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Transport in ultradilute solutions of 3He in superfluid 4He
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We calculate the effect of a heat current on transporting 3He dissolved in superfluid 4He at ultralow
concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the
neutron (nEDM). In this experiment, a phonon wind will be generated to drive (partly depolarized) 3He down
a long pipe. In the regime of 3He concentrations �10−9 and temperatures ∼0.5 K, the phonons comprising the
heat current are kept in a flowing local equilibrium by small angle phonon-phonon scattering, while they transfer
momentum to the walls via the 4He first viscosity. On the other hand, the phonon wind drives the 3He out of local
equilibrium via phonon-3He scattering. For temperatures below 0.5 K, both the phonon and 3He mean free paths
can reach the centimeter scale, and we calculate the effects on the transport coefficients. We derive the relevant
transport coefficients, the phonon thermal conductivity, and the 3He diffusion constants from the Boltzmann
equation. We calculate the effect of scattering from the walls of the pipe and show that it may be characterized
by the average distance from points inside the pipe to the walls. The temporal evolution of the spatial distribution
of the 3He atoms is determined by the time dependent 3He diffusion equation, which describes the competition
between advection by the phonon wind and 3He diffusion. As a consequence of the thermal diffusivity being
small compared with the 3He diffusivity, the scale height of the final 3He distribution is much smaller than that
of the temperature gradient. We present exact solutions of the time dependent temperature and 3He distributions
in terms of a complete set of normal modes.
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I. INTRODUCTION

The physics underlying the transport properties of mixtures
of 3He and superfluid 4He changes markedly as the concentra-
tion of 3He varies. We determine here the transport properties
of these mixtures at very low concentrations, x3 = n3/(n3 +
n4) � 10−9, where n3 and n4 are the 3He and 4He densities,
and low temperatures, T � 0.6 K, where phonons are the
dominant superfluid excitation. In this case, the phonons are
in local thermal equilibrium; their interactions with the 3He
distort the 3He distribution and dominate the 3He diffusion. For
concentrations x3 � 10−4, the reverse situation holds: the 3He
are in local equilibrium due to rapid 3He-3He scattering and the
phonon distribution is distorted due to phonon-3He interactions
[1]. In the intermediate concentration regime, the phonon and
3He distributions are both distorted and must be determined
by solving the coupled evolution, or Boltzmann, equations [2].
At the highest concentrations, x3 ∼ 1%, Fermi-Dirac statistics
for the 3He becomes important [3]. These transport properties
are of interest as an example of a two-component fluid with
excitations of comparable energy but very different momenta,
and where the excitations of the two species obey different
statistics.

The transport properties of 3He in superfluid 4He at low
concentrations are also important for the proposed experiment
[4] to measure the neutron electric dipole moment (nEDM) at
the Oak Ridge National Laboratory Spallation Neutron Source.
There, the neutron precession frequency will be determined
using the absorption of polarized ultracold neutrons on
polarized 3He atoms in solution in superfluid 4He via the
reaction

n + 3He → p + t + 764 keV, (1)

which has a strong spin dependence, since capture proceeds
primarily through the spin-singlet channel. Two key consider-
ations accrue from this choice of detection technique. In order
to maximize the precision with which the precession frequency
can be measured, the optimal 3He concentration, x3 ∼ 10−10,
corresponds to a capture rate comparable to the decay rate of
the neutrons. However, primarily due to wall collisions, the
3He will gradually become depolarized. In order to reduce
the background from neutron capture on unpolarized 3He, it
is crucial to be able to periodically sweep out the 3He by
means of a heat current [5]. In this paper, we calculate both
the heat and 3He particle currents based on well-established
microscopic theory of phonon-phonon [6] and phonon-3He
scatterings [7], as well as the evolution of both the temperature
and 3He concentration.

At the concentrations and temperatures of interest in the
experiment, in addition to phonon-phonon, phonon-3He, and
3He-3He scattering, the scattering of both phonons and 3He
from the walls of the containers can also be important. Here,
we extend the solution of the Boltzmann equations in Ref. [2]
to include these effects, in addition to providing some examples
for x3 � 10−9. For illustration, we consider the effect of
a heat current in an essentially one-dimensional geometry,
with the 3He superfluid 4He mixture in a long pipe with a
diameter of a few centimeters. The phonon-wall interactions
affect the thermal conductivity as well as the phonon velocity
distribution within the pipe; the 3He-wall interactions affect
the transport of the 3He in the presence of a heat current.

