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Abelian and non-Abelian states in ν = 2/3 bilayer fractional quantum Hall systems
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There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could
potentially be realized in one- and two-component FQH systems at total filling fraction ν = n + 2/3, for integer n.
Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal
topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study,
using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems
at total filling fraction ν = n + 2/3, including in particular the possibility of the non-Abelian Z4 parafermion
state. In ν = 2/3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion,
finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems
at ν = 8/3, we find that the Z4 parafermion state has significantly higher overlap with the exact ground state
than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν = 8/3 state
may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other
qualitatively.
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I. INTRODUCTION

Multicomponent fractional quantum Hall (FQH) states
appear in a wide variety of two-dimensional electron systems
(2DES) [1], such as multilayer or multisubband quantum wells
[2], systems with small Zeeman energy where the electron
spin plays an active role, and systems with multiple valley
degrees of freedom, such as graphene [3–7], silicon [8], and
AlAs [9,10]. These systems offer several tunable parameters,
which allow the observation of rich zero temperature phase
diagrams involving topologically distinct FQH states even at
a fixed total filling fraction, and indeed novel FQH phases of
multicomponent systems have been experimentally observed.
Most notable perhaps is the observation of the so-called 331
Abelian even-denominator FQH state in half-filled bilayer
systems [11–13]. However, in many cases, little is known about
the myriad possible FQH phases and phase transitions that can
be experimentally realized in multicomponent 2DES.

Recently, motivated by the possibility of a non-Abelian
state at ν = 5/2 in GaAs quantum wells [14,15], there have
been detailed numerical studies at total filling fraction ν =
n + 1/2 (n integer) in two-component systems [16]. While
ν = n + 1/2 has been studied in great detail, the problem at
ν = n + 2/3 has received comparatively less attention from
numerical studies [17–24]. Such systems were first studied
experimentally over 20 years ago, where a two-component to
single-component phase transition was observed in monolayer
(presumably due to spin) and bilayer systems [25–28]. There
are three Abelian FQH states that can be realized at ν = 2/3:
the 330 state,

�330 =
∏
i<j

(zi − zj )3(wi − wj )3
∏
i,j

(zi − wj )0, (1)

consisting of two decoupled 1/3 Laughlin states in each
layer where zi and wi , for i = 1, . . . , 1

2N , are the complex

coordinates of the electrons in the two layers, and
here and hereafter we have omitted the Gaussian factor
exp(−∑

i |zi |2/4l2) for all wave functions, a pseudospin
singlet Abelian state, here called the 112 state,

�singlet = PLLL

∏
i<j

|zi − zj |2|wi − wj |2�∗
112, (2)

where PLLL is the LLL projection operator, and the particle-
hole conjugate of the 1/3 Laughlin state, referred to here as
the 2/3 Laughlin state,

�P-H = PLLL

∏
i<j

(zi − zj )2�ν=−2, (3)

where �ν=−2 is the wave function for the ν = −2 integer
quantum Hall state. The pseudospin singlet 112 state can
be easily understood within composite fermion theory as
composite fermions filling the lowest spin-up and spin-down
levels in a reversed effective magnetic field [23,29,30]. Early
numerical work on ν = 2/3 bilayers considered the overlap
of model wave functions with the exact ground state of the
system for N = 6 electrons on a torus [31], finding these three
phases in the two-component 2D system (for the monolayer
spinful system, the 330 state is unlikely).

Different theoretical studies have suggested five possible
exotic non-Abelian FQH states can occur at ν = 2/3, yet have
not been numerically investigated (see Table I). These include:
the Z4 parafermion FQH state [32–34],

�Z4 = A[�330], (4)

where A is an antisymmetrization over all electron coordi-
nates, a Fibonacci state based on SU(3)2 Chern-Simons theory
[35,36], interlayer and intralayer Pfaffian states [37,38],

�Inter Pf = Pf

(
1

zi − zj

)
Pf

(
1

wi − wj

)
�221 (5)
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TABLE I. Candidate Abelian and non-Abelian FQH states at total
filling fraction ν = 2/3. On the sphere these states occur at different
shifts S ≡ 3

2 N − N�, where N� is the number of flux quanta. The
Fibonacci state, as a single-component system, has a shift of 6; as a
two-component system, it has a shift of 3 per layer.

