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We investigate theoretically how the proximity effect in superconductor/ferromagnet hybrid structures with
intrinsic spin-orbit coupling manifests in two measurable quantities, namely, the density of states and critical
temperature. To describe a general scenario, we allow for both Rashba- and Dresselhaus-type spin-orbit coupling.
Our results are obtained via the quasiclassical theory of superconductivity, extended to include spin-orbit coupling
in the Usadel equation and in the Kupriyanov-Lukichev boundary conditions. Unlike previous works, we have
derived a Riccati parametrization of the Usadel equation with spin-orbit coupling which allows us to address
the full proximity regime and not only the linearized weak proximity regime. First, we consider the density of
states in both SF bilayers and SFS trilayers, where the spectroscopic features in the latter case are sensitive to
the phase difference between the two superconductors. We find that the presence of spin-orbit coupling leaves
clear spectroscopic fingerprints in the density of states due to its role in creating spin-triplet Cooper pairs. Unlike
SF and SFS structures without spin-orbit coupling, the density of states in the present case depends strongly
on the direction of magnetization. Moreover, we show that the spin-orbit coupling can stabilize spin-singlet
superconductivity even in the presence of a strong exchange field h � �. This leads to the possibility of a
magnetically tunable minigap: changing the direction of the exchange field opens and closes the minigap. We
also determine how the critical temperature Tc of an SF bilayer is affected by spin-orbit coupling and, interestingly,
demonstrate that one can achieve a spin-valve effect with a single ferromagnet. We find that Tc displays highly
nonmonotonic behavior both as a function of the magnetization direction as well as the type and direction of the
spin-orbit coupling, offering a new way to exert control over the superconductivity of proximity structures.
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I. INTRODUCTION

Material interfaces in hybrid structures give rise to proxim-
ity effects, whereby the properties of one material can “leak”
into the adjacent material, creating a region with properties
derived from both materials. In superconductor/ferromagnet
(SF) hybrid structures [1], the proximity effect causes super-
conducting correlations to penetrate into the ferromagnetic
region and vice versa. These correlations typically decay over
short distances, which in diffusive systems is of the order√

D/h, where D is the diffusion coefficient of the ferromagnet
and h is the strength of the exchange field. However, for
certain field configurations, the singlet correlations from the
superconductor may be converted into so-called long-range
triplets (LRTs) [2]. These triplet components have spin
projection parallel to the exchange field, and decay over
much longer distances. This results in physical quantities like
supercurrents decaying over the length scale ξN = √

D/T ,
which is usually much larger than the ferromagnetic coherence
length ξF = √

D/h, where T is the temperature. This distance
is independent of h, and at low temperatures it becomes
increasingly large, which allows the condensate to penetrate
deep into the ferromagnet. The isolation and enhancement
of this feature has attracted much attention in recent years
as it gives rise to novel physics and possible low-temperature
applications by merging spintronics and superconductivity [3].

It is by now well-known that the conversion from singlet
to long-range triplet components of the superconducting state
can happen in the presence of magnetic inhomogeneities [4,5],

*These authors contributed equally to this work.

i.e., a spatially varying exchange field, and until recently such
inhomogeneities were believed to be the primary source of
this conversion [6–15], although other proposals using, e.g.,
nonequilibrium distribution functions and intrinsic triplet su-
perconductors also exist [16–19]. However, it has recently been
established that another possible source of LRT correlations
is the presence of a finite spin-orbit (SO) coupling, either
in the superconducting region [20] or on the ferromagnetic
side [21,22]. In fact, it can be shown that an SF structure where
the magnetic inhomogeneity is due to a Bloch domain wall,
as considered in, e.g., Refs. [23–25], is gauge equivalent to
one where the ferromagnet has a homogeneous exchange field
and intrinsic SO coupling [21]. It is known that SO scattering
can be caused by impurities [26], but this type of scattering
results in purely isotropic spin-relaxation, and so does not
permit the desired singlet-LRT conversion. To achieve such
a conversion, one needs a rotation of the spin pair into the
direction of the exchange field [27]. This can be achieved
by using materials with an intrinsic SO coupling, either due
to the crystal structure in the case of noncentrosymmetric
materials [28], or due to interfaces in thin-film hybrids [29],
where the latter also modifies the fundamental process of
Andreev reflection [30,31]. The role of SO coupling with
respect to the supercurrent in ballistic hybrid structures has
also been studied recently [32].

In this paper, we establish how the presence of spin-
orbit coupling in SF structures manifests in two important
experimental observables: the density of states D(ε) probed via
tunneling spectroscopy (or conductance measurements), and
the critical temperature Tc. A common consequence for both
of these quantities is that neither becomes independent of the
magnetization direction. This is in contrast to the case without
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SO coupling in conventional monodomain ferromagnets,
where the results are invariant with respect to rotations of the
magnetic exchange field. This symmetry is now lifted due to
SO coupling: depending on the magnetization direction, LRT
Cooper pairs can be created, and this leaves clear fingerprints
both spectroscopically and in terms of the Tc behavior. On the
technical side, we will present in this work for the first time a
Riccati parametrization of the Usadel equation and its corre-
sponding boundary conditions that include SO coupling. This
is an important advance in terms of exploring the full physics
of triplet pairing due to SO coupling as it allows for a solution
of the quasiclassical equations without any assumption of
a weak proximity effect. We will also demonstrate that the
SO coupling can actually protect the singlet superconducting
correlations even in the presence of a strong exchange field,
leading to the possibility of a minigap that is magnetically
tunable via the orientation of the exchange field.

The remainder of the article will be organized as follows. In
Sec. II, we introduce the relevant theory and notation, starting
from the quasiclassical Usadel equation, which describes
the diffusion of the superconducting condensate into the
ferromagnet. We also motivate our choice of intrinsic SO
coupling in this section, and propose a new notation for
describing Rashba-Dresselhaus coupling. The section goes
on to discuss key analytic features of the equations in the
limit of weak proximity, symmetries of the density of states
at zero energy, and analytical results needed to calculate
the critical temperature of hybrid systems. We then present
detailed numerical results in Sec. III: we analyze the density
of states of an SF bilayer in Sec. III A [see Fig. 1(a)], with
the case of pure Rashba coupling considered in Sec. III B,
and we study the SFS Josephson junction in Sec. III C [see
Fig. 1(b)]. We consider different orientations and strengths of
the exchange field and SO coupling, and in the case of the
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FIG. 1. (Color online) (a) The SF bilayer in Secs. III A, III B,
and III D. (b) The SFS trilayer in Sec. III C. We take the thin-film
layering direction along the z axis, and assume an xy plane Rashba-
Dresselhaus coupling in the ferromagnetic layer.

Josephson junction, the effect of altering the phase difference
between the condensates. Then, in Sec. III D, we continue
our treatment of the SF bilayer in the full proximity regime
by including a self-consistent solution in the superconducting
layer, and focus on how the presence of SO coupling affects
the critical temperature of the system. We discover that the
SO coupling allows for spin-valve functionality with a single
ferromagnetic layer, meaning that rotating the magnetic field
by π/2 induces a large change in Tc. Finally, we conclude in
Sec. IV with a summary of the main results, a discussion of
some additional consequences of the choices made in text, as
well as possibilities for further work.

II. THEORY

A. Fundamental concepts

The diffusion of the superconducting condensate into
the ferromagnet can be described by the Usadel equation,
which is a second-order partial differential equation for the
Green function of the system [33]. Together with appropriate
boundary conditions, the Usadel equation establishes a system
of coupled differential equations that can be solved in one
dimension. We will consider the case of diffusive equilibrium,
where the retarded component ĝR of the Green function is
sufficient to describe the behavior of the system [34,35]. We
start by examining the superconducting correlations in the
ferromagnet, and use the standard Bardeen-Cooper-Schrieffer
(BCS) bulk solution for the superconductors. In particular,
we will clarify the spectroscopic consequences of having SO
coupling in the ferromagnetic layer.

In the absence of SO coupling, the Usadel equation [33] in
the ferromagnet reads

DF ∇(ĝR∇ĝR) + i
[
ερ̂3 + M̂,ĝR

] = 0, (1)

where the matrix ρ̂3 = diag(1, − 1), 1 represents the 2×2 unit
matrix, and ε is the quasiparticle energy. The magnetization
matrix M̂ in the above equation is

M̂ =
(

h · σ 0
0 (h · σ )∗

)
,

where h = (hx,hy,hz) is the ferromagnetic exchange field,
(∗) denotes complex conjugation, σ = (σx,σy,σz) is the Pauli
vector, and σk are the usual Pauli matrices. Throughout, we will
use the notation . . . for 3-vectors and ˆ. . . for 4 × 4 matrices in
Nambu-spin space. The corresponding Kupriyanov-Lukichev
boundary conditions are [36]

2Ljζj ĝ
R
j ∇ĝR

j = [
ĝR

1 ,ĝR
2

]
, (2)

where the subscripts refer to the different regions of the hybrid
structure; in the case of an SF bilayer as depicted in Fig. 1(a),
j = 1 denotes the superconductor, and j = 2 the ferromagnet,
while ∇ denotes the derivative along the junction 1 → 2. The
respective lengths of the materials are denoted Lj , and the
interface parameters ζj = RB/Rj describe the ratio of the
barrier resistance RB to the bulk resistance Rj of each material.

We will use the Riccati parametrization [37] for the
quasiclassical Green function ĝR ,

ĝR =
(

N (1 + γ γ̃ ) 2Nγ

−2Ñ γ̃ −Ñ (1 + γ̃ γ )

)
, (3)
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where the normalization matrices are N = (1 − γ γ̃ )−1 and
Ñ = (1 − γ̃ γ )−1. The tilde operation denotes a combination
of complex conjugation i → −i and energy ε → −ε, with
γ → γ̃ , N → Ñ . The Riccati parametrization is particularly
useful for numerical computation because the parameters are
bounded [0,1], contrary to the multivalued θ parameteriza-
tion [34]. In practice, this means that for certain parameter
choices the numerical routines will only converge in the Riccati
formulation. Appendix A contains some further details on this
parametrization.

To include intrinsic SO coupling in the Usadel equation, we
simply have to replace all the derivatives in Eq. (1) with their
gauge covariant counterparts [21,38]:

∇( · ) �→ ∇̃( · ) ≡ ∇( · ) − i[Â, · ]. (4)

This is valid for any SO coupling linear in momentum. We
consider the leading contribution; higher-order terms, e.g.,
those responsible for the SU(2) Lorentz force, are neglected
here. Such higher-order terms are required to produce so-called
ϕ0 junctions, which have lately attracted interest [39], and
consequently we will see no signature of the ϕ0 effect in the
systems considered herein. The object Â has both a vector
structure in geometric space and a 4 × 4 matrix structure in
Spin-Nambu space, and can be written as Â = diag(A,−A∗) in
terms of the SO field A = (Ax,Ay,Az), which will be discussed
in more detail in the next section. SO coupling in the context of
quasiclassical theory has also been discussed in Refs. [38,40].
When we include the SO coupling as shown above, we derive
the following form for the Usadel equation (see Appendix A):

DF

(
∂2
k γ + 2(∂kγ )Ñ γ̃ (∂kγ )

)
= −2iεγ − ih · (σγ − γ σ ∗)

+DF [AAγ − γA∗A∗ + 2(Aγ + γA∗)Ñ (A∗ + γ̃ Aγ )]

+ 2iDF [(∂kγ )Ñ(A∗
k + γ̃ Akγ ) + (Ak + γA∗

k γ̃ )N (∂kγ )],

(5)

where the index k indicates an arbitrary choice of direction
in Cartesian coordinates. The corresponding equation for γ̃ is
found by taking the tilde conjugate of Eq. (5). Similarly, the
boundary conditions in Eq. (2) become

∂kγ1 = 1

L1ζ1
(1 − γ1γ̃2)N2(γ2 − γ1) + iAkγ1 + iγ1A

∗
k,

∂kγ2 = 1

L2ζ2
(1 − γ2γ̃1)N1(γ2 − γ1) + iAkγ2 + iγ2A

∗
k, (6)

and the γ̃ counterparts are found in the same way as before.
For the details of these derivations, see Appendix A.

