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Dynamics of a bond-disordered S = 1 quantum magnet near z = 1 criticality
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Neutron scattering is used to study NiCl2−2xBr2x · 4SC(NH2)2, x = 0.06, a bond-disordered modification of the
well-known gapped S = 1 antiferromagnetic quantum spin system NiCl2 · 4SC(NH2)2. The magnetic excitation
spectrum throughout the Brillouin zone is mapped out at T = 60 mK using high-resolution time-of-flight
spectroscopy. It is found that the dispersion of spin excitation is renormalized, as compared to that in the parent
compound. The lifetime of excitations near the bottom of the band is substantially decreased. No localized states
are found below the gap energy � � 0.2 meV. At the same time, localized zero wave vector states are detected
above the top of the band. The results are consistent with a more or less continuous random distribution of bond
strengths, and a discrete, possibly bimodal, distribution of single-ion anisotropies in the disordered material.
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I. INTRODUCTION

Quantum magnets with disorder and randomness are
presently attracting a great deal of attention [1–4]. They often
exhibit behavior that is qualitatively different from that of their
disorder-free counterparts. There are actually several ways to
introduce randomness in a magnetic material. The effect of site
disorder (or site dilution) is rather well understood. Randomly
removing spins has particularly severe consequences for
gapped quantum paramagnets. Their nonmagnetic ground
state is destroyed, and magnetic order often emerges at finite
temperatures through the formation of correlated clusters
around the impurities [5–8]. In contrast, the effect of random
exchange interactions, or bond disorder, is more subtle. In
systems with a spin gap the ground state may survive.
However, materials close to a magnetic quantum-critical point
(QCP) are more drastically affected. Indeed, near QCP even
a small variation in the Hamiltonian parameters may lead to
the qualitative change of the ground state [9–11]. Recently,
Vojta [12] has numerically investigated the effect of bond
disorder on the dynamic properties of a gapped quantum
magnet in the vicinity of the z = 1 QCP [13]. Among the
predictions are some intriguing disorder-induced features,
such as localized states inside the gap, or the possibility of
“weak ordering” [14]. Unfortunately, despite the rapid increase
in the number of organometallic quantum magnets [15], and
the ease of achieving bond disorder via chemical substitution
on nonmagnetic sites involved in superexchange [16], there
is presently a shortage of suitable model compounds to test
the predictions of Ref. [12]. Most of the known gapped
quantum magnets (e.g., TlCuCl3 [17], IPA − CuCl3 [18],
PHCC [19–22], Sul-Cu2Cl4 [23], Cu(Qnx)Cl2 [24,25]) exhibit
a “blue shift” of magnons in the presence of bond disorder.
Thus, chemical modification increases the spin gap and pushes
these systems away from the z = 1 QCP.
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One known exception is the extensively studied
S = 1 gapped quantum magnet dichlorotetrakis-thiourea
nickel NiCl2 · 4SC(NH2)2 (commonly abbreviated as
DTN) [26–32]. In contrast to integer-spin Heisenberg magnets
such as CsNiCl3 [33,34], the gap in DTN is due to huge planar
single-ion anisotropy. The three-dimensional interactions in
DTN are also strong enough to make the Haldane gap physics
irrelevant [35,36]. Bond disorder is introduced into DTN
by a random Br substitution on the Cl site. This actually
produces a “red shift” (decrease) of the spin gap [37,38]. In
this respect, Br-substituted DTN, NiCl2−2xBr2x · 4SC(NH2)2

(below abbreviated as DTNX), appears to be the most
promising candidate for an experimental realization of the
physics discussed in Ref. [12].

The present work is a study of spin dynamics in DTNX
with x = 6% Br substitution. High-resolution inelastic neutron
scattering experiments provide a detailed picture of magnetic
excitations throughout the Brillouin zone. The measured
spectra exhibit certain key differences compared to the
parent material: an increase of the bandwidth, a reduction of
excitation lifetimes, and new localized states at high energies.
We discuss the relation between these experimental results and
the numerical predictions of Ref. [12]. In addition, we touch on
the relevance of our findings to the previous thermodynamic
studies of DTNX in applied magnetic fields [37,38].

The paper is organized as follows: In Sec. II we review
the structure and magnetic properties of our target material,
and describe the experimental setup and techniques; a brief
overview of the collected data is given in Sec. III, followed by
detailed analysis and discussion in Sec. IV; Sec. V summarizes
our conclusions and outlines the future research directions;
some more technical issues are laid out in the Appendixes.

