V cr
2 < V , the ground state is

homogeneous, and strong on-site correlations appear, which
originate from the enhanced Kondo effect and the sites are
occupied more and more by two localized or delocalized
electrons or vice versa. The properties of the Kondo phase
are consistent with what has been obtained in DMFT. Both
methods exhibit an intermediate phase between them, however,
their properties are completely different, which is caused by
the enhanced quantum fluctuations. The appearance of the
dimerized phase may originate from the competition between
the Haldane-like and Kondo singlet phase. This may not
surprise us if we recall that dimerization has been found in
a two-component system via a purely electronic mechanism
[56]. The present case is similar although for antiferromagnetic
interactions between localized electrons.

IV. CONCLUSIONS

We investigated an extended periodic Anderson model in
one dimension to understand the role of the Hund’s coupling
between itinerant and localized electrons. We carried out
accurate DMRG calculations with quantum information loss
χ = 3 × 10−6 up to the accessible chain length L = 120.
For such error margin we found that the two competing
processes, the Hund’s coupling and the Kondo effect, lead
to the appearance of two new nontrivial phases. The enhanced
quantum fluctuations in one dimension crucially affects the
properties of the phases obtained in infinite spatial dimensions.
We performed a quantum information analysis and determined
the entanglement spectrum in the various phases and the entan-
glement patterns between the system components. Moreover,
using the eigensystem of the two-site density matrices we
examined what physical processes lead to the development
of entanglement. We found that for V < V cr

1 the itinerant
and localized electrons form a local triplet within a site
and couple to the nearest-neighbor sites antiferromagnetically.
Here the model can be considered as an S = 1 spin chain with
antiferromagnetic coupling and we have a Haldane-like ground
state. This is also corroborated by the entanglement spectrum.
For V cr

1 < V < V cr
2 we have an intermediate dimerized phase,

in which strong and weak singlet bonds alternate between
nearest-neighbor itinerant and localized electrons. We have
seen that the region where dimerization occurs expands as
the Hund’s coupling is increased and shifts to large values
of the hybridization. Finally, for V > V cr

2 the ground state is
homogeneous, and local singlets are formed at each site either
by two localized/conduction electrons or by a localized and an
itinerant electron.
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[17] A. M. Oleś, Phys. Rev. B 28, 327 (1983).
[18] T. Schork and S. Blawid, Phys. Rev. B 56, 6559 (1997).
[19] T. Yoshida, T. Ohashi, and N. Kawakami, J. Phys. Soc. Jpn. 80,

064710 (2011).
[20] I. Hagymási, K. Itai, and J. Sólyom, Phys. Rev. B 85, 235116
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Reiher, J. Chem. Theory Comp. 9, 2959 (2013).
[49] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys.

Rev. Lett. 100, 070502 (2008).
[50] S. Furukawa, V. Pasquier, and J. Shiraishi, Phys. Rev. Lett. 102,

170602 (2009).
[51] G. Barcza, R. M. Noack, J. Sólyom, and Ö. Legeza,
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