We will now discuss the definition of current in the presence
of spin-orbit interactions. Since the Hamiltonian including SO
coupling contains terms linear in momentum (see below),
the velocity operator vj = ∂H/∂kj is affected. We stated
above that the Kupriyanov-Lukichev boundary conditions are
simply modified by replacing the derivative with its gauge
covariant counterpart including the SO interaction. To make
sure that current conservation is still satisfied, we must
carefully examine the Usadel equation. In the absence of SO
coupling, the quasiclassical expression for electric current is

given by

Ie = I0

∫ ∞

−∞
dε Tr[ρ̂3(ǧ∇ǧ)K ], (7)

where ǧ is the 8 × 8 Green function matrix in Keldysh space,

ǧ =
(

ĝR ĝK

0̂ ĝA

)
, (8)

and I0 is a constant that is not important for this discussion.
Current conservation can now be proven from the Usadel
equation itself. We show this for the case of equilibrium, which
is relevant for the case of supercurrents in Josephson junctions.
In this case, ĝK = (ĝR − ĝA) tanh(ε/2T ) and we get

Ie = I0

∫ ∞

−∞
dε Tr[ρ̂3(ĝR∇ĝR − ĝA∇ĝA)] tanh(ε/2T ). (9)

Performing the operation Tr[ρ̂3 · · · ] on the Usadel equation,
we obtain

D∇ · Tr[ρ̂3(ĝR∇ĝR)] + i Tr{ρ̂3[ερ̂3 + M̂,ĝR]} = 0. (10)

Now, inserting the most general definition of the Green
function ĝR , one finds that the second term in the above
equation is always zero. Thus we are left with

∇ · Tr[ρ̂3(ĝR∇ĝR)] = 0, (11)

which expresses precisely current conservation since the same
analysis can be done for ĝA. Now, let us include the SO
coupling. The current should then be given by

Ie = I0

∫ ∞

−∞
dε Tr[ρ̂3(ǧ∇̃ǧ)K ], (12)

so that the expression for the charge current is modified by the
presence of SO coupling, as is known. The question is now
if this current is conserved, as it has to be physically. We can
prove that it is from the Usadel equation with SO coupling by
rewriting it as

D∇ · (ĝR∇̃ĝR)

= D[Â,ĝR∇ĝR] + D[Â,[Â,ĝR]] − i[ερ̂3 + M̂,ĝR],

(13)

and then performing the operation Tr[ρ̂3 · · · ], one finds

D∇ · Tr[ρ̂3(ĝR∇̃ĝR)] = 0, (14)

so we recover the current conservation law ∇ · Ie = 0.

B. Spin-orbit field

The precise form of the generic SO field A is imposed by
the experimental requirements and limitations. As the name
suggests, spin-orbit coupling couples a particle’s spin with its
motion, and more specifically its momentum. As mentioned in
the Introduction, the SO coupling in solids can originate from
a lack of inversion symmetry in the crystal structure. Such
spin-orbit coupling can be of both Rashba and Dresselhaus
types and is determined by the point-group symmetry of the
crystal [41,42]. It is also known that the lack of inversion
symmetry due to surfaces, either in the form of interfaces to
other materials or to vacuum, will give rise to antisymmetric
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spin-orbit coupling of the Rashba type. For sufficiently thin
structures, the SO coupling generated in this way can permeate
the entire structure, but the question of precisely how far into
adjacent materials such surface SO coupling may penetrate
appears to be an open question in general. Intrinsic inversion
asymmetry arises naturally due to interfaces between materials
in thin-film hybrid structures such as the ones considered
herein. Noncentrosymmetric crystalline structures provide an
alternative source for intrinsic asymmetry, and are considered
in Ref. [43]. In thin-film hybrids, the Rashba spin splitting
derives from the cross product of the Pauli vector σ with the
momentum k,

HR = − α

m
(σ × k) · ẑ, (15)

where α is called the Rashba coefficient, and we have chosen
a coordinate system with ẑ as the layering direction. Another
well-known type of SO coupling is the Dresselhaus spin
splitting, which can occur when the crystal structure lacks an
inversion center. For a two-dimensional electron gas (quantum
well) confined in the ẑ direction, then to first order 〈kz〉 = 0,
so the Dresselhaus splitting becomes

HD = β

m
(σyky − σxkx), (16)

where β is called the Dresselhaus coefficient. In our structure,
we consider a thin-film geometry with the confinement being
strongest in the z direction. Although there may certainly be
other terms contributing to the Dresselhaus SO coupling in
such a structure, since real thin-film structures will have three-
dimensional quasiparticle diffusion and we use a 2D form of
the SO coupling here, we consider the standard form (16) as an
approximation that captures the main physics in the problem.
This is a commonly used model in the literature to explore
the effects originating from SO coupling in a system. When
we combine both interactions, we obtain the Hamiltonian for
a general Rashba-Dresselhaus SO coupling,

HRD = kx

m
(ασy − βσx) − ky

m
(ασx − βσy). (17)

In this work, we will restrict ourselves to this form of SO
coupling. It should be noted that our setup may also be viewed
as a simplified model for a scenario where the SO coupling and
ferromagnetism exist in separate, thin layers, in which case we
expect qualitatively similar results to the ones reported in this
manuscript.

As explained in Ref. [21], the SO coupling acts as a
background SU(2) field, i.e., an object with both a vector
structure in geometric space and a 2 × 2 matrix structure in
spin space. We can therefore identify the interaction above
with an effective vector potential A, which we will call the SO
field,

HRD ≡ −k · A/m, (18)

from which we derive that

A = (βσx − ασy,ασx − βσy,0). (19)

At this point, it is convenient to introduce a new notation
for describing Rashba-Dresselhaus coupling, which will let
us distinguish between the physical effects that derive from

FIG. 2. (Color online) Geometric interpretation of the SO
field (21) in polar coordinates: the Hamiltonian couples the momen-
tum component kx to the spin component (σx cos χ + σy sin χ ) with
a coefficient +a/m, and the momentum component ky to the spin
component (σx sin χ + σy cos χ ) with a coefficient −a/m. Thus a

determines the magnitude of the coupling, and χ the angle between
the coupled momentum and spin components.

the strength of the coupling, and those that derive from the
geometry. For this purpose, we employ polar notation defined
by the relations

α ≡ −a sin χ, β ≡ a cos χ, (20)

where we will refer to a as the SO strength, and χ as the SO
angle. Rewritten in the polar notation, Eq. (19) takes the form:

A = a(σx cos χ + σy sin χ )x̂ − a(σx sin χ + σy cos χ )ŷ.

(21)

From the definition, we can immediately conclude that χ = 0
corresponds to a pure Dresselhaus coupling, while χ = ±π/2
results in a pure Rashba coupling, with the geometric interpre-
tation of χ illustrated in Fig. 2. Note that A2

x = A2
y = a2, which

means that A2 = 2a2. Another useful property is that we can
switch the components Ax ↔ Ay by letting χ → 3π/2 − χ .

The appearance of LRTs in the system depends on the
interplay between SO coupling and the direction of the
exchange field. Recall that the LRT components are defined
as having spin projections parallel to the exchange field, as
opposed to the short-ranged triplet (SRT) component which
appears as long as there is exchange splitting [44] but has spin
projection perpendicular to the field and is therefore subject to
the same pair-breaking effect as the singlets [3,27], penetrating
only a very short distance into strong ferromagnets. If we
have an SO field component along the layering direction,
e.g., if we had Az 
= 0 in Figs. 1(a) and 1(b), achievable
with a noncentrosymmetric crystal or in a nanowire setup,
then a nonvanishing commutator [A, h · σ ] creates the LRT.
However, we will from now only consider systems where
Az = 0, in which case the criterion for LRT is [21] that
[A, [A, h · σ ]] must not be proportional to the exchange field
h · σ . Expanding, we have

[A, [A, h · σ ]] = 4a2( h · σ + hzσz)

− 4a2(hxσy + hyσx) sin 2χ, (22)

from which it is clear that no LRTs can be generated for
a pure Dresselhaus coupling χ = 0 or Rashba coupling χ =
±π/2 when the exchange field is in-plane. However, the effect
of SO coupling becomes increasingly significant for angles
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close to χ = ±π/4 (see Fig. 6 in Sec. III A). We also see that
no LRTs can be generated for in-plane magnetization in the
special case hx = hy and hz = 0, since hxσy + hyσx can then
be rewritten as hxσx + hyσy , which is proportional to h · σ .
There is no LRT generation for the case hx = hy = 0 and
hz 
= 0 for similar reasons. In general, however, the LRT will
appear for an in-plane magnetization as long as hx 
= hy and
the SO coupling is not of pure Dresselhaus or pure Rashba
type. It is also important to note that the LRT can be created
even for pure Rashba type SO coupling if the magnetization
has both in- and out-of-plane magnetization components. We
will discuss precisely this situation in Sec. III B.

Once the condition for long-range triplet generation is
satisfied, increasing the corresponding exchange field will also
increase the proportion of long-range triplets compared with
short-range triplets. Whether or not the presence of long-range
triplets can be observed in the system, i.e., if they retain a
clear signature in measurable quantities such as the density
of states when the criteria for their existence is fulfilled,
depends on other aspects such as the strength of the spin-orbit
coupling and will be discussed later in this paper. Thus a main
motivation for this work is to take a step further than discussing
their existence [21] and instead make predictions for when
long-ranged triplet Cooper pairs can actually be observed
via spectroscopic or Tc measurements in SF structures with
spin-orbit coupling. Moreover, we will demonstrate that
the presence of SO coupling offers additional opportunities
besides the creation of LRT Cooper pairs. We will show both
analytically and numerically that the SO coupling can protect
the singlet component even in the presence of an exchange
field, which normally would suppress it. This provides the
possibility of tuning the well-known minigap magnetically,
both in bilayer and Josephson junctions, simply by altering
the direction of the magnetization.

C. Weak proximity effect

In order to establish a better analytical understanding of the
role played by SO coupling in the system before presenting the
spectroscopy and Tc results, we will now consider the limit of
weak proximity effect, which means that |γij | � 1, N ≈ 1 in
the ferromagnet. The anomalous Green function in general is
given by the upper-right block of Eq. (3), f = 2Nγ , which we
see reduces to f = 2γ in this limit. It will also prove prudent
to express the anomalous Green function using a singlet/triplet
decomposition, where the singlet component is described by a
scalar function fs , and the triplet components encapsulated in
the so-called d vector [45,46],

f = (fs + d · σ )iσy. (23)

Combining the above with the weak proximity identity f =
2γ , we see that the components of γ can be rewritten as

γ = 1

2

(
idy − dx dz + fs

dz − fs idy + dx

)
. (24)

Under spin rotations, the singlet component fs will then trans-
form as a scalar, while the triplet component d = (dx,dy,dz)
transforms as an ordinary vector. Another useful feature of
this notation is that it becomes almost trivial to distinguish

between short-range and long-range triplet components; the
projection d = d · ĥ along the exchange field corresponds
to the SRTs, while the perpendicular part d⊥ = |d × ĥ| can
be used to describe the LRTs, where ĥ here denotes the unit
vector of the exchange field. For a concrete example, if the
exchange field is oriented along the z axis, then dz will be the
short-range component, while both dx and dy are long-ranged
components. In the coming sections, we will demonstrate that
the LRT component can be identified from its density of states
signature, as measurable by tunneling spectroscopy.

In the limit of weak proximity effect, we may linearize both
the Usadel equation and Kupriyanov-Lukichev boundary con-
ditions. Using the singlet/triplet decomposition in Eq. (24), and
the Rashba-Dresselhaus coupling in Eq. (19), the linearized
version of the Usadel equation can be written

i

2
DF ∂2

z fs = εfs + h · d, (25)

i

2
DF ∂2

z d = εd + hfs + 2iDF a2�(χ ) d, (26)

where we for brevity have defined an SO interaction matrix

�(χ ) =
⎛
⎝ 1 − sin 2χ 0

− sin 2χ 1 0
0 0 2

⎞
⎠. (27)

We have now condensed the Usadel equation down to two
coupled differential equations for fs and d, where the coupling
is proportional to the exchange field and the SO interaction
term. The latter has been written as a product of a factor
2iDF a2, depending on the strength a, and a factor �(χ )d,
depending on the angle χ in the polar notation. The matrix
�(χ ) becomes diagonal for a Dresselhaus coupling with
χ = 0 or a Rashba coupling with χ = ±π/2, which implies
that there is no triplet mixing for such systems. In contrast,
the off-diagonal terms are maximal for χ = ±π/4, which
suggests that the triplet mixing is maximal when the Rashba
and Dresselhaus coefficients have the same magnitude. In
addition to the off-diagonal triplet mixing terms, we see that
the diagonal terms of �(χ ) essentially result in imaginary
energy contributions 2iDF a2. As we will see later, this can in
some cases result in a suppression of all the triplet components
in the ferromagnet.