This paper is arranged as follows. Section II describes
the basic scattering mechanisms the calculation of transport
coefficients from the Boltzmann equation is given in Sec. III.
Subsequently, we calculate the temporal and spatial evolution
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of the temperature (Sec. IV) and the 3He density (Sec. V). We
summarize our results in Sec. VI. In Appendix A, we analyze
the transport when the scattering of phonons is predominantly
from the walls of the pipe, and in Appendix B, we solve
analytically the equation for the temporal evolution of the
3He concentration.

II. PHONON AND 3He RELAXATION

We begin by considering the relevant microscopic relax-
ation mechanisms (detailed in Ref. [2]), first for the phonons.
The momentum-dependent mean free path of a phonon of
momentum q scattering against the 3He,

�ph3(q) = s

γq

= 4πn4

x3J

1

q4
, (2)

is typically greater than 1 km for x3 � 10−9 and T ∼ 0.5 K
[2]; here γq is the corresponding scattering rate, s is the phonon
velocity, and J is an angle-integrated rate constant. Therefore
phonon-wall and phonon-phonon scatterings determine the
phonon distribution. As discussed in Refs. [2] and [8], rapid,
small angle phonon-phonon scattering establishes thermal
equilibrium along phonon “rays,” i.e., given directions in
momentum space, with the distribution

nle
�q = 1

e(sq−�q·�vph)/T (�r) − 1
, (3)

where T (�r) is the local temperature and vph is the mean phonon
drift velocity. Large angle phonon-phonon scattering, either in
a single event or a succession of small-angle processes, is
slower and gives rise to the phonon first viscosity,

ηph = 1

5

T Sph

s
�visc, (4)

where Sph is the phonon entropy density and �visc is the viscous
mean free path. At a pressure of 0.1 bar,

�visc � 3.2 × 10−3

T 5
K

cm, (5)

to a good approximation [6,9], where TK is the temperature in
Kelvin; at T = 0.45 K, �visc � 0.17 cm.

In the presence of a heat flux, �Q = T Sph�vph, small-angle
phonon-phonon scattering keeps the phonons in local thermal
equilibrium, where the mean phonon drift velocity �vph is

T Sph�vph = −Kph∇T . (6)

The thermal conductivity of the phonons Kph can, at low
concentrations, be written as [2,9]

Kph = 5

8

sSphR
2

�eff
, (7)

in a pipe of radius R and where �eff is the effective mean free
path:

1

�eff
= 1

�visc
+ 16

5R
. (8)

The second term represents scattering of the phonons on the
walls; the numerical coefficient 16/5 is chosen to give the
correct Casimir limit. In this limit, �visc large compared to

the pipe diameter (see Appendix A), the phonon thermal
conductivity assumes the Casimir form [10]

Kph,Casimir = 2RsSph. (9)

In the opposite limit, �visc � R, the thermal conductivity
becomes

Kph,visc = 5

8

sSphR
2

�visc
. (10)

The 3He contribution to the overall heat flux is negligible at
low x3 [1,2].

The mean free path of a 3He scattering on unpolarized 3He
is [2]

�33 = 1

(n3/2)σ33
= 8.66 × 10−8

x3
cm, (11)

where σ33 is the corresponding cross section. Thus, for
x3 < 10−9, one has �33 � 1 m; we therefore neglect 3He-3He
scattering. On the other hand, the mean free path for 3He
scattering on phonons [2],

�3ph =
√

3

2J

(
n4

Sph

)2
m∗1/2s2

T 3/2
= 0.077

(
0.45 K

T

)15/2

cm, (12)

where m∗ is the 3He effective mass in superfluid 4He, is
small compared to the pipe diameter for T � 0.3 K. Thus
the dominant process for bringing the 3He toward equilibrium
for the temperatures of interest in the experiment is scattering
against phonons. In the next section, we outline the calculation
of the 3He transport coefficients; more details can be found in
Ref. [2].