Possible states at ν = 2/3 Type Shift, S

330 state Abelian 3
Pseudospin singlet 112 – 1
Particle-hole conjugate of 1/3 Laughlin – 0
Z4 parafermion Non-Abelian 3
Bilayer Fibonacci – 3
Interlayer Pfaffian – 3
Intralayer Pfaffian – 3
Bonderson-Slingerland hierarchy – 4

and

�Inter Pf = Pf

(
1

xi − xj

)
�221, (6)

respectively, with xi running over the coordinates of the N

electrons in both layers with

�221 =
∏
i<j

(zi − zj )2(wi − wj )2
∏
i,j

(zi − wj )1, (7)

and a Bonderson-Slinglerland hierarchy state [39]. It should be
noted that the Z4 parafermion and the intralayer Pfaffian states
are defined only when the number of electrons N is divisible
by 4.

As a result, the N = 6 overlap study [31] did not actually
rule out the possibility of having stable non-Abelian phases
even in the lowest Landau level. The Z4 and Fibonacci
states have been shown theoretically to exhibit continuous
phase transitions from the 330 state [36,40], suggesting
these states might be stabilized nearby more conventional
ones if appropriate microscopic parameters are found and
tuned experimentally. The goal of our work is to investigate
numerically the possible existence of exotic non-Abelian 2/3
(or generally, n + 2/3) FQH states in realistic 2DES.

The Fibonacci FQH state contains the non-Abelian Fi-
bonacci quasiparticle, whose braiding statistics is known to
be powerful enough to be utilized for universal topological
quantum computation (TQC) [41]. The Z4 parafermion FQH
state is based on the SU(2)4 topological quantum field theory,
which has been discovered to allow for universal TQC [42,43].
The Bonderson-Slingerland hierarchy state at ν = n + 2/3,
and the interlayer Pfaffian state, can also be used for universal
TQC if realized on topologically nontrivial spaces with
topological operations known as Dehn twists [44,45] that can
be realized in a physically realistic experimental setup [46,47].
It is thus timely to revisit the ν = 2/3 bilayer phase diagram
numerically and investigate the possibility of realizing these
non-Abelian states.

In this work we carry out a study of two-component FQH
systems at total filling fraction ν = n + 2/3. We analyze the
relative stability of the three Abelian states and the non-
Abelian Z4 state through exact diagonalization and variational
Monte Carlo studies that also consider the inter/intralayer
Pfaffian states. In the lowest Landau level (LLL), our results

are consistent with the phase diagram proposed previously [31]
and we importantly find that the Z4 state is not competitive
relative to the other Abelian states. However, in the limit of
large interlayer tunneling in the second Landau level (SLL),
at ν = 8/3, our results suggest that the Z4 state is preferable
relative to the possible Abelian states. This unexpected new
finding suggests the already experimentally observed 8/3 FQH
state may be the exotic Z4 non-Abelian state, rather than
the usual Abelian Laughlin state. Given the existence of the
5/2 FQH state in the SLL, thought to be the non-Abelian
Moore-Read state, the possibility that the SLL 8/3 FQH state
might also be a (different) non-Abelian state is plausible and
consistent with the fact that the experimental 8/3 state typically
is considerably weaker than the 5/2 state as manifested in the
measured energy gaps [48–59].

We consider the Hamiltonian describing two quantum Hall
layers with N total spin-polarized electrons, separated by a
distance d, with interlayer electron tunneling strength �:

H =
N∑

i<j

[ ↑,↓∑
σ

Vintra
(∣∣rσ

i − rσ
j

∣∣) + Vinter(|r↑
i −r↓

j |)
]
−e2

εl
�Sx,

(8)
where rσ

i is the position of the ith electron in layer σ , and
l is the magnetic length. The intralayer Coulomb interaction
is given by Vintra(r) = e2

εr
, while the interlayer interaction is

given by Vinter(r) = e2

ε
1√

r2+d2 (ε is the dielectric of the host
semiconductor). The interlayer tunneling term is written as the
total pseudospin Sx operator, with � the interlayer tunneling
strength in units of e2

εl
.