We will now consider exchange fields in the xy plane,

h = h cos θ x̂ + h sin θ ŷ. (28)

Since the linearized Usadel equations show that the presence
of a singlet component fs only results in the generation of
triplet components along h, and the SO interaction term only
mixes the triplet components in the xy plane, the only nonzero
triplet components will in this case be dx and dy . The SRT
amplitude d and LRT amplitude d⊥ can therefore be written:

d = dx cos θ + dy sin θ, (29)

d⊥ = −dx sin θ + dy cos θ. (30)

By projecting the linearized Usadel equation for d along the
unit vectors (cos θ, sin θ,0) and (− sin θ, cos θ,0), respectively,
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then we obtain coupled equations for the SRTs and LRTs:

i

2
DF ∂2

z fs = εfs + hd‖, (31)

i

2
DF ∂2

z d‖ = [ε + 2iDF a2(1 − sin 2θ sin 2χ )] d‖

− 2iDF a2 cos 2θ sin 2χ d⊥ + hfs, (32)

i

2
DF ∂2

z d⊥ = [ε + 2iDF a2(1 + sin 2θ sin 2χ )] d⊥

− 2iDF a2 cos 2θ sin 2χ d‖. (33)

These equations clearly show the interplay between the singlet
component fs , SRT component d , and LRT component
d⊥. If we start with only a singlet component fs , then the
presence of an exchange field h results in the generation
of the SRT component d . The presence of an SO field
can then result in the generation of the LRT component d⊥,
where the mixing term is proportional to a2 cos 2θ sin 2χ . This
implies that in the weak proximity limit, LRT mixing is absent
for an exchange field direction θ = ±π/4, corresponding to
hx = ±hy , while it is maximized if θ = {0,π/2,π} and at the
same time χ = ±π/4. In other words, the requirement for
maximal LRT mixing is therefore that the exchange field is
aligned along either the x or y axis, while the Rashba and
Dresselhaus coefficients should have the same magnitude. It
is important to note here that although the mixing between the
triplet components is maximal at θ = {0,π/2,π}, this does not
necessarily mean that the signature of the triplets in physical
quantities is most clearly seen for these angles, as we shall
discuss in detail later.

Moreover, these equations show another interesting con-
sequence of having an SO field in the ferromagnet, which
is unrelated to the LRT generation. Note that the effective
quasiparticle energies coupling to the SRTs and LRTs become

E = ε + 2iDF a2(1 − sin 2θ sin 2χ ), (34)

E⊥ = ε + 2iDF a2(1 + sin 2θ sin 2χ ). (35)

When θ = χ = ±π/4, then the SRTs are entirely unaf-
fected by the presence of SO coupling; the triplet mixing
term vanishes for these parameters, and E is also clearly
independent of a. However, when θ = −χ = ±π/4, the
situation is drastically different. There is still no possibility for
LRT generation, however, the SRT energy E = ε + 4iDF a2

will now obtain an imaginary energy contribution which
destabilizes the SRTs. In fact, numerical simulations show that
this energy shift destroys the SRT components as a increases.
As we will see in Sec. III D, this effect results in an increase in
the critical temperature of the bilayer. Thus switching between
θ = ±π/4 in a system with χ � ±π/4 may suggest a novel
method for creating a triplet spin valve. The same thing should
also occur even in the case of pure Rashba coupling when
altering the ratio of in- and out-of-plane components of the
exchange field.

When χ = ±π/4 but θ 
= ±π/4, the triplet mixing term
proportional to cos 2θ sin 2χ will no longer vanish, so we
get LRT generation in the system. We can then see from
the effective triplet energies that as θ → sgn(χ )π/4, the
imaginary part of E vanishes, while the imaginary part

of E⊥ increases. This leads to a relative increase in the
amount of SRTs compared to the amount of LRTs in the
system. In contrast, as θ → −sgn(χ )π/4, the imaginary part
of E⊥ vanishes, and the imaginary part of E increases. This
means that we would expect a larger LRT generation for
these parameters, up until the point where the triplet mixing
term cos 2θ sin 2χ becomes so small that almost no LRTs
are generated at all. The ratio of effective energies coupling
to the triplet component at the Fermi level ε = 0 can be
written

E⊥(0)

E (0)
= 1 + sin 2θ sin 2χ

1 − sin 2θ sin 2χ
. (36)

D. Density of states

The density of states D(ε) containing all spin components
can be written in terms of the Riccati matrices as

D(ε) = Tr[N (1 + γ γ̃ )]/2, (37)

which for the case of zero energy can be written concisely in
terms of the singlet component fs and triplet components d ,

D(0) = 1 − |fs(0)|2/2 + |d(0)|2/2. (38)

The singlet and triplet components are therefore directly
competing to lower and raise the density of states [47].
Furthermore, since we are primarily interested in the proximity
effect in the ferromagnetic film, we will begin by using the
known BCS bulk solution in the superconductor,

ĝBCS =
(

cosh(θ ) sinh(θ )iσye
iφ

sinh(θ )iσye
−iφ − cosh(θ )

)
, (39)

where θ = atanh(�/ε), and φ is the superconducting phase.
Using Eq. (24) and the definition of the tilde operation, and
comparing ĝR in Eq. (3) with its standard expression in a bulk
superconductor Eq. (39), we can see that at zero energy the
singlet component fs(0) must be purely imaginary and the
triplet dz(0) must be purely real if the superconducting phase
is φ = 0.

By inspection of Eq. (26), we can see that a transformation
hx ↔ hy along with dx ↔ dy leaves the equations invariant.
The density of states will therefore be unaffected by such
permutations,

D[h = (a,b,0)] = D[h = (b,a,0)], (40)

while in general,

D[h = (a,0,b)] 
= D[h = (b,0,a)]. (41)

However, whenever one component of the planar field is
exactly twice the value of the other component, one can
confirm that the linearized equations remain invariant under a
rotation of the exchange field

h = (a,2a,0) → h = (a,0,2a), (42)

with associated invariance in the density of states.

E. Critical temperature

When superconducting correlations leak from a supercon-
ductor to a ferromagnet in a hybrid structure, there will also
be an inverse effect, where the ferromagnet effectively drains
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the superconductor of its superconducting properties due to
tunneling of Cooper pairs. Physically, this effect is observable
in the form of a reduction in the superconducting gap �(z)
near the interface at all temperatures. Furthermore, if the
temperature of the hybrid structure is close to the bulk critical
temperature Tcs of the superconductor, this inverse proximity
effect can be strong enough to make the superconducting
correlations vanish entirely throughout the system. Thus
proximity-coupled hybrid structures will in practice always
have a critical temperature Tc that is lower than the critical
temperature Tcs of a bulk superconductor. Depending on the
exact parameters of the hybrid system, Tc can sometimes be
significantly smaller than Tcs , and in some cases it may even
vanish (Tc → 0).

To quantify this effect, it is no longer sufficient to solve the
Usadel equation in the ferromagnet only. We will now also
have to solve the Usadel equation in the superconductor,

DS∂
2
z γ = −2iεγ − �(σy − γ σyγ ) − 2(∂zγ )Ñ γ̃ (∂zγ ), (43)

along with a self-consistency equation for the gap �(z),

�(z) = N0λ

∫ �0 cosh(1/N0λ)

0
dε Re[fs(z,ε)]

× tanh

(
π

2eγ

ε/�0

T/Tcs

)
, (44)

where N0 is the density of states per spin at the Fermi level,
and λ > 0 is the electron-electron coupling constant in the
BCS theory of superconductivity. For a derivation of the gap
equation, see Appendix B.

To study the effects of the SO coupling on the critical
temperature of an SF structure, we therefore have to find a
self-consistent solution to Eq. (5) in the ferromagnet, Eq. (6)
at the interface, and Eqs. (43) and (44) in the superconductor.
In practice, this is done by successively solving one of the
equations at a time numerically, and continuing the procedure
until the system converges towards a self-consistent solution.
To obtain accurate results, we typically have to solve the Us-
adel equation for 100–150 positions in each material, around
500 energies in the range (0,2�0), and 100 more energies in
the range (2�0,ωc), where the Debye cutoff ωc ≈ 76�0 for the
superconductors considered herein. This procedure will then
have to be repeated up to several hundred times before we
obtain a self-consistent solution for any given temperature of
the system. Furthermore, if we perform a conventional linear
search for the critical temperature Tc/Tcs in the range (0,1)
with a precision of 0.0001, it may require up to 10 000 such iter-
ations to complete, which may take several days depending on
the available hardware and efficiency of the implementation.
The speed of this procedure may, however, be significantly
increased by performing a binary search instead. Using this
strategy, the critical temperature can be determined to a
precision of 1/212+1 ≈ 0.0001 after only 12 iterations, which
is a significant improvement. The convergence can be further
accelerated by exploiting the fact that �(z) from iteration to
iteration should decrease monotonically to zero if T > Tc;
however, the details will not be further discussed in this paper.

III. RESULTS

We consider the proximity effect in an SF bilayer in
Sec. III A, using the BCS bulk solution for the supercon-
ductors. The case of pure Rashba coupling is discussed in
Sec. III B, and the SFS Josephson junction is treated in
Sec. III C. Results for the local density of states are given
for the centre of the ferromagnetic layer, with the full spatial
distribution discussed in Sec. III C. We take the thin-film
layering direction to be oriented in the z direction and fix
the spin-orbit coupling to Rashba-Dresselhaus type in the xy

plane as given by Eq. (19). We set LF /ξS = 0.5. The coherence
length for a diffusive bulk superconductor typically lies in the
range 10–30 nm. We solve the equations using MATLAB with
the boundary value differential equation package BVP6C and
examine the density of states D(ε) for energies normalised
to the superconducting gap �. For brevity of notation, we
include the normalization factor in the coefficients α and β

in these sections. This normalization is taken to be the length
of the ferromagnetic region LF , so that for instance α = 1 in
the figure legends means αLF = 1. Finally, in Sec. III D, we
calculate the dependence of the critical temperature of an SF
bilayer as a function of the different system parameters.

A. SF Bilayer

Consider the SF bilayer depicted in Fig. 1(a). In Sec. II B,
we introduced the conditions for the LRT component to appear,
and from Eq. (22) it is clear that no LRTs will be generated
if the exchange field is aligned with the layering direction,
i.e., h ‖ ẑ, since Eq. (22) will be proportional to the exchange
field. Conversely, the general condition for LRT generation
with in-plane magnetization is both that hx 
= hy and that the
SO coupling is not of pure Rashba or pure Dresselhaus form.
However, it became clear in Sec. II C that the triplet mixing was
maximal for equal Rashba and Dresselhaus coupling strengths,
and in fact the spectroscopic signature is quite sensitive to
deviations from this. This changes when the ferromagnet also
has an out-of-plane component, in which case pure Rashba
coupling can generate the LRT

In Ref. [50], the density of states for an SF bilayer
was shown to display oscillatory behavior as a function of
distance penetrated into the ferromagnet. The physical origin
of this stems from the nonmonotonic dependence of the
superconducting order parameter inside the F layer, which
oscillates and leads to an alternation of dominant singlet
and dominant triplet correlations as a function of distance
from the interface. When the triplet ones dominate, the
proximity-induced change in the density of states is inverted
compared to SN structures, giving rise to an enhancement of
the density of states at low energies in this so-called π phase
where the proximity-induced superconducting order parameter
is negative.

For SF bilayers without SO coupling and a homogeneous
exchange field, one expects to see a spectroscopic minigap
whenever the Thouless energy is much greater than the strength
of the exchange field. The minigap in SF structures closes when
the resonant condition h ∼ Eg is fulfilled, where Eg is the
minigap occuring without an exchange field, and a zero-energy
peak emerges instead [48]. The minigap Eg depends on both
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FIG. 3. (Color online) Density of states D(ε) for the SF bilayer with energies normalized to the superconducting gap � and SO coupling
normalised to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effect of increasing SO coupling with α = β when
the magnetization h = 3�ẑ, i.e., with the field perpendicular to the interface, and the effect of increasing difference between the Rashba and
Dresselhaus coefficients for both h = 3�ẑ and h = 3�ŷ. Although the conditions for LRT generation are fulfilled in the latter case, it is clear
that no spectroscopic signature of this is present.

the Thouless energy and the resistance of the junction. For
stronger fields, we will have an essentially featureless density
of states (see e.g., Ref. [49] and references therein). This
is, indeed, what we observe for α = β = 0 in Fig. 3. With
purely out-of-plane magnetization h ‖ ẑ, the effect of SO
coupling is irrespective of type: Rashba, Dresselhaus, or both
will always create a minigap. With in-plane magnetization,
however, the observation of a minigap above the SO-free
resonant condition h > Eg indicates that dominant Rashba
or dominant Dresselhaus coupling is present. The same is
true for SFS trilayers, and thus to observe a signature of
long-range triplets in the case of a purely in-plane exchange
field the Rashba and Dresselhaus coefficients must be similar
in magnitude, and in the following we shall primarily focus on
this regime. To clarify quantitatively how much the Rashba
and Dresselhaus coefficients can deviate from each other
before destroying the low-energy enhancement of the density
of states, which is the signature of triplet Cooper pairs in
this system, we have plotted in Fig. 4 the density of states at
the Fermi level (ε = 0) as a function of the spin-orbit angle
χ and the magnetization direction θ . For purely Rashba or
Dresselhaus coupling (χ = {0,±π/2}), the deviation from
the normal-state value is small. However, as soon as both
components are present a highly nonmonotonic behavior is
observed. This is particularly pronounced for χ → ±π/4,
although the conversion from dominant triplets to dominant
singlets as one rotates the field by changing θ is seen to occur
even away from χ = ±π/4.

