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Speed limit to the Abrikosov lattice in mesoscopic superconductors
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We study the instability of the superconducting state in a mesoscopic geometry for the low pinning material
Mo3Ge characterized by a large Ginzburg-Landau parameter. We observe that in the current-driven switching to
the normal state from a nonlinear region of the Abrikosov flux flow, the mean critical vortex velocity reaches a
limiting maximum velocity as a function of the applied magnetic field. Based on time-dependent Ginzburg-Landau
simulations, we argue that the observed behavior is due to the high-velocity vortex dynamics confined on a
mesoscopic scale. We build up a general phase diagram which includes all possible dynamic configurations of
the Abrikosov lattice in a mesoscopic superconductor.
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I. INTRODUCTION

Continuous advancements in nanofabrication have per-
mitted exploration and discovery of new emergent physical
phenomena when approaching the meso- and nanoscopic
limit [1–4]. The stability of the superconducting state under
geometrical confinement is now intensively investigated due in
part to the anomalous mixed state in type-II superconductors
[5,6], as well as for reaching a better performance in their
potential applications [7]. Unfortunately, one rarely witnesses
the persistence of the nondissipative regime up to the depairing
current density Jdp due to the current-induced motion of
magnetic flux quantum units (Abrikosov vortices) and the
consequent Joule heating for currents above a critical current
Jc < Jdp. The actual discrepancy between the theoretical
expectation and the experimental fact has its origin in the
largely neglected nonequilibrium phenomena occurring at the
core of swiftly moving Abrikosov vortices [8,9]. One of
these effects, taking place at intermediate current densities
Jc < J ∗ < Jdp, consists of a deformation of the flux quanta
core due to the slow healing time of the superconducting
condensate after the passage of a vortex singularity in the
condensate [10]. As a consequence, a rapidly moving vortex
leaves behind a trail of depleted order parameters that further
facilitates the motion of other vortices, thus forming rivers of
flux leading to a net increase of dissipation and triggering
an abrupt transition from the Abrikosov flux flow regime
to the normal state [11,12]. No matter which mechanism
is responsible for this current instability [10–15], in this
work we show that in the mesoscopic regime, the average
critical velocity needed to trigger the instabilities is limited
by a maximum speed value that is not observed under no
confinement. We investigate the so far unexplored mesoscopic
regime where the scenario based on pinning disorder is of
no application due to the fact that we use an extremely weak
pinning superconducting material, Mo3Ge, in which free flux
flow has been recently confirmed [16]. Many studies have been
carried out in order to address other possible competing effects,
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such as the influence of pinning properties of the intrinsic
material [17,18] and the artificially structured superconductors
[19]. Nevertheless, in all these cases the geometry of the
test sample has been kept on a macroscopic scale. Here we
demonstrate that the Abrikosov lattice instability is affected by
a significant surface barrier in mesoscopic superconductors.
Time-dependent Ginzburg-Landau simulations satisfactorily
reproduce the experimental results and give a complete overall
description of Abrikosov vortex dynamics driven at high
velocity. This can be a general example for high-velocity
dynamics in any context of confined geometry, for example,
in the dynamics of magnetic entities such as Skyrmions [20],
in flows and mixing in microfluidic devices [21], as well as in
the high-speed impact of fluid within a granular material [22].

II. EXPERIMENTAL RESULTS

A. Vortex pinning properties

Mo3Ge thin films were grown on Si/SiO2 substrates
by pulsed laser deposition technique using a Nd:YAG
(λ = 532 nm) pulsed laser of 55-J energy and a repetition rate
of 10 Hz. The deposition was performed at a pressure of 10−7

mbar. Using these parameters, a deposition rate of 1.1 nm/min
is achieved. All depositions were done on Si wafers with an
amorphous SiOx top layer. Microbridges were obtained by
electron-beam lithography with thickness d = 50 nm, length
L = 160 μm, and different linewidths w = 5 ÷ 100 μm [23].