III. 3He BOLTZMANN EQUATION AND TRANSPORT
COEFFICIENTS

The 3He Boltzmann equation has the general form

∂f �p
∂t

+ �p
m∗ · ∇rf �p

=
∑

p′,q,q ′
T

[
f �p ′nle

�q ′(�r )
(
1 + nle

�q (�r )
)

−f �p nle
�q (�r )

(
1 + nle

�q ′(�r )
)] − δf �p − βf 0

p v3

τ33

−δf �p − βf 0
p v3

τ3ws

− δf �p
τ3wd

. (13)

Here, f �p is the 3He distribution function,

f 0
p = e−β(p2/2m∗−μ3) (14)

is the equilibrium distribution function, and we write the
deviations from local equilibrium as

δf �p = f �p − f le0
p , (15)

where

f le0
�p = e−(p2/2m∗− �p·�vph−μ3(�r))/T (�r) (16)

is the local equilibrium distribution function, i.e., the dis-
tribution towards which collisions with phonons drive the
3He. The first term on the right represents the scattering on
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the phonons, the second term the scattering from other 3He
(numerically insignificant for the concentrations of interest),
and the last two terms isotropic diffuse (d) and specular (s)
scattering of the 3He from the walls. In the term describing
collisions with phonons, �p and �p ′ are the initial and final 3He
momenta, respectively, and �q and �q ′ are the corresponding
phonon momenta. The phonon-3He scattering kernel is T ≡
|〈p′q ′|T |pq〉|22πδ(p2/2m∗ + sq − p′2/2m∗ − sq ′), and mo-
mentum conservation, �p ′ + �q ′ = �p + �q, is understood in the
collision term.

In order to calculate the effects of a phonon wind on
the 3He, we solve Eq. (13) for δf �p. On the left side of the
Boltzmann equation, we approximate the distribution by its
local equilibrium form, f le0

p . We neglect the contribution from
∂vph/∂z because of the relatively small temperature gradient
[see Eq. (38) below], while the gradient of β in this term gives
a second-order contribution, which we neglect. The left side
of the Boltzmann equation is then

∂f le0
p

∂z
=

(
p2

2m∗ − 3

2
T

)
f 0

p

1

T 2

∂T

∂z
+ f 0

p

1

n3

∂n3

∂z
. (17)

On the right side, we write

δf �p ≡ βf 0
ppzwp; (18)

as shown in Ref. [2], the 3He-phonon collision term is
diagonalized by expanding wp in Sonine polynomials [2].

To solve for wp, we multiply the Boltzmann equation by
pz and integrate over all �p. Noting that the distortion δf �p
is proportional to pz, we see first that on the right side of
the Boltzmann equation the two terms ∝δf �p − βf 0

p v3 do not
contribute, since both the 3He-3He scattering and the specular
3He scattering from the walls conserve momentum in the z

direction. Following Eq. (81) of Ref. [2] for the phonon-3He
scattering, we see that the remaining terms on the right side
comprise

− β�

3m∗
(
δf �p − βf 0

ppzvph
) − δf �p

τ3wd

. (19)

With the inclusion of the recoil effect in the phonon-3He
scattering to the lowest order (see the Appendix of Ref. [1]
and Sec. VI of Ref. [2]), the solution of the Boltzmann
equation is

δf �p = τ ′
3
pz

m∗

(
β2�rec

3
f 0

p vph − ∂f le0
p

∂z

)
, (20)

where

1

τ ′
3

≡ β�rec

m∗ + 1

τ3wd

(21)

is the effective 3He scattering rate, including both scattering
from phonons, encoded in �rec, and diffuse scattering from the
walls of the pipe.