With either h = hx̂ 
= 0, or equivalently h = hŷ 
= 0, LRTs
are generated provided αβ 
= 0, and in Fig. 5, we can see
that the addition of SO coupling introduces a peak in the
density of states at zero energy, which saturates for a certain
coupling strength. This peak manifests as sharper around ε = 0
than the zero-energy peak associated with weak field strengths
of the order of the gap (i.e., as evident from α = β = 0 in
Fig. 5), which occurs regardless of magnetization direction
or texture [48,49]. By analyzing the real components of the

triplets, for a gauge where the superconducting phase is zero,
we can confirm that this zero-energy peak is due to the LRT
component, in this case dx , also depicted in Fig. 5, in agreement
with the predictions for textured magnetization without SO
coupling [49]. However, it is also evident from Fig. 5 that
increasing the field strength rapidly suppresses the density of
states towards that of the normal metal, making the effect more
difficult to detect experimentally. The way to ameliorate this
situation is to remember that the introduction of SO coupling
means the direction of the exchange field is crucially important,
as we see in Fig. 6, and this allows for a dramatic spectroscopic
signature for fields without full alignment with the x or y axes.

Figure 6 shows how the density of states at zero energy
varies with the angle θ between hx and hy at zero energy;
with θ = 0 the field is aligned with hx , and with θ = π/2

FIG. 4. (Color online) Zero-energy density of states D(0) as a
function of the spin-orbit angle χ and magnetization angle θ . We
have used a ferromagnet of length LF /ξS = 0.5 with an exchange
field h/� = 3 and a spin-orbit magnitude aξS = 2.
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FIG. 5. (Color online) Density of states D(ε) for the SF bilayer with energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effect of equal Rashba and Dresselhaus coefficients
when the magnetization is oriented entirely in the y direction, and also the correlation between the SO-induced zero-energy peak with the
long-range triplet component |Re(dx)| ≡ Re(d⊥). It is clear that the predominant effect of the LRT component, which appears only when the
SO coupling is included, is to increase the peak at zero energies. Increasing the field strength rapidly suppresses the density of states towards
that of the normal metal.

it is aligned with hy . We see that the inclusion of SO
coupling introduces a nonmonotonic angular dependance in
the density of states, with increasingly sharp features as the
SO coupling strength increases, although the optimal angle at
approximately θ = 7π/32 and θ = 9π/32 varies minimally
with increasing SO coupling. Clearly, the ability to extract
maximum LRT conversion from the inclusion of SO coupling
is highly sensitive to the rotation angle, with near step-function
behavior delineating the regions of optimal peak in the density
of states and an energy gap for strong SO coupling. It is
remarkable to see how D(0) versus θ formally bears a strong
resemblance to the evolution of a fully gapped BCS [64]

π/4 π/20

D
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FIG. 6. (Color online) The dependence of the density of states
of the SF bilayer at zero energy on the angle θ between the x

and y components of the magnetization exchange field h/� =
6(cos(θ ), sin(θ ),0) for increasing SO coupling. As the strength of
the SO coupling increases, we see increasingly sharp variations in
the density of states from an optimal peak at around θ ≈ 7π/32 and
θ ≈ 9π/32 to a gap around θ = π/4.

density of states D(ε) versus ε to a flat density of states as
the SO coupling decreases.

These results can again be explained physically by the
linearized equations (31)–(33). Since the case α = β cor-
responds to χ = −π/4 in the notation developed in the
preceding sections, Eq. (36) implies that E⊥(0) > E (0)
when θ < 0, while E⊥(0) < E (0) when θ > 0. In other
words, for negative θ , the SO coupling suppresses the LRT
components, and the exchange field suppresses the other
components. Since the singlet and SRT components have
opposite sign in Eq. (38), this renders the density of states
essentially featureless. However, for positive θ , both the SO
coupling and the exchange field suppress the SRT components,
meaning that LRT generation is energetically favoured. Note
that E⊥/E → ∞ as θ → +π/4, which explains why the
LRT generation is maximized in this regime. Since the triplet
mixing term in Eq. (33) is proportional to (cos 2θ sin 2χ ), the
LRT component vanishes when the value of θ gets too close
to +π/4. Furthermore, since E has a large imaginary energy
contribution in this case, the SRTs are also suppressed at θ =
+π/4. Thus, despite LRTs being most energetically favored at
this exact point, we end up with a system dominated by singlets
due to the SRT suppression and lack of LRT production
pathway. Nevertheless, one would conventionally expect that
exchange fields of a magnitude h � � as depicted in Fig. 6
would suppress any features in the density of states, while
we observe an obvious minigap. Thus the singlet correlations
become much more resilient against the pair-breaking effect
of the exchange field when spin-orbit coupling is present.
This effect persists even when the Rashba or Dresselhaus

024510-9



SOL H. JACOBSEN, JABIR ALI OUASSOU, AND JACOB LINDER PHYSICAL REVIEW B 92, 024510 (2015)

-1.5 -1 -0.5 0 0.5 1 1.50.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.50.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

ε/Δ ε/Δ ε/Δ

D
(ε

)
h = (6Δ, 3Δ, 0) h = (6Δ, 5Δ, 0) h = (6Δ, 5Δ, 0)Re(d⊥) for

α = β = 0 α = β = 0.5 α = β = 2α = β = 1 α = β = 5

R
e(

d⊥
)

FIG. 7. (Color online) Density of states D(ε) in the SF bilayer for energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic features of the SF bilayer with rotated exchange field in
the xy plane. Again we see a peak in the density of states at zero energy due to the LRT component, i.e., the component of d perpendicular to h,
d⊥. The height of this zero-energy peak is strongly dependent on the angle of the field vector in the plane, as shown in Fig. 6. For near-optimal
field orientations, increasing the SO coupling leads to a dramatic increase in the peak of the density of states at zero energy.

component dominates the other one, i.e. α not close to β in
magnitude.

To identify the physical origin of this effect, we solve the
linearized equations (31)–(33) along with their corresponding
boundary conditions for the specific case ε = 0, θ = −χ =
π/4. We consider a bulk superconductor occupying the space
x < 0, while the ferromagnet length LF is so large that one in
practice only needs to keep the decaying parts of the anomalous
Green function. We then find the following expression for the
singlet component at the SF interface in the absence of SO
coupling:

f 0
s = sinh(arctanh(�/ε))

2ζLF

√
DF

h
. (45)

With increasing h, the singlet correlations are suppressed
in the conventional manner. However, we now incorporate
SO coupling in the problem. For more transparent analytical
results, we focus on the case 2(aξ )2 � h/�. This condition
can be rewritten as 2DF a2 � h. In this case, a similar
calculation gives the singlet component at the SF interface
in the presence of SO coupling:

fs = f 0
s

√
DF a2

2h
. (46)

Clearly, the SO coupling enhances the singlet component in
spite the presence of an exchange field since

√
DF a2/h � 1.

This explains the presence of the conventional zero energy
gap for large SO coupling even with a strong exchange field.
A consequence of this observation is that SO coupling in fact
provides a route to a magnetically tunable minigap. Figure 6
shows that when both an exchange field and SO coupling are
present, the direction of the field determines when a minigap
appears. This holds even for strong exchange fields h � � as
long as the SO coupling is sufficiently large as well.

We recall that the LRT Cooper pairs, defined as the
components of d perpendicular to h, may be characterized by
a quantity d⊥, which is defined by the cross product of the two
vectors: d⊥ = |d × ĥ|. We saw above that the spectroscopic

signature of LRT generation is strongly dependent on the angle
of the field, and this angle is a tunable parameter for sufficiently
weak magnetic anisotropy. In Fig. 7, we see an example of the
effect this rotation can have on the spectroscopic signature
of LRT generation: when the exchange field is changed from
h = (6�,3�,0) → (6�,5�,0), i.e., changing the direction of
the field, we see that a strong zero-energy peak emerges due
to the presence of LRT in the system. This large peak emerges
despite the stronger exchange field that would ordinarily
reduce the density of states towards the normal state, i.e.,
as in Fig. 5 for h = �ŷ → 3�ŷ. If one were to remove the
SO coupling, the low-energy density of states would thus
have no trace of any superconducting proximity effect, which
demonstrates the important role played by the SO interactions
here. Finally, for completeness we include an example of the
effect of rotating the field to have a component along the
junction in Fig. 8. Comparing the case of h = (0,3�,6�) in
Fig. 8 with h = (6�,3�,0) in Fig. 7, we see that the two cases
are identical, as predicted in the limit of weak proximity effect,
and increasing the magnitude of the out-of-plane z component
of the field has no effect on the height of the zero-energy peak,
which is instead governed by the in-plane y component.

B. SF bilayer with pure Rashba coupling

There exists another experimentally viable setup where
the LRT can be created. In the case where pure Rashba
SO coupling is present, originating, e.g., from interfacial
asymmetry, the condition for the existence of LRT is that
the exchange field has both the in-plane and out-of-plane
components. Although the LRT formally is nonzero, it is
desirable to clarify if and how it can be detected through
spectroscopic signatures.

From an experimental point of view, it is known that PdNi
and CuNi [11] can in general feature a canted magnetization
orientation relative to the film-plane due to the competition
between shape anisotropy and magnetocrystalline anisotropy.
This is precisely the situation required in order to have an
exchange field with both an in-plane (xy plane in our notation)
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FIG. 8. (Color online) Density of states D(ε) in the SF bilayer for energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic features of the SF bilayer with a rotated exchange field
in the xz ≡ yz plane. Note that when the field component along the junction is twice the component in the y direction, here h = (0,3�,6�),
the density of states is equivalent to the case h = (6�,3�,0) illustrated in Fig. 7, as predicted in the limit of weak proximity effect.

and out-of-plane (z direction) components. In our model, the
ferromagnetism coexists with the Rashba SO coupling, which
may be taken as a simplified model of two separate layers
where the SO coupling is induced, e.g., by a very thin heavy
metal and PdNi or CuNi is deposited on top of it.

To determine how the low-energy density of states is
influenced by the triplet pairing, we plot in Fig. 9(a) D(0) as a
function of the misalignment angle ϕ between the film-plane
and its perpendicular axis [see inset of Fig. 9(b) for junction
geometry]. In order to correlate the spectroscopic features with
the LRT, we plot in Fig. 9(b) the LRT Green function |d⊥|.

FIG. 9. (Color online) (a) Plot of the zero-energy density of states
D(0) in an S/F structure with pure Rashba spin-orbit coupling. We
have set h/� = 4 and L/ξS = 0.5. (Inset) Stronger SO coupling
α = 1.5, demonstrating that the angular variation of D(0) remains,
although the enhancement due to triplets is absent. (b) Plot of the
magnitude of the LRT anomalous Green function |d⊥| at ε = 0. As
seen, its enhancement correlates with an accompanying increase in
the density of states for the same angle ϕ, and beyond an optimal
SO coupling value there is anticorrelation between the density of
states peak and |d⊥|. The only angle of importance is the angle ϕ

between the out-of-plane and in-plane components of the exchange
field, shown in the inset.

It is clear that the LRT vanishes when ϕ = 0 or ϕ = π/2.
This is consistent with the fact that for pure Rashba coupling,
purely in-plane or out-of-plane direction of the exchange field
gives d⊥ = 0 according to our previous analysis. However, for
ϕ ∈ (0,π/2) the LRT exists. Its influence on D(0) is seen in
Fig. 9(a): an enhancement of the zero-energy density of states.
For any particular set of junction parameters there is an optimal
value of the SO coupling, and in approaching this value the
density of states is correlated with Re(d⊥). Beyond this optimal
value, they are anticorrelated, as evident from Fig. 9 as the SO
coupling increases, but the angular correlation remains. We
note that the magnitude of the enhancement of the density
of states is substantially smaller than what we obtained with
both Rashba and Dresselhaus coupling. At the same time, the
magnitude of the enhancement is of the same order as previous
experimental works that have measured the density of states
in SF structures [50,51].