The superconducting properties strongly depend on the
thickness of the films. For 4-nm-thick films, there is no
superconducting transition. For films thicker than 25 nm, the
superconducting transition saturates, reaching values up to 7 K
[23]. Typical values of the superconducting parameters for the
highest Tc film, namely, S100, are Tc = 6.5 K, Hc2(0) ∼ 9 T,
Jc(0) = 0.15 MA/cm2. In addition, it has been shown that
usually the irreversible magnetization loops are already closed
at 20 mT, i.e., 2 orders of magnitude smaller than Hc2 [24].

Pulsed current-voltage (I -V ) measurements were per-
formed in order to minimize self-heating effects [17]. Since
unavoidable self-heating may affect experimental data, first
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FIG. 1. (Color online) (a) The I -V curves for the 100-μm-wide
strip S100 at T = 1.6 K and H = 0.9, 2.5, 6.0, 9.5, 13, 24, 33, 43,
60, 81, 100, 140, 180, 250, 350, 451, 750, 1497, and 2494 mT. In the
inset the sample layout is sketched. (b) Critical and instability current
densities as a function of the applied magnetic field extracted from
the I -V curves.

of all we chose a pulsed biasing mode with a pulse width of
2.5 ms and an inter pulse period of 1 s [25].

In Fig. 1 the I -V curves for the measured S100 macroscopic
strip are shown along with the data related to the critical current
density Jc and the instability current J ∗ as a function of the
applied magnetic field. We note that for the whole field range,
Jc is considerably smaller than J ∗ and exhibits a very steep
decrease as a function of the magnetic field. The absolute Jc

values of the order of 104 A/cm2 reveal the weak pinning
nature of this material.

B. Vortex lattice instability at the mesoscopic scale

The mesoscopic limit is reached when d � λ [26–28],
with λ the London penetration depth, and the sample width
is narrower than the Pearl length w � � = 2λ2/d [26] and
much wider than the Ginzburg-Landau coherence length w �
ξGL. The estimated values of effective coherence length and
penetration depth at very low temperatures for our Mo3Ge
films are as low as ξGL � 5 nm and as large as λ = 500 nm,
corresponding to a large Ginzburg-Landau parameter k =
100. The conditions for the mesoscopic limit are reasonably
satisfied for our thin films of w = 5 μm being � = 10 μm.
On these mesoscopic samples we checked that self-heating
effects can be neglected. Indeed, no hysteresis occurs in
the I -V curves by performing measurements forth and back
(increasing and subsequently decreasing current) of each curve
by current biasing. Moreover, we can assure that the instability
point of each curve remains unchanged and it is always
reproducible, although at low fields the metastable states can
change before the normal state is reached. We also took into
account self-heating by considering the Bezuglyi-Shklovskij
approach for the term of quasiparticle overheating [13],
leading to the estimate of the threshold magnetic field value
BT = 0.374ehτE/kBσNd ∼ 3 T, where h is the heat-transfer
coefficient to the coolant [29], τE is the quasiparticle relaxation
time [16], and σN is the normal conductivity [23]. In other
words, heating effects become significant for B > BT , out
of the field range in which the maximum speed limit of
the moving Abrikosov lattice is achieved. In addition, we
derived from the I -V data of Fig. 1(a) the dissipated power
P ∗ = I ∗V ∗, which is an increasing function of the magnetic
field, as shown in Fig. 2. This is the experimental evidence that
thermal effects are not determining the flux flow instability
points. Indeed, if this was the case of a thermal runway, P ∗
should be independent of magnetic field, as already pointed

FIG. 2. The dissipated power as a function of the magnetic field.
Each data is estimated at the instability points marked by the arrows
in Fig. 1(a).
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FIG. 3. (Color online) (a) Experimental I -V curves at T = 1.6
K for increasing magnetic field (as indicated by the arrow, in mT):
4, 25, 46, 67, 87, 109, 209, 311, 412, 513, 767, 1023, 1526, and
2031. The inset shows several multiple jumps before reaching the
normal resistance. (b) The critical vortex velocity as a function of
magnetic field for the S100 and S1 strips, indicated by the full and
open symbols, respectively. (c) The v∗(μ0H ) curves for two reduced
temperatures t = 0.55 and 0.86 measured on the Sx strip. Lines are
guide to the eye.