Integrating the Boltzmann equation, Eq. (13), over �p we
recover the continuity equation

∂n3

∂t
+ ∇ · �j3 = 0, (22)
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FIG. 1. (Color online) The diffusion constant, Drec, Eq. (25) as a
function of the pipe radius, R, for T = 0.35 (purple, dashed), 0.45
blue, solid), and 0.55 K (red, dotted). We assume here that the 3He
wall scattering is diffuse, ζ = 1.

with the 3He particle current given by

�j3 = ν

∫
d3p

(2π )3

�p
m∗ δf �p, (23)

where ν is the number of spin degrees of freedom of the 3He:
1 for a fully polarized sample and 2 in the unpolarized case. It
is straightforward to evaluate the current (including the effect
of recoil in the phonon-3He scattering)

j3 = n3vph − Drec
∂n3

∂z
− DT,rec

∂T

∂z
, (24)

where the 3He diffusion constant, including recoil corrections,
is [2]

Drec = 3ξ (R,ζ )T 2/�rec, (25)

and the “thermoelectric” coefficient is

DT,rec = 3ξ (R,ζ )T n3/�rec. (26)

In these expressions the basic forms of D and DT are modified
by the wall scattering factor

ξ (R,ζ ) =
(

1 + 3m∗

β�rec

ζ

τ3wd (R)

)−1

, (27)

where

ζ = τ−1
3wd

τ−1
3wd + τ−1

3ws

(28)

is the fraction of the 3He wall scattering rate that is diffuse.
To see the effect of scattering of 3He from the walls, we

take the total wall scattering rate to be simply

1

τ3wd (R)
= v̄3

Deff
, (29)

where v̄3 = √
3T/m∗ is the mean 3He thermal velocity, and

Deff = 2R/3 [see Eq. (A8)] is the effective average distance
from an interior point to the wall of an infinitely long pipe
of radius R entering the transport [11]. The effect of wall
scattering on the diffusion constant Drec, for example, is shown
in Fig. 1 for ζ = 1. As we see, the effect becomes more
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FIG. 2. (Color online) The phonon thermal conductivity, Kph,
from Eq. (7) for T = 0.35 (dashed), 0.45 solid), and 0.55 K (dotted)
as a function of pipe radius. For R � �visa, the conductivity rises as
R [Eq. (9)], while for R � �visc, it rises as R2 [Eq. (10)].

important for lower temperatures because of the decrease in
the phonon density. As R → ∞, Drec approaches the result
without wall scattering, which in the vicinity of the operating
temperature regime of the nEDM experiment, T ∼ 0.45 K, is

Drec
∼= 0.88

T 7
K

cm2/s. (30)

We also show, in Fig. 2, the corresponding effect of
phonon-wall scattering on the phonon thermal conductivity,
Eq. (7).

At temperatures of approximately 0.3 K and below, the
mean free path of a 3He quasiparticle in the bulk medium is
greater than 1 cm, which is comparable to the radii of the
pipes considered for the nEDM experiment. In this regime, the
3He quasiparticles can lose momentum not only by collisions
with phonons but also directly to the walls of the pipe. This
situation is analogous to the (Knudsen) flow of a low-density
gas in response to a pressure gradient, except that in the dilute
helium solutions the force driving the flow of 3He has two
components, one due to the 3He pressure gradient and another
due to the collisions with phonons. When the 3He distribution
function is stationary, the two contributions to the force are
equal and opposite. The 3He distribution function in principle
depends not only on direction in momentum space but also on
the radial coordinate in the pipe. However, the time scales for
smoothing out the radial dependence via diffusion or ballistic
transport are of order several milliseconds, and therefore short
compared with the overall evolution time scales of the system.
A detailed study of this regime lies outside the scope of the
present article.

IV. TIME EVOLUTION OF THE TEMPERATURE

We now estimate, using the heat diffusion equation, the
time scale for heating the fluid. We assume, as above,
that the heat is carried by the phonons [see also Eq. (89)
of Ref. [2] and discussion following] and that the relative
temperature variation and, hence, the variation of Kph is small,

so that

∂ε

∂t
= 3Sph

∂T

∂t
= −∇ · �Q = Kph∇2T , (31)

where ε is phonon energy density. Within a few scattering
times after the application of heat at one end of the pipe
(z = 0), the temperature there is approximately fixed at
T0 + �T . We assume that the temperature at z = L, the other
end of the pipe, is kept constant at temperature T0 by a
refrigerator.