Note that it is only the angle between the plane and the tun-
neling direction, which is of importance: the density of states
is invariant under a rotation in the film-plane of the exchange
field. The SO-induced enhancement of the zero-energy density
of states reaches an optimal peak before further increases in
the magnitude of the Rashba coupling results in a suppression
of both the short- and long-ranged triplet components, causing
the low-energy density of states enhancement to vanish. The
correlation with the LRT component |d⊥| correspondingly
changes to anticorrelation, evident in Fig. 9. Nevertheless, the
strong angular variation with D(0) remains although D(0) < 1
for all ϕ [see inset of Fig. 9(a)]. Increasing the exchange field
h further suppressed the proximity effect overall.

The main effect of the SO coupling is that D(0) depends
on the exchange-field direction. As seen for the case of
α = 0 in Fig. 9(a), there is no directional dependence without
SO coupling. Thus, depending on the exchange-field angle
between the in-plane and out-of plane direction, measuring an
enhanced D(0) at low-energies is a signature of the presence
of LRT Cooper pairs in the ferromagnet. More generally,
measuring a dependence on the exchange-field direction ϕ

would be a direct consequence of the presence of SO coupling
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FIG. 10. (Color online) The table shows the density of states D(ε) in the SFS junction with increasing SO coupling and exchange field in
a single direction, with D(ε) normalised to the superconducting gap � and SO coupling normalised to the inverse ferromagnet length 1/LF .
With no SO coupling and very weak exchange field we see a phase-dictated gap-to-peak qualitative change in the density of states at zero
energy. When the field is strong enough to destroy this gap, i.e., above the resonant condition, increasing the phase difference simply lowers
the density of states towards that of the normal metal, which is achieved at a phase difference of φ = π . With the addition of SO coupling we
see a clear difference in the density of states due to the long range triplet component, which is present when the field is oriented in y but not
in z. When LRTs are present with weak exchange fields, a phase-dictated gap-to-peak feature is retained and increased as the strength of SO
coupling increases the gap, with the peak shown here at a phase difference of 0.75π . For stronger exchange fields, increasing the SO coupling
produces the minigap when there is no LRT component, whereas the existence of an LRT component again introduces an increasing peak at
zero energy when no minigap is present.

in the system, even in the regime of, e.g., moderate to strong
Rashba coupling where the triplets are suppressed.

C. Josephson junction

By adding a superconducting region to the right interface
of the SF bilayer, we form an SFS Josephson junction.

It is well known that the phase difference between the
superconducting regions governs how much current can flow
through the junction [52], and the density of states for a
diffusive SNS junction has been measured experimentally
with extremely high precision [53]. Here, we consider such
a transversal junction structure as depicted in Fig. 1(b),
again with intrinsic SO coupling in the xy plane [Eq. (19)]
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in the ferromagnet and with BCS bulk values for each
superconductor. In Sec. III C 1, we consider single orientations
along the principal axes of the system (x,y,z) of the uniform
exchange field, and in Sec. III C 2, we consider a rotated
field. Experimentally, the density of states can be probed
at the superconductor/ferromagnet interface if one of the
superconductors is a superconducting island, and the scanning
tunneling microscope approaches from the top, next to this
superconductor island.

Let us first recapitulate some known results. We saw
in Sec. II that the spin-singlet, SRT and LRT components
compete to raise and lower the density of states at low energies.
Their relative magnitude is affected by the magnitude and
direction of both the exchange field and SO coupling and
results in three distinctive qualitative profiles: the zero-energy
peak from the LRTs, the singlet-dominated regime with a
minigap, and the flat, featureless profile in the absence of
superconducting correlations. In the Josephson junction, the
spectroscopic features are in addition sensitive to the phase
difference φ between the superconductors. In junctions with
an interstitial normal metal, the gap decreases as φ = 0 → π ,
closing entirely at φ = π such that the density of states is that
of the isolated normal metal; identically one [53,54]. Without
an exchange field, the density of states is unaffected by the
SO coupling. This is because without an exchange field the
equations governing the singlet and triplet components are
decoupled and thus no singlet-triplet conversion can occur.
From a symmetry point of view, it is reasonable that the
time-reversal invariant spin-orbit coupling does not alter the
singlet correlations.

Without SO coupling and as long as the exchange field is
not too large, changing the phase difference can qualitatively
alter the density of states from minigap to peak at zero energy
(see Fig. 10), a useful feature permitting external control
of the quasiparticle current flowing through the junction.
The underlying reason is that the phase difference controls
the relative ratio of the singlet and triplet correlations: when
the singlets dominate, a minigap is induced which mirrors their
origin in the bulk superconductor. As in the bilayer case, there
is a resonant condition [48,49] indicating an exchange-field
strength beyond which the minigap can no longer be sustained
and increasing the phase difference simply lowers the density
of states towards that of the normal metal. Amongst the
features we outline in the following sections, one of the effects
of adding SO coupling is to make this useful gap-to-peak effect
accessible with stronger exchange fields, i.e., for a greater
range of materials. At the same time, the SO coupling cannot
be too strong since the triplet correlations are suppressed in this
regime leaving only the minigap and destroying the capability
for qualitative change in the spectroscopic features.

1. Josephson junction with uniform exchange
field in single direction

Consider first the case in which the exchange field is
aligned in a single direction, meaning that we only consider an
exchange field purely along the principal {x,y,z} axes of the
system. If we again restrict the form of the SO vector to (19),
aligning h in the z direction will not result in any LRTs. In this
case, the spectroscopic effect of the SO coupling is dictated by

the singlet and short-range triplet features, much as in the SF
bilayer case (Fig. 3). This is demonstrated in Fig. 10, where
again we see a qualitative change in the density of states as
the exchange field increases, with the regions of minigap and
zero-energy-peak separated by the resonant condition h ∼ Eg

without SO coupling.
We will now examine the effect of increasing the exchange

field aligned in the x or, equivalently, the y direction. In
this case, we have generation of LRT Cooper pairs. If h

is sufficiently weak to sustain a gap independently of SO
coupling, introducing weak SO coupling will increase the
gap at zero phase difference while maintaining a peak at
zero energy for a phase difference of 0.75π (see Fig. 10).
Increasing the SO coupling increases this peak at zero energy
up to a saturation point. As the exchange field increases
sufficiently beyond the resonant condition to keep the gap
closed, increasing the SO coupling increases the zero-energy
peak at all phases, again due to the LRT component, eventually
also reaching a saturation point. As the phase difference φ =
0 → π , the density of states reduces towards that of the normal
metal, closing entirely at φ = π as expected [43,54,55]. As
the value of the density of states at zero energy saturates for
increasing SO coupling, fixed phase differences yield the same
drop at zero energy regardless of the strength of SO coupling.

We note in passing that when the SO coupling field has a
component along the junction direction (z), it can qualitatively
influence the nature of the superconducting proximity effect.
As very recently shown in Ref. [43], a giant triplet proximity
effect develops at φ = π in this case, in complete contrast
to the standard scenario of a vanishing proximity effect in π -
biased normal or magnetically homogeneous junctions without
SO coupling.

2. Josephson junction with rotated exchange field

With two components of the field h, e.g., from rotation,
it is again useful to separate the cases with and without a
component along the junction direction. When the exchange
field lies in-plane (the xy plane), and provided we satisfy the
conditions hx 
= hy and αβ 
= 0, increasing the SO coupling
drastically increases the zero energy peak as shown in Fig. 11,
again due to the LRT component. This is consistent with
the bilayer behavior, where the maximal generation of LRT
Cooper pairs occurs at an angle 0 < θ < π/4. As the phase
difference approaches π , the proximity-induced features are
suppressed in the center of the junction. This can be understood
intuitively as a consequence of the order parameter averaging
to zero since it is positive in one superconductor and negative
in the other.

The 2D plots in this paper of the local density of states
are given for the center of the junction (z = 0), where
one naturally expects the relative proportion of LRTs to be
greatest. However, it is interesting to note that the large peak
at zero energy—the signature of the LRTs—is maintained
throughout the ferromagnet. This is shown in Fig. 12, for the
case α = β = 1 and h = (1.5�,3.5�,0), where the maximal
peak for φ = 0 is almost twice the normal-state value. In
comparison, the depletion of this peak is surprisingly small
at the superconductor interfaces.
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FIG. 11. (Color online) Density of states D(ε) in the SFS junction for energies normalized to the superconducting gap � and SO coupling
normalized to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effects of increasing SO coupling in SFS with rotated
exchange field. In the absence of SO coupling, the density of states is flat and featureless at low energies. Increasing the SO coupling again
leads to a strong increase in the peak of the density of states at zero energy, while increasing the phase difference reduces the peak and shifts
the density of states weight toward the gap edge for higher SO coupling strengths. With a component of the field in the junction direction a
qualitative change in the density of states from strongly suppressed to enhanced at zero energy can be achieved by altering the phase difference
between the superconductors. This change can occur in the presence of stronger exchange fields when SO coupling is included. Increasing
the exchange field destroys the ability to maintain a gap in the density of states and the LRT component of the SO coupling increases the
zero-energy peak as it did in the bilayer case.
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FIG. 12. (Color online) Spatial distribution of the density of
states D(ε) throughout the ferromagnet of an SFS junction with phase
difference φ = 0, spin-orbit coupling α = β = 1, and magnetization
h = (1.5�,3.5�,0).

With one component of the exchange field along the
junction and another along either x or y, a phase-dictated
gap-to-peak transition at zero energy is possible with stronger
fields than with the field aligned in a single direction, as
shown in Fig. 11. Notice that in this case increasing the phase
difference φ = 0 → 0.5π gives an increase in the peak at
zero energy before reducing towards the normal metal state.
For higher field strengths, we find once again that increasing
the SO coupling increases the peak at zero energy, up to
a system-specific threshold, and increasing phase difference
reduces the density of states towards that of the normal metal.

It is also useful to consider how the zero-energy density
of states depends simultaneously on the phase-difference and
magnetization orientation. To this end, we show in Fig. 13 a
contour plot of the density of states at the Fermi level (ε = 0)
as a function of the superconducting phase difference φ across
the junction and the magnetization direction θ . The proximity
effect vanishes in the center of the junction at φ = π for any
value of the exchange-field orientation, giving the normal-state
value. Just as in the bilayer case (Fig. 4), we see that the
proximity effect is strongly suppressed for the range of angles
θ > 0. When rotating the field in the opposite direction, θ <

0, strongly nonmonotonic behavior emerges. For zero phase
difference, the physics is qualitatively similar to the bilayer
situation. In this case, we proved analytically that the LRT
is not produced at all when θ = −π/4. Accordingly, Fig. 13
shows a full minigap there.

Whether or not a clear zero-energy peak can be seen due
to the LRT depends on the relative strength of the Rashba
and Dresselhaus coupling. In the top panel, we have dominant
Dresselhaus coupling in which case the low-energy density
of states show either normal-state behavior or a minigap.
Interestingly, we see that the same opportunity appears in the
present case of a Josephson setup as in the bilayer case: a
magnetically tunable minigap appears. This effect exists as
long as the phase difference is not too close to π , in which
case the minigap closes. In the bottom panel corresponding to
equal magnitude of Rashba and Dresselhaus, however, a strong
zero-energy enhancement due to long-range triplets emerges
as one moves away from θ = −π/4. With increasing phase
difference, the singlets are seen to be more strongly suppressed
than the triplet correlations since the minigap region (dark

FIG. 13. (Color online) Zero-energy density of states D(0) as a
function of the phase-difference φ and magnetization angle θ , both
tunable parameters experimentally. The other parameters used are
LF /ξS = 0.5, h/�0 = 3, aξS = 2. In the top panel, we have dominant
Dresselhaus coupling (χ = 0.15π ) while in the bottom panel we
have equal magnitude of the Rashba and Dresselhaus coefficients
(χ = π/4).

blue) vanishes shortly after φ/π � 0.6 while the peaks due to
triplets remain for larger phase differences.