out by Xiao et al. [30]. We also note that this magnetic
field dependence has been predicted by Vina et al. [31]
on self-heating-based calculations. However, they deal with
a high-temperature superconductor, yttrium barium copper
oxide (YBCO) microbridges, in a temperature range close to
Tc, 0.8 < T/Tc < 1, whose normal-state resistivity are several
orders of magnitude larger than in our mesoscopic strips.

In Fig. 3(a) we report the I -V curves as a function of
magnetic field for the 5-μm mesoscopic strip Sx at the
lowest temperature T = 1.6 K. The inset shows a single curve
measured at low field in which multiple voltage jumps are
observed in the V (I ) branch above the instability point (I ∗,V ∗)
and up to the normal current I ∗

N . In this case, the transition to
the normal state follows several metastable states, instead of
being an abrupt voltage jump.

Mo3Ge being considered a weak pinning superconductor,
almost linear flux flow branches are also expected up to high
bias current, as it is noticed both for Sx [see Fig. 3(a)] and
the 100-μm strip S100 [see Fig. 1(a)]. From the last point
(I ∗,V ∗) marked by the arrows in the continuous branch, we
estimate the mean critical velocity of the moving vortex lattice
as v∗ = E∗/μ0H . By extracting the v∗(μ0H ), we obtain a
surprising result: the size reduction down to the mesoscopic
scale implies the change of the critical velocity behavior in
a substantial magnetic field range μ0H < 0.5 T, as shown in
Fig. 3(b) for the case of the 5-μm mesoscopic strip S1 and the
S100 macroscopic one. Interestingly, from the fact that v∗ esti-
mations acquired at two different temperatures [see Fig. 3(c)]
show no difference, we can suggest that the observed change
in v∗ for the mesoscopic sample is rather T independent.

C. Pinning effect on vortex instability

In order to investigate if the observed behavior v∗(μ0H )
in the mesoscopic limit is influenced by any bulk pinning, we

FIG. 4. (Color online) Critical voltages vs magnetic field. Data
acquired on a mesoscopic NbN stronger pinning superconducting
strip (squares) compared with the Mo3Ge S1 mesoscopic strip
(triangles).

changed the intrinsic pinning from the weak Mo3Ge thin films
to a well-known, stronger pinning superconductor, namely,
NbN.

We fabricated a mesoscopic strip of 1 μm width and 10 μm
length, realized by e-beam lithography on d = 20-nm thin
film, so that we obtained λ(0) = 400 nm and � = 16 μm.
By carrying out the same data analysis performed in the case
of the Mo3Ge samples, we obtained the results collected in
Fig. 4, where the critical voltages of the NbN sample are
plotted together with the data related to the Mo3Ge sample S1.
We find that even a strong pinning material on the mesoscopic
scale has the same striking behavior, although on a larger
magnetic field range.

III. NUMERICAL SIMULATIONS

A. Model

Time-dependent Ginzburg-Landau (TDGL) simulations are
used to gain information on the vortex dynamics accounting
for the I -V curves observed in the Mo3Ge mesoscopic super-
conductor. We use the TDGL model in its two-dimensional
(2D) simplified form, being justified when the strip exhibits a
large parameter k and it is in the mesoscopic limit, which is
our experimental case. In the mesoscopic limit current density
is reasonably uniform and the magnetic field induced by the
transport and screening currents can be usually neglected
[26–28]. Moreover, in the model we neglect intrinsic bulk
pinning, according to experimental data.