II. PHASE DIAGRAM IN THE LOWEST LANDAU LEVEL

We first consider the ν = 2/3 bilayer quantum phase
diagram in the LLL. The Hamiltonian Eq. (8) has two
dimensionless parameters: d/l, the ratio of the inter and
intralayer Coulomb interactions, and �, the ratio of the
interlayer tunneling to the intralayer Coulomb interaction. The
relative stability of the three Abelian states was studied through
wave function overlap calculations for N = 6 electrons (3
per layer) on the torus [31]. We revisit this for larger
systems using exact diagonalization (ED) for up to N = 12
electrons in the spherical geometry. In this setup, states with
different topological orders may appear at different shifts
S ≡ 3

2N − N�, where N� is the number of flux quanta.
Figures 1(a)–1(f) displays our numerical results for the

overlaps of the model wave functions for the 330, singlet 112,
and 2/3 Laughlin states, with the exact Coulomb ground state
at shifts S = 3, 1, and 0, respectively, together with the energy
gaps for N = 8. The energy gap is taken as the difference
between the angular momentum L = 0 ground state and the
first excited state (if the ground state has L �= 0, the gap is set to
zero). We can combine the energy gaps at different shifts into a
single function δ(d/l,�) by choosing the maximal gap among
the different shifts. We note this gap is not necessarily the
transport gap measured experimentally but the gap connected
to the robustness of the phase—in many cases they are known
to be qualitatively similar. Similar results are obtained for
N = 6 and 10 (see Figs. 2 and 3). We do not compute the
overlap with the Z4 parafermion state for S = 3 and N = 8
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FIG. 1. (Color online) (a)–(f) Shifts of S = 3, 0, and 1 from left
to right for N = 8 electrons. (a)–(c) The overlap with �330, 2/3
Laughlin, and the pseudospin singlet (112), respectively. (d)–(f) The
energy gap. (g) The overlap with Z4 state for N = 12 at S = 3.
(h) The gap for N = 12 and shift S = 3. (i) Displays the resulting
quantum phase diagram.

for three reasons. One is the Z4 state is a single-component
state and for N = 8 electrons there is only one possible L = 0
state. The second reason is the Z4 state has four-electron
clustering properties that cause it to vanish exactly unless
N mod 4 = 0. Hence, one must consider at least N = 12
electrons, see Figs. 1(g) and 1(h). The third reason is the gap
at S = 3 in the single-component limit is significantly below
the gap at S = 0 corresponding to the 2/3 Laughlin state.
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FIG. 2. (Color online) (a)–(f) Shifts of S = 3, 0, and 1 from left
to right for N = 6 electrons in the lowest Landau level. (a)–(c) The
overlap with �330, 2/3 Laughlin, and the pseudospin singlet (112),
respectively. (d)–(f) The energy gap.
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(f) S=1, N=10

FIG. 3. (Color online) (a)–(f) Shifts of S = 3, 0, and 1 from left
to right for N = 10 electrons in the lowest Landau level. (a)–(c)
The overlap with �330, 2/3 Laughlin, and the pseudospin singlet
(112), respectively. (d)–(f) The energy gap. The white space beyond
d/l > 5.5 for S = 0 was not calculated and therefore left blank.

We produce a phase diagram for the bilayer system taking
into account both the overlaps and the energy gaps at different
shifts. The topological order is identified from the model
wave function with the highest overlap with the ground
state, and its stability is characterized by the energy gap.
Figure 1(i) shows a plot of the gap function δ(d/l,�) for
N = 8 and contour lines showing the wave function overlaps.
Our results for N = 6,10 electrons (not shown) are consistent
with Fig. 1(i). We emphasize this approximate phase diagram
matches remarkably well with Ref. [31], determined by wave
function overlap and topological degeneracy on the torus.

To investigate the relative stability of the Z4 parafermion
state, we consider the two-component system for N = 12
particles. In Figs. 1(g) and 1(h) we show the overlap of the
exact ground state with the Z4 parafermion state, together with
the value of the energy gap at shift S = 3. While the Z4 state
has a maximum overlap of ≈0.93 in the single-component
limit, the Laughlin state has a much higher overlap of ≈0.99.
Furthermore, the system possesses a much larger energy
gap at the 2/3-Laughlin shift relative to the shift of the Z4

parafermion state.
To further assess the stability of the Z4 state compared to

the 2/3 Laughlin state, we can consider the single-component
limit of Eq. (8), obtained for strong tunneling � 	 1 and
small d/l 
 1, i.e., a single quantum well. The smaller
dimension of the Fock space in this limit allows us to consider
N = 16 electrons. Here we study a particularly realistic model
that includes Landau level (LL) mixing [parametrized by
the ratio of the cyclotron energy to the Coulomb energy
κ = (�ωc)/(e2/εl)] and finite width of the single quantum
well (parametrized by well width w/l) [60]. Specifically, our
realistic Hamiltonian is

Hrealistic =
∑
m

V (2)
m (w/l,κ)

∑
i<j

Pij (m)

+
∑
m

V (3)
m (w/l,κ)