D. Critical temperature

In this section, we present numerical results for the critical
temperature Tc of an SF bilayer. The theory behind these
investigations is summarized in Sec. II E, and discussed in
more detail in Appendix B. An overview of the physical
system is given in Fig. 1(a). In all of the simulations we
performed, we used the material parameter N0λ = 0.2 for
the superconductor, the exchange field h = 10�0 for the
ferromagnet, and the interface parameter ζ = 3 for both
materials. The other physical parameters are expressed in a
dimensionless form, with lengths measured relative to the
superconducting correlation length ξS , energies measured
relative to the bulk zero-temperature gap �0, and temperatures
measured relative to the bulk critical temperature Tcs . This
includes the SO coupling strength a, which is expressed in the
dimensionless form aξS . The plots presented in this subsection
were generated from 12–36 data points per curve, where each
data point has a numerical precision of 0.0001 in Tc/Tcs . The
results were smoothed with a LOESS algorithm.

Before we present the results with SO coupling, we will
briefly investigate the effects of the ferromagnet length LF
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FIG. 14. (Color online) Plot of the critical temperature Tc/Tcs

as a function of the length LS/ξS of the superconductor for aξS =
0. Below a critical length LS , superconductivity can no longer
be sustained and Tc becomes zero. For larger thicknesses of the
superconducting layer, Tc reverts back to its bulk value.

and superconductor length LS on the critical temperature, in
order to identify the interesting parameter regimes. The critical
temperature as a function of the size of the superconductor is
shown in Fig. 14.

First of all, we see that the critical temperature drops to
zero when LS/ξS ≈ 0.5. This observation is hardly surprising;
since the superconducting correlation length is ξS , the critical
temperature is rapidly suppressed once the length of the junc-
tion goes below ξS . After this, the critical temperature increases
quickly, already reaching nearly 50% of the bulk value when
LS/ξS = 0.6, demonstrating that the superconductivity of the
system is clearly very sensitive to small changes in parameters
for this region.

The next step is then to observe how the behavior of the
system varies with the size of the ferromagnet, and these results
are presented in Fig. 15.

We again observe that the critical temperature increases
with the size of the superconductor, and decreases with the size
of the ferromagnet. The critical temperature for a supercon-
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FIG. 15. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the ferromagnet length LF /ξS for aξS = 0. Increasing
the thickness of the ferromagnet gradually suppresses the Tc of the
superconductor, causing a stronger inverse proximity effect.
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FIG. 16. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 1.00, LF /ξS = 0.2, and
h ‖ ẑ. Increasing the SO coupling causes Tc to move closer to its bulk
value, since the triplet proximity effect channel becomes suppressed.

ductor with LS/ξS = 0.525 drops to zero at LF /ξS ≈ 0.6, and
stays that way as the size of the ferromagnet increases. Thus
we do not observe any strongly nonmonotonic behavior, such
as reentrant superconductivity, for our choice of parameters.
This is consistent with the results of Fominov et al., who only
reported such behavior for systems where either the interface
parameter or the exchange field is drastically smaller than for
the bilayers considered herein [56].

We now turn to the effects of the antisymmetric SO coupling
on the critical temperature, which has not been studied before.
Figures 16 and 17 show plots of the critical temperature as
a function of the SO angle χ for an exchange field in the z

direction. The critical temperature is here independent of the
SO angle χ . This result is reasonable, since the SO coupling is
in the xy plane, which is perpendicular to the exchange field
for this geometry. We also observe a noticeable increase in
critical temperature for larger values of a. This behavior can
be explained using the linearized Usadel equation. According
to Eq. (26), the effective energy Ez coupling to the triplet
component in the z direction becomes

Ez = ε + 4iDF a2; (47)
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FIG. 17. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 0.55, LF /ξS = 0.2, and
h ‖ ẑ.
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FIG. 18. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 1.00, LF /ξS = 0.2, and
h ‖ x̂. The critical temperature depends on the relative magnitudes of
the Rashba and Dresselhaus coefficients.

so in other words, the SRTs obtain an imaginary energy
shift proportional to a2. However, as shown in Eq. (25),
there is no corresponding shift in the energy of the singlet
component. This effect reduces the triplet components relative
to the singlet component in the ferromagnet, and as the
triplet proximity channel is suppressed the critical temperature
becomes restored to higher values.

The same situation for an exchange field along the x axis
is shown in Figs. 18 and 19. For this geometry, we observe a
somewhat smaller critical temperature for all a > 0 and all χ

compared to Figs. 16 and 17. This can again be explained by
considering the linearized Usadel equation in the ferromagnet,
which suggests that the effective energy Ex coupling to the x

component of the triplet vector should be

Ex = ε + 2iDF a2, (48)

which has a smaller imaginary part than the corresponding
equation for Ez. Furthermore, note the drop in critical
temperature as χ → ±π/4. Since the linearized equations
contain a triplet mixing term proportional to sin 2χ , which
is maximal precisely when χ = ±π/4, these are also the
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FIG. 19. (Color online) Plot of the critical temperature Tc/Tcs as
a function of the SO angle χ , when LS/ξS = 0.55, LF /ξS = 0.2, and
h ‖ x̂.
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FIG. 20. (Color online) Plot of critical temperature Tc/Tcs as a
function of the exchange-field angle θ , when LS/ξS = 1.00, LF /ξS =
0.2, and aξS = 2. In contrast to ferromagnets without SO coupling, Tc

now depends strongly on the magnetization direction. This gives rise
to a spin-valve like functionality with a single ferromagnet featuring
SO coupling.

geometries for which we expect a maximal LRT generation.
Thus this decrease in critical temperature near χ = ±π/4 can
be explained by a net conversion of singlet components to
LRTs in the system, which has an adverse effect on the singlet
amplitude in the superconductor, and therefore the critical
temperature.

In Figs. 20 and 21, we present the results for a varying
exchange field h ∼ cos θ x̂ + sin θ ŷ in the xy plane. In
this case, we observe particularly interesting behavior: the
critical temperature has extrema at |χ | = |θ | = π/4, where
the extremum is a maximum if θ and χ have the same sign,
and a minimum if they have opposite signs. Since θ = ±π/4
is precisely the geometries for which we do not expect
any LRT generation, triplet mixing cannot be the source of
this behavior. For the choice of physical parameters chosen
in Fig. 21, this effect results in a difference between the
minimal and maximal critical temperature of nearly 60% as
the magnetization direction is varied. As shown in Fig. 20, the
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FIG. 21. (Color online) Plot of critical temperature Tc/Tcs as a
function of the exchange-field angle θ , when LS/ξS = 0.55, LF /ξS =
0.2, and aξS = 2.
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effect persists qualitatively in larger structures as well, but is
then weaker.

Instead, these observations may be explained using the
theory developed in Sec. II. When we have a general exchange
field and SO field in the xy plane, Eq. (34) reveals that the
effective energy of the SRT component is

E = ε + 2iDF a2(1 − sin 2θ sin 2χ ). (49)

Since the factor (1 − sin 2θ sin 2χ ) vanishes for θ = χ =
±π/4, we get E = ε for this case. This geometry is also one
where we do not expect any LRT generation, since the triplet
mixing factor cos 2θ sin 2χ = 0, so the conclusion is that the
SO coupling has no effect on the behavior of SRTs for these
parameters—at least according to the linearized equations.
However, since 1 − sin 2θ sin 2χ = 2 for θ = −χ = ±π/4,
the situation is now dramatically different. The SRT effective
energy is now E = ε + 4iDF a2, with an imaginary contri-
bution which again destabilizes the SRTs, and increases the
critical temperature of the system. We emphasize that the
variation of Tc with the magnetization direction is present
when χ 
= π/4 as well (unequal Rashba and Dresselhaus
coefficients), albeit with a magnitude of the variation that
gradually decreases as one approaches pure Rashba or pure
Dresselhais coupling.

E. Triplet spin-valve effect with a single ferromagnet

The results discussed in the previous section show that the
critical temperature can be controlled via the magnetization
direction of one single ferromagnetic layer. This is a new
result originating from the presence of SO coupling. In con-
ventional SF structures, Tc is independent of the magnetization
orientation of the F layer. By using a spin-valve setup such as
FSF [57–61], it has been shown that the relative magnetization
configuration between the ferromagnetic layers will tune the
Tc of the system. In contrast, in our case, such a spin-valve
effect can be obtained with a single ferromagnet (see Figs. 20
and 21): by rotating the magnetization an angle π/2, Tc goes
from a maximum to a minimum. The fact that only a single
ferromagnet is required to achieve this effect is of practical
importance since it can be challenging to control the relative
magnetization orientation in magnetic multilayered structures.

IV. SUMMARY AND DISCUSSION

It was pointed out in Ref. [21] that for the case of transversal
structures as depicted in Fig. 1(b), pure Rashba or pure
Dresselhaus coupling and in-plane magnetization direction
are insufficient for long range triplets to exist. However,
although these layered structures are more restrictive in their
conditions for LRT generation than lateral junctions, they are
nevertheless one of the most relevant for current experimental
setups [10,11,50], and herein we consider the corresponding
experimentally accessible effects of SO coupling in this
scenario. We have provided a detailed exposition of the density
of states and critical temperature for both the SF bilayer and
SFS junction with SO coupling, highlighting in particular the
signature of long range triplets.

We saw that the spectroscopic signature depends nonmono-
tonically on the angle of the magnetic exchange field, and that

the LRT component can induce a strong peak in the density of
states at zero energy for a range of magnetization directions.
In addition to the large enhancement at zero energy, we see
that by carefully choosing the SO coupling and exchange-field
strengths in the Josephson junction it is again possible to
control the qualitative features of the density of states by
altering the phase difference between the two superconductors,
e.g., with a loop geometry [53].

The intrinsic SO coupling present in the structures consid-
ered herein derives from their lack of inversion symmetry
due to, e.g., the junction interfaces, so-called interfacial
asymmetry, and we restricted the form of this coupling to the
experimentally common and, in some cases, tunable Rashba-
Dresselhaus form. A lack of inversion symmetry can also
derive from intrinsic noncentrosymmmetry of a crystal. This
could in principle be utilised to provide a component of the
SO field in the junction direction, but to date we are not aware
of such materials having been explored in experiments with
SF hybrid materials. However, analytic and numerical data
suggest that such materials could have significant importance
for spintronic applications making use of a large triplet Cooper
pair population [43].

It is also worth considering the possibility of separating the
spin-orbit coupling and the ferromagnetic layer, which would
arguably be easier to fabricate, and we are currently pursuing
this line of investigation. In this case, we would expect similar
conclusions regarding when the long-range triplets leave clear
spectroscopic signatures and also regarding the spin-valve
effect with a single ferromagnet, as found when the SO
coupling and exchange field coexist in the same material. One
way to practically achieve such a setup would be to deposit
a very thin layer of a heavy normal metal such as Au or Pt
between a superconductor and a conventional homogeneous
ferromagnet. The combination of the large atomic number Z

and the broken structural inversion symmetry at the interface
region would then provide the required SO coupling. With
a very thin normal metal layer (of the order of a few nm),
the proximity effect would be significantly stronger, and
thus analysis of this regime is only possible with the full
Usadel equations in the Riccati parametrization developed
herein.

The current analysis pertains to thin film ferromagnets.
Upon increasing the length of ferromagnetic film, one will
increase the relative proportions of long-range to short-
range triplets in the middle of the ferromagnet. For strong
ferromagnets where the exchange field is a significant fraction
of the Fermi energy, the quasiclassical Usadel formalism may
no longer describe the system behavior appropriately, since it
assumes that the impurity scattering rate is much larger than
the other energy scales involved, and the Eilenberger equation
should be used instead [62].

In the previous section, we also observed that the presence
of SO coupling will in many cases increase the critical
temperature of a hybrid structure compared to when SO
coupling is absent. This effect is explained through an increase
in the effective energy coupled to the triplet component in the
Usadel equation, which destabilizes the triplet pairs and closes
that proximity channel. However, for the special geometry
θ = −χ = ±π/4, the linearized equations suggest that the
SRTs are unaffected by the presence of SO coupling, and
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this is consistent with the numerical results. We also note
that for the geometries with a large LRT generation, such
as θ = 0 and χ = ±π/4, the LRT generation reduces the
critical temperature again. Thus, for the physical parameters
considered herein, we see that there is only a slight net increase
in critical temperature for these geometries, but not as large as
for the geometries without LRT generation.