To solve the heat diffusion equation it is sufficient to
consider the average of the temperature, T (z,t), over the
cross-section of the pipe, thus avoiding having to take into
account details of the counterflows within the pipe. The
solution is given in terms of the modes in the pipe that vanish at
z = 0 and L, sin kνz, where kν = νπ/L, with ν here a positive
integer:

T (z,t) = T0 + �T (1 − z/L) +
∑
ν �=0

cνe
−Dthk

2
ν t sin kνz. (32)

We denote the thermal diffusivity by

Dth = Kph/3Sph, (33)

and recognize 3Sph = (2π2/15)(T/s)3 as the 4He specific heat.
The condition that T (z,t = 0) = T0 except immediately at z =
0, implies that the mode weights are given by cν = −2�T/νπ .
The characteristic time, τth, to set up a steady-state phonon
wind is essentially that of the ν = 1 mode,

τth = 1

Dthk
2
1

= L2Kph

3π2Sph
. (34)

For typical conditions in the experiment, 5 mW of heat in a
3-cm-diameter, 100-cm long pipe at T = 0.45 K, the phonon
thermal conductivity is 2.4 × 108 erg/s cm K, τth ∼ 11 ms,
and �T = 3 mK.

V. TIME EVOLUTION OF THE 3He CONCENTRATION

To begin examining the 3He concentration, we consider
its steady-state distribution in the presence of a heat current
or phonon wind. Because, as we shall see below, the term
involving DT is relatively small for low concentrations, the
condition that the 3He particle current, Eq. (24), vanishes, is
simply

Drec
∂n3

∂z
= vphn3, (35)

which has the solution

n3(z) = ñ3e
z/h ≡ n3,∞(z), (36)

where we define the scale height, h = Drec/vph (for the
example parameters above, Drec = 225 cm2/s, vph = 17 cm/s,
and h = 13 cm), and

ñ3 = n0

eL/h − 1

L

h
, (37)

with n0 the initial uniform 3He density. We note that the relative
size of the term involving DT,rec is simply the ratio of the scale
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heights of the concentration and the temperature,

DT,rec|∂T /∂z|
Drec|∂n3/∂z| = |∂ ln T/∂z|

|∂ ln n3/∂z| = DrecSph

Kph
, (38)

about 1/1000 for the example parameters given above.
In the nEDM experiment, the 3He in the system depolarizes

in time, primarily due to interactions with walls. The depolar-
ized 3He will be removed by a phonon wind before the system
is recharged with more highly polarized 3He. As above, we
consider the simple situation of a long pipe with a heater at
z = 0 and closed ends. The evolution of the 3He is governed by
a competition between two processes: the phonon wind, which
were it to act alone would push all the 3He to the downstream
(large z) end of the pipe, and diffusion of the 3He, limited by
scattering with the phonons, which allows the 3He to drift back
towards smaller z.

This evolution of the 3He concentration in the presence of
a phonon wind is described by the diffusion equation resulting
from Eq. (22),

∂n3(z,t)

∂t
+ vph

∂n3

∂z
− Drec

∂2n3

∂z2
= 0, (39)

where we have dropped the DT term in Eq. (24). Once a steady
phonon wind, with a small temperature gradient, is established,
we may neglect the temperature dependence of Drec and take
vph and Drec to be constant. For a pipe with a large length to
diameter ratio, we may treat the problem as one dimensional,
averaging over its cross section as we did above for the heat
flow. The boundary conditions are that the 3He current, j3,
Eq. (24), vanishes at the two ends of the pipe,

∂n3

∂z
= n3

h
(z = 0,L). (40)

To solve Eq. (39) with constant vph and D, we write the 3He
density as ez/2hn̂(z,t) and decompose n̂(z,t) as a sum of time
dependent modes n̂ν(z,t) periodic in 2L (see Appendix B):

n3(z,t) = ez/2h

∞∑
ν=0

n̂ν(z,t), (41)

where n̂ satisfies the boundary condition

∂n̂

∂z
= n̂

2h
(z = 0,L). (42)

The spatial parts of the mode functions n̂ν(z,t) are the complete
orthonormal set

φν(z) =
{

ez/2h

[h(eL/h−1)]1/2 , ν = 0,

αν

(
cos kνz + 1

2hkν
sin kνz

)
, ν � 1

(43)

with kν = πν/L and αν = [(L/2)(1 + 1/(2hkν)2)]
−1/2

. The
time dependence of the modes is e−t/τν , where

1

τν

=
{

0, ν = 0,

k2
νD + v2

ph/4D = (
k2
ν + 1/4h2

)
D, ν � 1.