∑
i<j<k

Pijk(m), (9)

where Pij (m) and Pijk(m) are operators that project onto
pairs (i,j ) or triplets (i,j,k) of electrons with relative angular
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FIG. 4. (Color online) Overlap and gap calculations for N = 16
electrons in the LLL in the single-component limit. Top left (a) shows
overlaps with the Z4 state, at S = 3; top right (b) shows overlaps with
the Laughlin state, at S = 0. Lower panels (c) and (d) show the gaps
at S = 3 and S = 0.

momentum m. The Hamiltonian is parametrized by two-
and three-body pseudopoentials V (2)

m (w/l,κ) and V (3)
m (w/l,κ),

respectively. The two-body pseudopotentials are renormalized
by Landau level mixing corrections which include the effects
of virtual transitions of electrons (holes) to unoccupied
(occupied) Landau and subband levels to lowest order in the
Landau level mixing parameter κ . Landau level mixing also
produces an emergent three-body term that explicitly breaks
particle-hole symmetry. This Hamiltonian is described in great
detail in Ref. [60] and was recently implemented in a numerical
study of the FQHE at ν = 5/2 [61]. In this work we restrict
our attention to w/l < 4; wide quantum well systems are
often better described as bilayers. Our results for the LLL are
displayed in Fig. 4 where the Laughlin state is clearly shown
to be preferable. The Z4 overlap at S = 3 is large (≈0.82)
and essentially decreases monotonically with κ and is robust
to width w/l. At S = 0 the Laughlin state has an overlap of
nearly unity (≈0.99) and is robust to κ and w/l. Both S = 0
and 3 have nonzero gaps, but the gap at S = 0 is nearly three
times larger than S = 3. Both overlaps and gaps are robust to
varying κ and w/l. Based on these results, we do not expect
the Z4 state in the bilayer system at ν = 2/3 in the LLL. Our
conclusions for the LLL, based on ED, are further corroborated
with variational Monte Carlo (see below).

III. SECOND LANDAU LEVEL

Now that we have confidently ruled out the Z4 state in the
LLL, we turn our attention to the second Landau level (SLL).
Repeating the overlap and gap calculations with the SLL
pseudopotentials, we obtain results that are quite different from
the LLL. In particular, we find in the single-component limit
(d/l 
 1 and � 	 1) the gap at shift S = 3 is significantly
larger than at S = 0 suggesting the ground state in this limit
might not be the 2/3 Laughlin state, but rather an alternative
state with S = 3.
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FIG. 5. (Color online) Overlaps (a) and (b) and energy gaps (c)
and (d) for N = 16 electrons in the SLL in the single-component
limit. See caption of Fig. 4.

Leaving the exploration of the full two-component phase
diagram for the next section, we now take a closer look at
the SLL in the single-component limit. We use the same
realistic model introduced earlier (but at filling 8/3), and focus
on the competition between the Z4 and the Laughlin states.
Surprisingly, we find that the Z4 state appears favored over the
Laughlin state according to both overlap and gap calculations,
as shown in Fig. 5. In the SLL, the overlap with the Z4 state is
qualitatively similar to the LLL, i.e., it is nearly 0.83–0.84 for
small κ and decreases to zero as κ is increased. The Laughlin
state at S = 0 has a smaller overlap of 0.64–0.8, increases
with w/l, and monotonically decreases with κ . Importantly,
the gap is approximately 1.5 times larger at S = 3 than it is
at S = 0. Our results for N = 12 electrons are qualitatively
similar, but with quantitatively higher overlaps for both the Z4

and Laughlin states. Last, we note that in the limit of zero LL
mixing (κ = 0) our Hamiltonian is particle-hole symmetric
and our results for the spin-polarized ν = 8/3 state should
translate to ν = 7/3 where some recent theoretical studies have
suggested that the FQH state at 7/3 is likely in the Laughlin
universality class [62,63].