One particularly striking result from the critical temper-
ature calculations is that when the Rashba and Dresselhaus
contribution to the SO coupling is of similar magnitude, one
observes that the critical temperature can change by as much
as 60% upon changing θ = −π/4 to θ = +π/4, i.e., by a 90◦
rotation of the magnetic field. This implies that it is possible
to create a novel kind of triplet spin valve using an SF bilayer,
where the ferromagnet has a homogeneous exchange-field and
Rashba-Dresselhaus coupling. This is in contrast to previous
suggestions for triplet spin valves, such as the one described
by Fominov et al., which have required trilayers with different
homogeneous ferromagnets [63]. The construction of such a
device is likely to have possible applications in the emerging
field of superconducting spintronics [3].

ACKNOWLEDGMENTS

The authors thank Angelo Di Bernardo, Matthias Eschrig,
Camilla Espedal, and Iryna Kulagina for useful discussions
and gratefully acknowledge support from the “Outstanding
Academic Fellows” programme at NTNU and COST Action
MP-1201 Novel Functionalities through Optimized Confine-
ment of Condensate and Fields. J.L. was supported by the
Research Council of Norway, Grant No. 205591 (FRINAT)
and Grant No. 216700.

APPENDIX A: RICCATI PARAMETRIZATION OF THE
USADEL EQUATION AND KUPRIYANOV-LUKICHEV

BOUNDARY CONDITIONS

The 4 × 4 components of the retarded Green function ĝ are
not entirely independent, but can be expressed as

ĝ(z,ε) =
(

g (z, + ε) f (z, + ε)
−f ∗(z,−ε) −g∗(z,−ε)

)
, (A1)

which suggests that the notation can be simplified by introduc-
ing the tilde conjugation

g̃(z, + ε) ≡ g∗(z,−ε). (A2)

Moreover, the normalization condition ĝ2 = 1 further con-
strains the possible form of ĝ by relating the g components to
the f components,

gg − f f̃ = 1, gf − f g̃ = 0. (A3)

If we pick a suitable parametrization of ĝ, which automatically
satisfies the symmetry and normalization requirements above,
then both the Usadel equation and the Kupriyanov-Lukichev
boundary conditions can be reduced from 4 × 4 to 2 × 2
matrix equations. In this paper, we employ the so-called Riccati
parametrization for this purpose, which is defined by

ĝ =
(

N 0
0 −Ñ

)(
1 + γ γ̃ 2γ

2γ̃ 1 + γ̃ γ

)
, (A4)

where the normalization matrices are N ≡ (1 − γ γ̃ )−1 and
Ñ ≡ (1 − γ̃ γ )−1. Solving the Riccati parametrized equations
for the function γ (z,ε) in spin space is then sufficient to
uniquely construct the whole Green function ĝ(z,ε). It is
noteworthy that ĝ → 1 when γ → 0, while the elements of
ĝ diverge to infinity when γ → 1; so we see that a finite range
of variation in γ parametrizes an infinite range of variation
in ĝ.

We begin by deriving some basic identities, starting with
the inverses of the two matrix products Nγ and γ Ñ :

(Nγ )−1 = γ −1N−1 = γ −1(1 − γ γ̃ ) = γ −1 − γ̃ ; (A5)

(γ Ñ)−1 = Ñ−1γ −1 = (1 − γ̃ γ )γ −1 = γ −1 − γ̃ . (A6)

By comparison of the results above, we see that Nγ = γ Ñ .
Similar calculations for other combinations of the Riccati
matrices reveal that we can always move normalization
matrices past gamma matrices if we also perform a tilde
conjugation in the process:

Nγ = γ Ñ, Ñγ = γN, Nγ̃ = γ̃ Ñ , Ñ γ̃ = γ̃ N.

(A7)
Since we intend to parametrize a differential equation, we
should also try to relate the derivatives of the Riccati matrices.
This can be done by differentiating the definition of N using
the matrix version of the chain rule:

∂zN = ∂z(1 − γ γ̃ )−1

= −(1 − γ γ̃ )−1[∂z(1 − γ γ̃ )](1 − γ γ̃ )−1

= (1 − γ γ̃ )−1[(∂zγ )γ̃ + γ (∂zγ̃ )](1 − γ γ̃ )−1

= N [(∂zγ )γ̃ + γ (∂zγ̃ )]N. (A8)

Performing a tilde conjugation of the equation above, we get a
similar result for ∂zÑ . Thus the derivatives of the normalization
matrices satisfy the following identities:

∂zN = N [(∂zγ )γ̃ + γ (∂zγ̃ )]N, (A9)

∂zÑ = Ñ [(∂zγ̃ )γ + γ̃ (∂zγ )]Ñ . (A10)

In addition to the identities derived above, one should note that
the definition of the normalization matrix N = (1 − γ γ̃ )−1

can be rewritten in many forms which may be of use when
simplifying Riccati parametrized expressions; examples of this
include γ γ̃ = 1 − N−1 and 1 = N − Nγ γ̃ .

Now that the basic identities are in place, it is time to
parametrize the Usadel equation in the ferromagnet,

DF ∇̃(ĝ∇̃ĝ) + i[ερ̂3 + M̂,ĝ] = 0, (A11)

where we for simplicity will let DF = 1 in this Appendix. We
begin by expanding the gauge covariant derivative ∇̃(ĝ∇̃ĝ),
and then simplify the result using the normalization condition
ĝ2 = 1 and its derivative {ĝ, ∂zĝ} = 0, which yields the result

∇̃ · (ĝ∇̃ĝ) = ∂z(ĝ∂zĝ) − i∂z(ĝÂzĝ)

− i[Âz, ĝ∂zĝ] − [Â, ĝÂĝ]. (A12)

We then write ĝ in component form using Eq. (A1), and also
write Â in the same form using Â = diag(A,−A∗). In the rest
of this Appendix, we will for simplicity assume that A is real,
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so that Â = diag(A,−A); in practice, this implies that A can
only depend on the spin projections σx and σz. The derivation

for the more general case of a complex Â is almost identical.
The four terms in Eq. (A12) may then be written as follows:

∂z(ĝ∂zĝ) =
[
∂z(g∂zg − f ∂zf̃ ) ∂z(g∂zf − f ∂zg̃)

∂z(g̃∂zf̃ − f̃ ∂zg) ∂z(g̃∂zg̃ − f̃ ∂zf )

]
; (A13)

∂z(ĝÂĝ) =
[
∂z(gAg + f Af̃ ) ∂z(gAf + f Ag̃)

−∂z(g̃Af̃ + f̃ Ag) −∂z(g̃Ag̃ + f̃ Af )

]
; (A14)

[Â, ĝ∂zĝ] =
[

[A, g∂zg − f ∂zf̃ ] {A, g∂zf − f ∂zg̃}
−{A, g̃∂zf̃ − f̃ ∂zg} −[A, g̃∂zg̃ − f̃ ∂zf ]

]
; (A15)

[Â, ĝÂĝ] =
[

[A, gAg + f Af̃ ] {A, gAf + f Ag̃}
{A, g̃Af̃ + f̃ Ag} [A, g̃Ag̃ + f̃ Af ]

]
. (A16)

Substituting these results back into Eq. (A12), we can find the upper blocks of the covariant derivative ∇̃ · (ĝ∇̃ĝ),

[∇̃ · (ĝ∇̃ĝ)](1,1) = ∂z(g∂zg − f ∂zf̃ ) − i∂z(gAzg + f Azf̃ ) − i[Az, g∂zg−f ∂zf̃ ]−[A, gAg+f Af̃ ], (A17)

[∇̃ · (ĝ∇̃ĝ)](1,2) = ∂z(g∂zf − f ∂zg̃) − i∂z(gAzf + f Azg̃) − i{Az, g∂zf−f ∂zg̃}−{A, gAf +f Ag̃}. (A18)

In this context, the notation M̂ (n,m) refers to the nth row and mth column in Nambu space. Since the Green function ĝ and
background field Â also have a structure in spin space, the (1,1) element in Nambu space is the upper-left 2 × 2 block of the
matrix, and the (1,2) element is the upper-right one.

There are two kinds of expressions that recur in the equations above, namely the components of ĝ∂zĝ, and the components of
ĝÂĝ. After we substitute in the Riccati parametrization g = 2N − 1 and f = 2Nγ , these components take the form:

[ĝ∂zĝ](1,1) = g∂zg − f ∂zf̃ = 2N [(∂zγ )γ̃ − γ (∂zγ̃ )]N (A19)

[ĝ∂zĝ](1,2) = g∂zf − f ∂zg̃ = 2N [(∂zγ ) − γ (∂zγ̃ )γ ]Ñ ; (A20)

[ĝÂĝ](1,1) = gAg + f Af̃ = 4N (A + γAγ̃ )N − 2{A,N} + A; (A21)

[ĝÂĝ](1,2) = gAf + f Ag̃ = 4N (Aγ + γA)Ñ − 2{A,Nγ }. (A22)

If we explicitly calculate the commutators of Â with the two matrices ĝ∂zĝ and ĝÂĝ, then we find

[Â, ĝ∂zĝ](1,1) = [A, g∂zg − f ∂zf̃ ] = 2N (1 − γ γ̃ )AN[(∂zγ )γ̃ − γ (∂zγ̃ )]N − 2N [(∂zγ )γ̃ − γ (∂zγ̃ )]NA(1 − γ γ̃ )N ; (A23)

[Â, ĝ∂zĝ](1,2) = {A, g∂zf − f ∂zg̃} = 2N (1 − γ γ̃ )AN[(∂zγ ) − γ (∂zγ̃ )γ ]Ñ + 2N [(∂zγ ) − γ (∂zγ̃ )γ ]ÑA(1 − γ̃ γ )Ñ ; (A24)

[Â, ĝÂĝ](1,1) = [A, gAg + f Af̃ ] = 4AN (A + γAγ̃ )N − 4N (A + γAγ̃ )NA − 2[A2, N]; (A25)

[Â, ĝÂĝ](1,2) = {A, gAf + f Ag̃} = 4AN (Aγ + γA)Ñ + 4N (Aγ + γA)ÑA − 4ANγA − 2{A2, Nγ }. (A26)

If we instead differentiate the aforementioned matrices with respect to z, we obtain

[∂z(ĝ∂zĝ)](1,1) = ∂z(g∂zg − f ∂zf̃ ) = 2N [(∂2
z γ ) + 2(∂zγ )Ñ γ̃ (∂zγ )]γ̃ N − 2Nγ [(∂2

z γ̃ ) + 2(∂zγ̃ )Nγ (∂zγ̃ )]N ; (A27)

[∂z(ĝ∂zĝ)](1,2) = ∂z(g∂zf − f ∂zg̃) = 2N [(∂2
z γ ) + 2(∂zγ )Ñ γ̃ (∂zγ )]Ñ − 2Nγ [(∂2

z γ̃ ) + 2(∂zγ̃ )Nγ (∂zγ̃ )]γ Ñ ; (A28)

[∂z(ĝÂĝ)](1,1) = ∂z(gAg + f Af̃ ) = 2N (1 + γ γ̃ )AN [γ (∂zγ̃ ) + (∂zγ )γ̃ ]N + 2N [γ (∂zγ̃ ) + (∂zγ )γ̃ ]NA(1 + γ γ̃ )N

+ 4Nγ ÂÑ [(∂zγ̃ ) + γ̃ (∂zγ )γ̃ ]N + 4N [(∂zγ ) + γ (∂zγ̃ )γ ]ÑAγ̃N ; (A29)

[∂z(ĝÂĝ)](1,2) = ∂z(gAf + f Ag̃) = 2N (1 + γ γ̃ )AN [(∂zγ ) + γ (∂zγ̃ )γ ]Ñ + 2N [(∂zγ ) + γ (∂zγ̃ )γ ]ÑA(1 + γ̃ γ )Ñ

+ 4NγAÑ [γ̃ (∂zγ ) + (∂zγ̃ )γ ]Ñ + 4N [γ (∂zγ̃ ) + (∂zγ )γ̃ ]NAγ̃ Ñ. (A30)
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Combining all of the equations above, we can express Eqs. (A17) and (A18) using Riccati matrices. In order to isolate the
second-order derivative ∂2

z γ from these, the trick is to multiply Eq. (A17) by γ from the right, and subsequently subtract the
result from Eq. (A18):

1
2N−1{[∇̃ · (ĝ∇̃ĝ)](1,2) − [∇̃ · (ĝ∇̃ĝ)](1,1)γ } = ∂2

z γ + 2(∂zγ )Ñ γ̃ (∂zγ ) − 2i(Az + γAzγ̃ )N (∂zγ ) − 2i(∂zγ )Ñ(Az + γ̃ Azγ )

− 2(Aγ + γA)Ñ (A + γ̃ Aγ ) − A2γ + γA2. (A31)

If we finally rewrite [∇̃ · (ĝ∇̃ĝ)](1,1) and [∇̃ · (ĝ∇̃ĝ)](1,2) in the equation above by substituting in the Usadel equation (A11), then
we obtain the following equation for the Riccati matrix γ :

∂2
z γ = − 2iεγ − ih · (σγ − γ σ ∗) − 2(∂zγ )Ñ γ̃ (∂zγ ) + 2i(Az + γAzγ̃ )N (∂zγ ) + 2i(∂zγ )Ñ(Az + γ̃ Azγ )

+ 2(Aγ + γA)Ñ(A + γ̃ Aγ ) + A2γ − γA2. (A32)

The corresponding equation for γ̃ can be found by tilde conjugation of the above. After restoring the diffusion coefficient DF ,
and generalizing the derivation to a complex SO field A, the above result takes the form shown in Eq. (5).