(44)

The solution of Eq. (39) for an initially uniform density n3,0 is
then

n3(z,t) = n3,0 ez/2h

∞∑
ν=0

cνφν(z)e−t/τν , (45)

x 3

10-9

10-10

10-11

10-12

z (cm)
06050 403020 00109080701

FIG. 3. (Color online) The 3He concentration, x3, from the so-
lution of Eq. (39) as a function of z, the distance along the pipe,
for various times: t = 0 (dotted), 1 (dash double dot), 3 (dash dot),
5 (short dash), 8 (long dash), and 20 s (solid). The result is shown
for typical parameters in the nEDM experiment: x3,0 = 10−10 and
5 mW of heat into a 3-cm-diameter, 100-cm-long pipe at a nominal
temperature of 0.45 K.

where

cν =
∫ L

0

(
n(z,0)/n0

3

)
φν(z)dz

=
{

L
[h(eL/h−1)]1/2 , ν = 0,

8hαν

1+(2hkν )2 (1 + (−1)ν+1e−L/2h), ν � 1.
(46)

As we show in Appendix B, the general solution may be
written in compact form in terms of a Green’s function

n̂(z,t) =
∫ L

0
G(z,z′,t)n̂(z′,0)dz′, (47)

t (s)

x 3

0 5 10 15 20

10-9

10-10

10-11

10-12

FIG. 4. (Color online) The 3He concentration, x3, from the solu-
tion of Eq. (39) as a function of time, t , for various positions along the
pipe: the curves correspond to z = 0 (dotted), 20 (dash double dot),
40 (dash dot), 60 (short dash), 80 (long dash), and 100 cm (solid).
Note that it takes about 5.5 time constants, τ1, for the distribution at the
hot end of the pipe (z = 0) to reach equilibrium. The result is shown
for typical parameters in the nEDM experiment: x3,0 = 10−10, and
5 mW of heat into a 3-cm-diameter, 100-cm-long pipe at a nominal
temperature of 0.45 K, for which τ1 = 1.8 s.
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t (s)
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|x
3-x

3,
∞
|

10-9
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10-11

10-12

10-13

FIG. 5. (Color online) The absolute value of the 3He concen-
tration difference, |x3 − x3,∞|, from the solution of Eq. (22) as a
function of time, t , for various positions along the pipe: the curves
correspond to z = 0 (dotted), 20 (dash double dot), 40 (dash dot), 60
(short dash), 80 (long dash), and 100 cm (solid). We note that the
lowest mode, corresponding to the time constant τ1, dominates the
time evolution after a few seconds. The result is shown for typical
parameters in the nEDM experiment: x3,0 = 10−10, and 5 mW of heat
into a 3-cm-diameter, 100-cm-long pipe at a nominal temperature of
0.45 K, for which τ1 = 1.8 s.

where

G
(
z,z′,t

) =
∞∑

ν=0

φν(z)φν

(
z′)e−t/τν θ (t). (48)

The z and t dependencies of x3 are shown in Figs. 3 and 4,
respectively, for the case of the uniform initial distribution and
typical experimental values (5-mW heat into a 3-cm-diameter,
100-cm-long pipe at T = 0.45 K). As the figures illustrate, the
concentration scale height, h, is substantially smaller than the
pipe length. Figure 5 plots the difference between x3 and its
steady-state value for several points along the pipe, showing
that, after a few seconds, the lowest mode, with τ1 = 1.8 s,
dominates the time evolution throughout the pipe.

The results for the evolution of the 3He concentration
presented here are equally applicable to a heat flush experiment
being carried out at Harvard at natural 3He concentration
[12]. There one must use the more general phonon thermal
conductivity as derived in Ref. [2]; phonon-wall scattering in
this regime plays a negligible role.