II. MATERIAL AND EXPERIMENTAL DETAILS

A. The parent and disordered compounds

Disorder-free DTN NiCl2 · 4SC(NH2)2 is an organometal-
lic magnet belonging to a highly symmetric I4 tetragonal
space group [39]. Magnetic S = 1 Ni2+ ions occupy the
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FIG. 1. (Color online) A sketch of the NiCl2−2xBr2x · 4SC(NH2)2

structure. The surrounding thiourea units are shown only for one of the
Ni2+ ions. The main magnetic interactions [see Hamiltonian (1)] for
S = 1 nickel ions are labeled. Two nonequivalent chlorine positions
are marked as 1 and 2. The scattering plane for the present neutron
experiment is shown on the right, in both real (top) and reciprocal
(bottom) space representations.

positions in the body-centered tetragonal lattice (see Fig. 1)
with a = 9.558 Å and c = 8.981 Å. Due to this body-
centered arrangement, the magnetic system can be seen as
a combination of two interpenetrating tetragonal lattices that
are totally decoupled at the mean-field level. Within each of
these subsystems the magnetic properties are captured by the
following Hamiltonian:

H =
∑

〈i,j〉,n
D

(
Sz

in

)2 + JcSinSi(n+1) + JaSinSjn, (1)

where 〈i,j 〉 is the summation over the nearest neighbors
in the tetragonal (a,a) plane, and index n refers to the
summation along the c axis. The magnetic properties are
dominated by the strong single-ion anisotropy of easy-plane
type D � 0.78 meV. The next term in the magnetic hierarchy
is the nearest-neighbor Heisenberg exchange interaction Jc �
0.141 meV within the chains running along the high-symmetry
axis. The least important interaction is the interchain coupling
Ja � 0.014 meV, which is an order of magnitude weaker than
Jc [27]. As a result of the huge anisotropy, the ground state
of DTN is a quantum-disordered XY paramagnet with a spin-
singlet nonmagnetic ground state and a spin gap � � 0.3 meV.

It has been previously demonstrated that Br substitution
has a very slight effect on the lattice parameters and does
not affect the symmetry [37]. The bromine ions are site
selective: They occupy Cl-1 positions in the lattice as shown
in Fig. 1. Chemical substitution decreases the critical field
Hc1 of magnetic ordering in DTNX, indicating a reduced
spin gap [37,38]. This gap reduction is significant: Already
at x = 13% bromine concentration � � 0.1 meV is almost
three times smaller than in the parent compound.

B. Quantities measured

Magnetic inelastic neutron scattering almost directly probes
the dynamic spin structure factor:

Sαβ(Q,ω) =
∫

e−i[(Q·r)−ωt]〈Sα(0,0)Sβ (r,t)〉d
3rdt

2π
. (2)

The actual neutron intensity measured in experiments is pro-
portional to the differential cross section, and for unpolarized
neutrons is given by [40]:

I (Q,ω) ∝ d2σ

dEd�
∝ F 2(Q)

∑
α

(
1 − Q2

α

Q2

)
Sαα(Q,ω). (3)

Here Q and �ω the momentum and energy transfers, re-
spectively. F 2(Q) is the magnetic form factor for Ni2+, known
from numerical calculations [41]. No absolute normalization
of the data was performed in this study.

C. Experimental setup

In the present work we used large (mass ∼ 1 g) fully
deuterated single crystals of DTNX with 6% Br substitution.
They were grown from the solution by the same method as in
previous works [27,37,38,42]. The measurements were carried
out on the high resolution cold neutron time-of-flight (TOF)
spectrometer IN5 at Institut Laue-Langevin [43]. Sample
environment was a 3He - 4He dilution cryostat. All data were
collected on two co-aligned single crystals at T = 60 mK,
which is much lower than all the relevant energy scales of DTN.
The principal experimental scattering plane was (1,−1,0),
providing access to scattering vectors of type (h,h,l) (see
Fig. 1). Two data sets were collected, using incident neutron
energies Ei = 2.26 and 1.17 meV, respectively. A Gaussian
fit to the elastic incoherent scattering provided an estimate
of the energy resolution:

√
8 ln 2σ � 38 μeV and 16 μeV full

width at half height, respectively. In the high-resolution setup,
incoherent elastic scattering has virtually no effect on the
data collected above �ω = 25 μeV energy transfer. For each
incident energy, the sample was rotated stepwise through the
data collection, to fully cover the first Brillouin zone.

III. DATA OVERVIEW

The bulk of the neutron TOF data collected in 6% DTNX
at T = 60 mK is visualized in Fig. 2. These are a series
of false color plots of the measured inelastic intensity,
presented as two-dimensional momentum-energy cuts along
high-symmetry directions. The data below and above 0.7 meV
energy transfer were taken with neutron incident energies
Ei = 1.17 meV and Ei = 2.26 meV, respectively. We stress
that the data are plotted “as is,” without any background
subtraction [44].