After parametrizing the Usadel equation, the next step is to do the same to the Kupriyanov-Lukichev boundary conditions.
The gauge covariant version of Eq. (2) may be written

2Lnζnĝn∇̃ĝn = [ĝ1,ĝ2], (A33)

which upon expanding the covariant derivative ĝ∇̃ĝ becomes

ĝn∂zĝn = 1
2�n[ĝ1, ĝ2] + iĝn[Âz, ĝn], (A34)

where we have introduced the notation �n ≡ 1/Lnζn for the interface parameter. We will now restrict our attention to the (1,1)
and (1,2) components of the above,

gn∂zgn − fn∂zf̃n = 1
2�n(g1g2 − g2g1 − f1f̃2 + f2f̃1) + ign[Az, gn] + ifn{Az, f̃n}, (A35)

gn∂zfn − fn∂zg̃n = 1
2�n(g1f2 − g2f1 − f1g̃2 + f2g̃1) + ign{Az, fn} + ifn[Az, g̃n]. (A36)

Substituting the Riccati parametrizations gn = 2Nn − 1 and fn = 2Nnγn in the above, we then obtain

Nn[(∂zγn)γ̃n − γn(∂zγ̃n)]Nn = �nN1(1 − γ1γ̃2)N2 − �nN2(1 − γ2γ̃1)N1 − iNn(1 − γnγ̃n)ANn − iNnA(1 − γnγ̃n)Nn

+ 2iNn(A + γnAγ̃n)Nn, (A37)

Nn[(∂zγn) − γn(∂zγ̃n)γn]Ñn = �nN1(1 − γ1γ̃2)γ2Ñ2 − �nN2(1 − γ2γ̃1)γ1Ñ1 + iNn(1 + γnγ̃n)AγnÑn

+ iNnγnA(1 + γ̃nγn)Ñn. (A38)

If we multiply Eq. (A37) by γn from the right, subtract this from Eq. (A38), and divide by Nn from the left, then we obtain the
following boundary condition for γn:

∂zγn = �n(1 − γ1γ̃2)N2(γ2 − γn) + �n(1 − γ2γ̃1)N1(γn − γ1) + i{Az, γn}. (A39)

When we evaluate the above for n = 1 and 2, then it simplifies to the following:

∂zγ1 = �1(1 − γ1γ̃2)N2(γ2 − γ1) + i{Az, γ1}, (A40)

∂zγ2 = �2(1 − γ2γ̃1)N1(γ2 − γ1) + i{Az, γ2}. (A41)

The boundary conditions for ∂zγ̃1 and ∂zγ̃2 are found by tilde conjugating the above. If we generalize the derivation to a complex
SO field A, and substitute back �n ≡ 1/Lnζn in the result, then we arrive at Eq. (6).

APPENDIX B: DERIVATION OF THE
SELF-CONSISTENCY EQUATION FOR �

For completeness, we present here a detailed derivation of
the self-consistency equation for the BCS order parameter [64]
in a quasiclassical framework. Similar derivations can also
be found in Refs. [52,65–68]. In this paper, we follow the
convention where the Keldysh component of the anomalous
Green function is defined as

FK
σσ ′(r,t ; r ′,t ′) ≡ −i〈[ψσ (r,t), ψσ ′(r ′,t ′)]〉, (B1)

where ψσ (r,t) is the spin-dependent fermion annihilation
operator, and the superconducting gap is defined as

�(r,t) ≡ λ〈ψ↑(r,t) ψ↓(r,t)〉, (B2)

where λ > 0 is the electron-electron coupling constant in the
BCS theory. For the rest of this appendix, we will also assume
that we work in an electromagnetic gauge where � is a purely
real quantity. Comparing Eqs. (B1) and (B2), and using the
fermionic anticommutation relation

ψ↑(r,t) ψ↓(r,t) = −ψ↓(r,t) ψ↑(r,t), (B3)
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we see that the superconducting gap �(r,t) can be expressed
in terms of the Green functions in two different ways:

�(r,t) = iλ

2
FK

↑↓(r,t ; r,t), (B4)

�(r,t) = − iλ

2
FK

↓↑(r,t ; r,t). (B5)

We may then perform a quasiclassical approximation by
first switching to Wigner mixed coordinates, then Fourier
transforming the relative coordinates, then integrating out
the energy dependence, and finally averaging the result over
the Fermi surface to obtain the isotropic part. The resulting
equations for the superconducting gap are

�(r,t) = 1

4
N0λ

∫
dε f K

↑↓(r,t,ε), (B6)

�(r,t) = −1

4
N0λ

∫
dε f K

↓↑(r,t,ε), (B7)

where f K
σσ ′ is the quasiclassical counterpart to FK

σσ ′ , ε is the
quasiparticle energy, and N0 is the density of states per spin at
the Fermi level.

In the equilibrium case, the Keldysh component ĝK can be
expressed in terms of the retarded and advanced components
of the Green function,

ĝK = (ĝR − ĝA) tanh(ε/2T ), (B8)

and the advanced Green function may again be expressed in
terms of the retarded one,

ĝA = −ρ̂3ĝ
R†ρ̂3, (B9)

which implies that the Keldysh component can be expressed
entirely in terms of the retarded component,

ĝK = (ĝR − ρ̂3ĝ
R†ρ̂3) tanh(ε/2T ). (B10)

If we extract the relevant anomalous components f K
↑↓ and f K

↓↑
from the above, we obtain the results

f K
↑↓ = [f R

↑↓(r, + ε) + f R
↓↑(r,−ε)] tanh(ε/2T ), (B11)

f K
↓↑ = [f R

↓↑(r, + ε) + f R
↑↓(r,−ε)] tanh(ε/2T ). (B12)

We then switch to a singlet/triplet-decomposition of the
retarded component f R , where the singlet component is
described by a scalar function fs , and the triplet component
by the so-called d-vector (dx,dy,dz). This parametrization is
defined by the matrix equation

f R = (fs + d · σ )iσy, (B13)

or in component form,(
f R

↑↑ f R
↑↓

f R
↓↑ f R

↓↓

)
=

(
idy − dx dz + fs

dz − fs idy + dx

)
. (B14)

Parametrizing Eqs. (B11) and (B12) according to Eq. (B14),
we obtain

f K
↑↓(r,ε) = [dz(r, + ε) + fs(r, + ε)

+ dz(r,−ε) − fs(r,−ε)] tanh(ε/2T ), (B15)

f K
↑↓(r,ε) = [dz(r, + ε) − fs(r, + ε)

+ dz(r,−ε) + fs(r,−ε)] tanh(ε/2T ). (B16)

The triplet component dz can clearly be eliminated from the
above equations by subtracting Eq. (B15) from Eq. (B16),

f K
↑↓ − f K

↓↑ = 2[fs(r,ε) − fs(r,−ε)] tanh(ε/2T ), (B17)

and a matching expression for the superconducting gap can be
acquired by adding Eqs. (B6) and (B7),

2�(r) = 1

4
N0λ

∫
dε [f K

↑↓(r,ε) − f K
↑↓(r,ε)] tanh(ε/2T ).

(B18)
By comparing the two results above, we finally arrive at an
equation for the superconducting gap which only depends on
the singlet component of the quasiclassical Green function:

�(r) = 1

4
N0λ

∫
dε [fs(r,ε) − fs(r,−ε)] tanh(ε/2T ).

(B19)
If the integral above is performed for all real values of ε,

it turns out to be logarithmically divergent, e.g., for a bulk
superconductor. However, physically, the range of energies
that should be integrated over is restricted by the energy spectra
of the phonons that mediate the attractive electron-electron
interactions in the superconductor. This issue may therefore
be resolved by introducing a Debye cutoff ωc, such that we
only integrate over the region where |ε| < ωc. Including the
integration range, the gap equation is therefore

�(r) = 1

4
N0λ

∫ ωc

−ωc

dε [fs(r,ε) − fs(r,−ε)] tanh(ε/2T ).

(B20)
The equation above can, however, be simplified even further.
First of all, both fs(ε) − fs(−ε) and tanh(ε/2T ) are clearly
antisymmetric functions of ε, which means that the product
is a symmetric function, and so it is sufficient to perform an
integral over positive values of ε,

�(r) = 1

2
N0λ

∫ ωc

0
dε [fs(r,ε) − fs(r,−ε)] tanh(ε/2T ).

(B21)
However, because of the term fs(r,−ε), we still need to know
the Green function for negative values of ε before we can
calculate the gap. On the other hand, the singlet component of
the quasiclassical Green functions also has a symmetry when
the superconducting gauge is chosen as real,

fs(r,ε) = −f ∗
s (r,−ε), (B22)

which implies that

fs(r,ε) − fs(r,−ε) = 2 Re[fs(r,ε)]. (B23)

Substituting Eq. (B23) into Eq. (B21), the gap equation takes a
particularly simple form, which only depends on the real part
of the singlet component fs(r,ε) for positive energies ε:

�(r) = N0λ

∫ ωc

0
dε Re[fs(r,ε)] tanh(ε/2T ). (B24)
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Let us now consider the case of a BCS bulk superconductor,
which has a singlet component given by the equation

fs(ε) = �√
ε2 − �2

, (B25)

so that the gap equation may be written as

� = N0λ

∫ ωc

0
dε Re

(
�√

ε2 − �2

)
tanh(ε/2T ). (B26)

The part in the curly braces is only real when |ε| � �,
which means that the equation can be simplified by changing
the lower integration limit to �. After also dividing the
equation by �N0λ, we then obtain the self-consistency
equation

1

N0λ
=

∫ ωc

�

dε
tanh(ε/2T )√

ε2 − �2
. (B27)

For the zero-temperature case, where T → 0 and � → �0,
performing the above integral and reordering the result yields

ωc = �0 cosh(1/N0λ). (B28)

Using the above equation for ωc, and the well-known result

�0

Tc

= π

eγ
, (B29)

where γ ≈ 0.57722 is the Euler-Mascheroni constant, we can
finally rewrite Eq. (B24) as

�(r) = N0λ

∫ �0 cosh(1/N0λ)

0
dε Re[fs(r,ε)]

× tanh

(
π

2eγ

ε/�0

T/Tc

)
. (B30)

This version of the gap equation is particularly well-suited
for numerical simulations. One advantage is that we only
need to know the Green function for positive energies, which
halves the number of energies that we need to solve the Usadel
equation for. The equation also takes a particularly simple form
if we use energy units where �0 = 1 and temperature units
where Tc = 1, which is common practice in such simulations.

[1] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[2] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.

77, 1321 (2005).
[3] J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).
[4] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.

86, 4096 (2001).
[5] M. Eschrig, J. Kopu, J. C. Cuevas, and Gerd Schön, Phys. Rev.

Lett. 90, 137003 (2003).
[6] K. Halterman, P. H. Barsic, and O. T. Valls, Phys. Rev. Lett. 99,

127002 (2007).
[7] A. Cottet, Phys. Rev. Lett. 107, 177001 (2011).
[8] Y. Asano, Y. Sawa, Y. Tanaka, and A. A. Golubov, Phys. Rev. B

76, 224525 (2007).
[9] Y. Kalcheim, I. Felner, O. Millo, T. Kirzhner, G. Koren, A.

DiBernardo, M. Egilmez, M. G. Blamire, and J. W. A. Robinson,
Phys. Rev. B 89, 180506(R) (2014).

[10] J. W. A. Robinson, J. D. Witt, and M. Blamire, Science 329, 59
(2010).

[11] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, and N. O. Birge,
Phys. Rev. Lett. 104, 137002 (2010).

[12] M. Alidoust and J. Linder, Phys. Rev. B 82, 224504 (2010);
I. B. Sperstad, J. Linder, and A. Sudbø, ibid. 78, 104509 (2008).

[13] L. Trifunovic and Z. Radović, Phys. Rev. B 82, 020505(R)
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