In the numerical simulations we assume the strip width
to be equal to w = 160ξL in the x direction and length L =
80ξL in the y direction. Experimentally, the phenomenon we
want to describe is found almost independent of temperature,
v∗(μ0H,T ), and it is recorded up to the reduced temperature
t = 0.86. At this reduced temperature the normalized width of
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the real strips is w = 370ξL. Indeed, we use the smaller width
w = 160ξL in the simulations as well, because we checked
that the vortex dynamics involved did not change appreciably
if such dimensions were further increased and because it would
be more cumbersome to present snapshots of vortex dynamics
covering the larger width of 370ξL, the vortex cores being
extended for only about 3ξL.

We also underscore that in the nonmesoscopic regime with
no bulk pinning (see, e.g., Ref. [11]) the current distribution is
strongly peaked at edges of the strip and the current-assisted
vortex nucleation is present also at fields H < HS/2, where
HS is the field at which static vortices are present in the strip
also for J = 0 [27,28,32]. In particular, at zero applied field the
vortices and antivortices nucleate at the edges and annihilate
at the center of the strip [11]. On the contrary, the region
0 < H < HS/2 of hampered vortex nucleation is observed
in a mesoscopic system, compelling a vortex velocity increase
with magnetic field from zero to a maximum value. This region
can be hidden in the macroscopic system, where the finite
(maximum) value of the average velocity can be achieved
already at very low fields close to H = 0. This may account
for the different behavior of v∗(μ0H ) in the mesoscopic strip
with respect to the macroscopic case.

In the following we assume that to work in a temperature
range so close to Tc, the phenomenological TDGL model is
supposedly adequate. The 2D TDGL equation for the complex
order parameter ψ = |ψ |eiφ takes the form [28,33,34]

u

(
∂

∂t
+ iφ

)
ψ = (∇ − iA)2ψ + (1 − |ψ |2)ψ, (1)

coupled with the equation for the electrostatic potential ∇2φ =
div{Im[ψ∗(∇ − iA)ψ]}, where A is the vector potential asso-
ciated to the external magnetic field H , φ is the electrostatic
potential, and the coefficient u = 5.79 governs the relaxation
of the order parameter [35]. All physical quantities are
measured in dimensionless units [28,33,34]: the coordinates
are in units of the coherence length ξGL(T ), time is in units
of the relaxation time τ , the order parameter is in units of the
superconducting gap 
(T ), the vector potential is in units of
�0/2πξGL (where �0 is the quantum of magnetic flux), and
the electrostatic potential is in units of φ0(T ) = �/2eτ . In these
units the magnetic field is scaled with Hc2(T ) = �0/2πξ 2

GL

and the current density with j0(T ) = c�0/8π2λ2ξGL. The field
H is applied in the z direction and the current density J is ap-
plied in the y direction. We make use of the “bridge” boundary
condition in the y direction and of an insulator-superconductor
boundary condition in the x direction [28,33,34].

B. Flux flow results

In Fig. 5(a), we show the calculated E(J ) curves, in the
low-electric-field-range, for several values of magnetic field
H applied perpendicular to the strip. Curves display a fully
linear (at moderate and high fields) or nearly linear (at low
fields) flux-flow branch starting at some critical current Jc

in the rather large current range Jc < J < J ∗
l , followed by

a deviation from linear behavior in the limited current range
J ∗

l < J < J ∗ and ending with a more or less abrupt transition
to the fully normal state. The red line is displayed as a guide to
the eye to mark the critical points (E∗

l ,J
∗
l ) where the departure

FIG. 5. (Color online) Numerical results: (a) E(J ) curves for
different magnetic field values in the low-electric-field range. In units
of Hc2 the field values are 0.007 5 (red dots), 0.01, 0.015, 0.03, 0.04,
0.06, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.3, 0.35, and 0.4
(gray dots). The inset shows a single curve at low field. (b) Critical
and instability current densities as a function of magnetic field.
(c) Average vortex critical velocities for the linear and nonlinear
regimes as a function of magnetic field.