VI. SUMMARY

We have calculated the transport properties of dilute
mixtures, x3 � 10−9, of 3He in superfluid 4He at temperatures
around 0.5 K where phonons are the dominant excitations
of the superfluid. In this regime, we considered a simple
one-dimensional geometry (a pipe), a heat current generates a
phonon wind with phonons in local equilibrium corresponding
to the temperature at that point in the pipe. On the other
hand, phonon scattering distorts the 3He distribution from
equilibrium. Starting from the known phonon-phonon and
phonon-3He scattering, we calculate the transport coefficients
from the Boltzmann equation. We show that, in the presence
of a heat current which generates a temperature scale height

much larger than the length of the pipe (i.e., a small
relative temperature gradient), the scale height for the 3He
concentration can be much less than the pipe length. This
leads to a large decrease in concentration at the hot boundary
and a corresponding increase at the cold end. For temperatures
below 0.5 K, the mean free paths of both the phonons and the
3He can reach the centimeter scale; in these cases, scattering
from the walls of the container becomes important. Finally, we
calculate the time scales associated with the evolution of both
the temperature and concentration distributions; because of the
large superfluid thermal conductivity, the thermal time scales
are on the microsecond scale, whereas the corresponding scale
for the evolution of the concentration is on the scale of seconds.
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APPENDIX A: PHONON DRIFT VELOCITY IN THE
BALLISTIC LIMIT

Here, we derive the spatial dependence of the phonon drift
velocity when the phonon-phonon scattering mean free path
for large angle scattering, Eq. (5), is much larger than the
pipe radius, R. For the pipe geometry considered in the text,
this condition holds at a temperature T � 0.3 K. We assume
that the pipe axis is in the z direction, and that the transverse
coordinates are x and y. We also assume that a phonon striking
the cylinder wall is diffusively reflected, with a distribution of
final momenta given by the local temperature, T (z) = T0 +
T ′z, where T ′ < 0 is the temperature gradient. Then n�q (�r ),
the number of phonons of momentum �q at point �r , is given by
the equilibrium distribution n0

q(z′) at the point �r ′ = (x ′,y ′,z′)
on the pipe wall where the phonon at �r originated:

n�q (�r ) = 1

esq/T (z′(�q )) − 1
� n0

q − z′q
T ′

T0

∂n0
q

∂q
, (A1)

to lowest order in T ′, where n0
q is the equilibrium distribution.

The point of origin is determined by simple geometry,
namely, �r − �r ′ = q̂ D, where D = |�r − �r ′|. We measure q̂

in polar coordinates θq and φq . Then z′ = z − D cos θq ,
x = x ′ − D sin θq cos φq , and y ′ = y − D sin θq sin φq . Using
x ′2 + y ′2 = R2 on the cylinder wall, we have then

sin2 θq D2 − 2ρD sin θq cos(φq − φr ) − R2 + ρ2 = R2, (A2)

where φr is the azimuthal angle of �r and ρ =
√

x2 + y2. The
solution is

D = 1

sin θq

[ρ cos(φq − φr ) +
√

R2 − ρ2 sin2(φq − φr )];

(A3)

without loss of generality we take φr = 0.
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The local phonon flow velocity vph,z(ρ) is given by the local
total momentum flux density in the z direction divided by the
normal mass density of the phonons, ρph,

vph,z(ρ) ≡ 1

ρph

∫
d3q

(2π )3
q cos θqn�q (�r). (A4)

To first order in T ′, only the D term in the distribution function
survives the angular average in the numerator, so that

vph,z(ρ) = s
T ′

T0

∫
d3q cos2 θqq

2D ∂n0
q/∂q∫

d3qq2 ∂n0
q/∂q

, (A5)

independent of z. Since D is independent of q, the integrals
over q in numerator and denominator cancel, and

vph,z(ρ) = −3s
T ′

T0
〈D cos2 θq〉, (A6)

where the angular brackets denote the average over angles
of �q .

The flow velocity averaged over the cross section of the
pipe (denoted by an overline) is simply

vph,z = 1

πR2

∫ R

0
2πρ dρ vph,z(ρ) = −3s

T ′

T0
Deff, (A7)

where

Deff = 1

πR2

∫ R

0
2πρ dρ 〈D cos2 θq〉. (A8)

In evaluating Deff , the integral over θq decouples from those
over ρ and φq , and the latter are easily performed if one
integrates over ρ before integrating over φq . One finds

Deff = 2R

3
= 1

2
〈D〉, (A9)

which expresses the fact that the length important for thermal
conduction is one-half of 〈D〉, the average distance to the
wall of the pipe, averaged over the cross section of the pipe.
Since vph,z = −3(Kph/T Cph)T ′, where Cph is the phonon heat
capacity, we find the phonon thermal conductivity,