IV. VARIATIONAL ENERGIES

The discussion so far has focused on the fate of the Z4 state
in comparison with the three Abelian phases, without exploring
other non-Abelian possibilities. One may also worry about the
finite-size effect in the ED results. To address these concerns,
we have performed variational energy calculations that also
include the interlayer and intralayer Pfaffian states at shift
S = 3, for much larger system sizes. The energy expectation
value of Eq. (8) of the three Abelian states and the Pfaffians
are computed using Monte Carlo for up to N = 60 electrons,
with sample size 107. We refer to Ref. [64] for the details
of the Monte Carlo energy calculation and Ref. [23] for the
efficient evaluation of composite fermion wave functions. It
turns out that the antisymmetrization used to construct �Z4

[Eq. (4)] is prohibitively expensive for numerical calculations,
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FIG. 6. (Color online) The quantum phase diagram determined
by variational energies at thickness w = 0. The contour lines depict
the energy advantage δE of each dominant phase. In the SLL, the
Laughlin state does not have a clear energy advantage over the Z4

state.

hence, we leverage the Jack polynomial representation of
�Z4 to directly obtain its second-quantized amplitudes [65].
This technique allows us to obtain the state and compute its
variational energy, i.e., the expectation value of Hamiltonian
for �Z4 , for up to N = 28 electrons, well beyond the scope
of exact diagonalization. We assess the relative stability of
different phases of the two-component system by comparing
their variational energies. To estimate the energy per particle
in the thermodynamic limit, we use quadratic extrapolation in
1/N , weighted by the statistical error on each data point [23].
The extrapolated energy has an error between 10−3 and 10−4.

The phase diagram is determined according to the wave
function with the lowest energy, and we characterize the
phase stability using the energy advantage δE of the dominant
wave function over its closest competitor. Figure 6 shows the
contour plots of δE(d/l,�). In the LLL, the phase diagram
determined by variational energies is in qualitative agreement
with the ED results. We find that the non-Abelian Z4 and
the interlayer/intralayer Pfaffian states remain energetically

unfavorable throughout the phase diagram, and the singlet 112
occupies a very small corner of the parameter space. In the
SLL, while the Halperin 330 state still dominates at large layer
separation d/l, the Laughlin state at large � is now much less
stable compared with the LLL. The main competition comes
from the non-Abelian Z4 state. In fact, for much of the phase
diagram, the energy difference between the two is on the same
order as the estimated extrapolation error (�10−3) for the Z4

state. This is in strong agreement with our gap and overlap
calculations using ED, namely, that the non-Abelian Z4 state
is highly competitive with the Laughlin state. Incidentally, we
also find a small region in the parameter space that favors the
intralayer Pfaffian state, but we do not find any parameter set
that stabilizes the interlayer Pfaffian state.

V. CONCLUSION

Based on our exact diagonalization and Monte Carlo
studies, we find that ν = 2/3 bilayers in the LLL, in the
limit of weak LL mixing, most likely do not realize the non-
Abelian Z4 parafermion state. Most remarkably, in the single-
component limit of the SLL, the non-Abelian Z4 phase
may be favorable for the 8/3 FQH state relative to the
Laughlin state. Indeed, previous studies of the experimentally
obtained energy gaps of FQH states in the SLL have already
indicated the possibility that the electron correlations are
sufficiently different from those of the LLL and that novel
exotic states might be realized [48,51–53,55,56,59]. While
weak quasiparticle tunneling experiments through a quantum
point contact [58] suggest that ν = 8/3 is the 2/3 Laughlin
state, it cannot be considered to be definitive yet and more
experiments are necessary. The implication of our finding that
the observed 8/3 SLL FQH state may be the parafermionic Z4

non-Abelian phase is enormous since this state can be utilized
for universal topological quantum computation.

As this work was being completed, we became aware of
a related manuscript [66] by Geraedts et al. By utilizing
primarily the density matrix renormalization group technique,
they reported that the interlayer Pfaffian is stabilized for a
modified LLL interaction with a hollow core, which is very
different from the LLL and SLL realistic Coulomb interactions
considered in our work. It is an interesting open question
whether the disparity between the present work and that of
Ref. [66] is due to differences in techniques, differences in
models, or both.
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Phys. Rev. Lett. 110, 186801 (2013).
[25] J. P. Eisenstein, H. L. Stormer, L. N. Pfeiffer, and K. W. West,

Phys. Rev. B 41, 7910 (1990).
[26] Y. W. Suen, H. C. Manoharan, X. Ying, M. B. Santos, and M.

Shayegan, Phys. Rev. Lett. 72, 3405 (1994).
[27] H. C. Manoharan, Y. W. Suen, T. S. Lay, M. B. Santos, and M.

Shayegan, Phys. Rev. Lett. 79, 2722 (1997).
[28] T. S. Lay, T. Jungwirth, L. Smrčka, and M. Shayegan, Phys.
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(2011).

[57] W. Pan, K. W. Baldwin, K. W. West, L. N. Pfeiffer, and D. C.
Tsui, Phys. Rev. Lett. 108, 216804 (2012).
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