from almost linear behavior occurs. The circles mark the
instability points (E∗,J ∗) at which the continuous nonlinear
branch ends and a very high differential resistivity branch (at
moderate/high fields) or a metastable branch (at low fields)
is followed before transition to the normal state is achieved.
Figure 5(b) shows the relevant current densities J ∗

l , J ∗, Jc as a
function of magnetic field. The average critical velocity of the
linear v∗

l = E∗
l /μoH and nonlinear v∗ = E∗/μoH regimes

are plotted as a function of applied magnetic field in Fig. 5(c).
In analogy with experimental data, both critical velocities
exhibit a nonmonotonic behavior with a maximum at a certain
field Hcr , after which a decreasing function of H is established,
approximately, as H−1/2 [17]. In the following we focus on
the vortex dynamics accounting for the E(J ) in the magnetic
field range around Hcr where such a crossover is found [see
Fig. 5(c)] and v∗

max is reached. In Fig. 5(b) we can distinguish,
in the magnetic field range in which the critical velocity is
increasing, the “entry field” H = HS , that is HS = 0.021Hc2.
Inspection of Figs. 5(b) and 5(c) suggests that the crossover
field Hcr can essentially be identified with Hs/2.

C. Nonequilibrium phase diagram

At magnetic fields larger than the entry field HS , a regular
Abrikosov vortex lattice is expected to be present even at
J = 0. At fields HS/2 < H < HS , by increasing the driving
current, vortices nucleate to the left edge of the strip but start
to flow only at some finite current Jc due to the presence of
a surface barrier in the system [27,28]. Though a triangular
vortex lattice is not fully created, there exists a quasiordered
motion of vortices (see snapshot I in Fig. 6) that results in an
almost linear branch in the E(J ) curve up to J ∗

l . By further
increasing current, a departure from the nearly linear E(J )
curve occurs up to the critical current J ∗, and vortex flow
transforms to a rowlike structure, as visualized in snapshot
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FIG. 6. (Color online) Numerically obtained dynamic phase diagram of vortex lattice in a mesoscopic superconductor. It is identified by
the peculiar entry field H = HS above which a regular vortex lattice can be set in motion, as well as the instability current density J ∗ above
which moving ordinary vortices transform in kinematic vortices at moderate or high fields or ordinary vortex bundles mixed to clusterized
normal regions at low field. When present, normal regions expand at the expense of vortex matter with increasing current up to a final J ∗

N where
the system undergoes the transition to the fully normal state. Snapshots show the evolution of the vortex lattice configuration upon increasing
the driving current.

II. At currents larger than J ∗ the row structure evolves into a
normal channel-like configuration, as shown in snapshot III.
This corresponds to a noisy behavior in the E(J ) curve and to
dynamical states in which the presence of vortices is restored
at the expense of normal channels [see inset of Fig. 5(a)]. For
fields H < HS/2, we note only the sequence of states, which
in our analysis involves the transition to the normal state with a
more or less pronounced intermittent effect (see snapshots IV
and V). Interestingly, this intermittence is also observed in the
experimental curves [see inset of Fig. 3(a)]. We should remark
that, for the magnetic field range HS/2 < H < HS , there exists
a finite current range where nearly ordered vortex matter is
driven by the bias current. In this lower field region vortices
can nucleate in the strip only when a quite large uniformly
distributed transport current (∼Jdp) helps the screening current
to suppress the order parameter at one of the edges of the strip,
thus promoting vortex nucleation [28,32,36].