Kph = sCphDeff = 2

3
sCphR, (A10)

which is the Casimir result, Ref. [10].
Locally, ∫

d�q

4π
D cos2 θq = πR

4
I (ρ2/R2), (A11)

where the elliptic integral

I (t2) = 2

π

∫ π/2

0
dφ

√
1 − t2 sin2 φ (A12)

must be done numerically. As we see in Fig. 6, the velocity
profile

vph,z(ρ) = −3πsRT ′

4T0
I (ρ2/R2) (A13)

is independent of z and nearly quadratic almost to the edge of
the pipe, where it falls more rapidly, but unlike when viscosity
dominates, it does not fall to zero at the pipe wall.

v ph
 /v

ph
,m

ax

(ρ/R)2

0.7

0.0 0.2 0.4 0.6 0.8 1.0

0.8

0.9

1.0

FIG. 6. (Color online) Normalized velocity distribution across
the cylinder as a function of (ρ/R)2 in the Casimir limit.

APPENDIX B: EXACT SOLUTION OF THE TIME
DEPENDENT DIFFUSION EQUATION WITH ADVECTION

Here, we construct the general solutions of the time-
dependent diffusion equation (39) by first transforming
the equation into self-adjoint form by writing n3(z,t) =
ez/2hn̂(z,t). As a result, n̂(z,t) obeys(

∂

∂t
+ v2

ph

4D
− D

∂2

∂z2

)
n̂(z,t) = 0, (B1)

in the interval 0 � z � L (we simply write a generic diffusion
constant D to simplify the notation). The boundary condition
of vanishing current at the two ends of the pipe then becomes

∂n̂

∂z
= n̂

2h
(z = 0,L), (B2)

where h = D/vph. To realize the boundary conditions, we
expand n̂ in a complete set of normalized solutions of Eq. (B1)
that are periodic in the interval 0 to 2L,

φν(z) = αν

(
cos kz + 1

2hk
sin kz

)
, (B3)

with k = πν/L (ν � 1), and

αν = [(L/2)(1 + 1/(2hkν)2)]−1/2, (B4)

together with the stationary solution

φ0(z) = ez/2h

[h(eL/h − 1)]1/2
. (B5)

The modes φν(z) form an orthonormal set obeying∫ L

0
φν(z)φν ′(z)dz = δν,ν ′ (B6)

as well as the completeness relation in the interval
0 < z,z′ < L,

∞∑
ν=0

φν(z)φν(z′) = δ(z − z′). (B7)

The time dependence of the modes φν(z,t) is e−t/τν , with

1

τν

=
(

1

4h2
+ k2

ν

)
D, ν � 1, (B8)
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and 1/τ0 = 0. Then

n̂(z,t) =
∞∑

ν=0

bνφν(z)e−t/τν (B9)

with

bν =
∫ L

0
n̂(z,0)φν(z)dz. (B10)

We can thus write the solution n̂(z,t) in terms of the initial
density distribution as

n̂(z,t) =
∫ L

0
G(z,z′,t)n̂(z′,0)dz′, (B11)

where

G(z,z′,t) =
∞∑

ν=0

φν(z)φν(z′)e−t/τν θ (t) (B12)

is the Green’s function for the diffusion equation in the form
(B1), with θ the Helmholtz unit step function. At t = 0, the

completeness relation implies G(z,z′,t) = δ(z − z′), and thus(
∂

∂t
+ v2

ph

4D
− D

∂2

∂z2

)
G(z,z′,t) = δ(z − z′)δ(t), (B13)

in the interval 0 � z � L.
We now convert back to the original form of the diffusion

equation, (39), and have

n3(z,t) =
∫ L

0
G(z,z′,t) n3(z′,0)dz′, (B14)

where

G(z,z′,t) = e(z+z′)/2hG(z,z′,t) (B15)

is the Green’s function for the original diffusion equation (39),
i.e., (

∂

∂t
+ vph

∂

∂z
− D

∂2

∂z2

)
G(z,z′,t)

= e(z+z′)/2hδ(z − z′)δ(t). (B16)
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