In Fig. 6 we include the full zoology of vortex lattice phases
in motion, with particular attention on the dynamic phase
diagram in which nonlinearity arises. Here some well-known
phases are reported for completeness: the static vortex lattice
which exists only for J < Jc, and the fully normal phase for
J > J ∗

N . In the low-field region HS/2 < H < HS , region I
corresponds to the current-assisted vortex nucleation with an
almost triangular moving vortex lattice, which results in the
almost linear flux flow motion Jc < J < J ∗

l . At larger currents
we find other two possible nonequilibrium phases, II and III.
In Region II (J ∗

l < J < J ∗), a rowlike moving vortex lattice
can exist with a corresponding filamentary displacement of
vortices (vortex river). For larger currents clusters of normal
metal phase develop which match the intermittence phase III
with metastable states before reaching the fully normal phase.
In agreement with analytical predictions presented in Ref. [32],
in the field range 0 < H < HS/2, transport-current-assisted
discrete vortex nucleation is practically absent. Here, we only
observe a disordered bundlelike vortex nucleation and motion,
accounting for a strongly nonlinear E(J ) branch up to J ∗
(region IV), followed by a regime (region V) where flux
bundles are mixed to a clusterized normal phase, as shown in

snapshot V of Fig. 6. At H > HS , region VI corresponds to the
ordinary linear flux flow accounted for by a moving triangular
lattice (snapshot VI). This regular motion is observed up to a
critical current J ∗

l , resulting in a nearly linear branch of the
E(J ) curve. Region VII marks the nonlinear flux flow motion
for J ∗

l < J < J ∗, accounted for by a moving glassy lattice
(snapshot VII). Above the instability current J ∗, jumps to high
resistivity branches can occur (region VIII). These branches,
which extend in the range J ∗ < J < J ∗

kv , are accounted for
by a channel-like structure of vortices, as shown in snapshot
VIII, very similar that described in Ref. [11]. For J > J ∗

kv ,
the vortex channel structure leads to the opening of normal
channels (see snapshot IX), which are responsible for a more
or less abrupt transition to the highest resistive state, i.e., the
normal state. Fast (kinematics) vortices surfing on channels of
very depressed superconductivity shown in snapshot VIII were
investigated in detail in Ref. [11] within the generalized TDGL
model that accounts for the nonequilibrium effects through a
parameter γ [35]. In our simulations we used the standard
TDGL with γ = 0 and, though present, the high-resistivity
branches accounting for kinematic vortices are consistently
[35] recovered only in a current range much narrower than
that found in Ref. [11].

IV. CONCLUSIONS

In the framework of vortex dynamics we identify the
limiting behavior of the Abrikosov lattice stability driven
at high vortex velocity in the absence of bulk pinning, with
the only constraint being confined mesoscopic geometry. The
possibility to reach a maximum critical velocity as a function
of the applied magnetic field is naturally explained by the
TDGL phenomenological approach, which allows us to give a
complete view of nonequilibrium vortex phases tunable by the
external magnetic field and/or the bias current in a dynamic
phase diagram. In a mesoscopic superconductor the physical
meaning of such a speed limit to the Abrikosov vortex velocity
is strictly connected to the presence of surface pinning, namely,
an edge barrier, which first hampers and then delays the lattice
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motion, due to the rearrangement of vortice configuration in
rowlike flow rather than keeping the usual ordered triangular
vortex lattice in motion. To visualize it, real-space images
of the driven lattice show that motion occurs along channels
that are aligned with the direction of the driving force and
periodically spaced in the transverse direction. Phase slips,
however, occur at the channel boundaries, indicating that
channels become uncorrelated at very high driving current,
before the instability takes place. In our case those channels
may exist only at a velocity v < v∗(Hcr ) = v∗

max, which is the
speed limit for the moving Abrikosov lattice.

The sequence in which these dynamical phases appear at
high bias currents is usually nontrivial, and the simplified
models of vortices as pointlike classical particles seem to
have missed what a more realistic approach based on TDGL
formalism is able to catch [37].

A further comparison of data on weak Mo3Ge supercon-
ductors with the bulk pinning effects in NbN surprisingly led to

similar results, thus conferring to our findings even more gen-
erality. Our results demonstrate that geometric reduction on a
mesoscopic scale can radically change the dissipative regimes
in superconducting materials, thus improving the performance
of those devices based on superconducting nanostructures.
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