The measured spectrum of 6% DTNX is qualitatively
similar to that of disorder-free DTN [27]. It is dominated by a
well-defined magnon mode with a dispersion minimum at the
antiferromagnetic zone center O = (1/2,1/2,1/2). Two saddle
points are located at M = (0,0,1/2) and A = (1/2,1/2,0),
correspondingly. The highest energy of the single-magnon
excitation is found at X = (0,0,0). The main difference with
the parent material is a much reduced spin gap � � 0.2 meV,
compared to � � 0.3 meV in DTN.
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FIG. 2. (Color online) False color plot of the neutron scattering intensity measured in 6% DTNX at T = 60 mK. The data are presented as
a multipanel cut along the trajectory shown in the inset. The data collected with Ei = 2.26 and 1.17 meV incident energy are combined in each
panel. The integration range in Q transverse to the cut directions is ±0.02 reciprocal lattice units.

At lower energies, the excitations in DTNX appear less
sharp than at high energy transfers. Notably, there are no
additional excited states below the gap energy at the O point
or any other region of the Brillouin zone down to 25 μeV.
Finally, we note a subtle drop of intensity around 0.4 meV.
The latter is found in data sets with both neutron incident
energies, and hence is unlikely to be of instrumental origin.
Although it resembles an avoided crossing in the false-color
plot shown, it is actually always observed at the same energy
transfer, irrespective of wave vector. Its origin remains unclear.

IV. ANALYSIS AND DISCUSSION

A. Dispersive excitations

Since we lack a suitable microscopic model to globally
describe the spectrum in a quantum magnet with disorder,
we chose a more empirical approach to data analysis. We
quantitatively analyze the Ei = 2.26 meV data set, covering
the full magnetic excitation band. The measured data were
broken up into a series of individual constant-Q cuts. In
each such cut, the scattering is a well-defined peak that we
approximated by a Voigt profile:

I (Q,ω) = SQF 2(Q)

(
2 − Q2

⊥
Q2

)
V (�ω − �ωQ,σ,	Q). (4)

The Gaussian width σ represents experimental energy
resolution (the values quoted above, with the energy transfer
correction included [45,46]). For each cut, the parameters of
this model are as follows. �ωQ is the position of the peak that
we associate with the single-magnon energy. The Lorentian
width 	Q of the Voigt function represents the intrinsic
magnon line width and, potentially, wave vector resolution
(“focusing”) effects. SQ is the peak’s integrated intensity.
Due to the planar nature of the ground state, we assumed
that the observed magnon corresponds to transverse spin
fluctuations Sxx(Q,ω) = Syy(Q,ω). The polarization factors
in the expression above are chosen accordingly, with Q⊥ being

the momentum transfer in the (a,a) plane. Examples of fits to
individual cuts can be found in Fig. 3.

The thus obtained magnon dispersion relation is plotted
in symbols in the upper panel of Fig. 4. These data were
further analyzed within the random-phase approximation
(RPA) [47], treating the Heisenberg exchange as a perturbation
to decoupled S = 1 single ions. The RPA dispersion relation is:

�ωQ =
√

D2 + 4Dγ (Q). (5)

Here γ (Q) = ∑
r Jr cos(Qr) is essentially the Fourier

transform Heisenberg exchange interactions in the system.
For our fit, we consider not only the parameters D, Jc, and
Ja , but also two possible perturbations to the Hamiltonian (1):
diagonal exchange between the tetragonal sublattices Jd and
the next-nearest neighbor exchange along the c direction Jc2.
The reasons to introduce these perturbations are discussed in
Appendix A. Fitting the RPA dispersion relation to the data
in Fig. 4 (top panel) yields the parameter values summarized
in Table I. The fit itself is represented by the solid line. For a
direct comparison, we also quote Hamiltonian parameters for
disorder-free DTN from the previous studies [27] and plot the
corresponding dispersion relation in a dashed line.

As the analysis shows, the gap softening in DTNX is
primarily due to the increase of the bandwidth. Even as the
anisotropy becomes stronger with the Br substitution, the ratio
D/Jc actually decreases from 5.5 in pure DTN to 5.1–5.4 in
6% DTNX, depending on the terms included in the model
Hamiltonian. The ratio Ja/Jc is still around 0.1 within the
uncertainty limit. The RPA dispersion (5) can be modified to
account for quantum renormalization of the bare Hamiltonian
parameters. This correction, described in Appendix B, changes
the D/Jc ratio to 4.7 in the parent material [27,48]. In 6%
DTNX, as found from the present experiment, it will be
between 4.06 and 4.36. The ratio Ja/Jc � 0.1 is unchanged.
Thus the reduced D/Jc ratio is the key ingredient of the
excitations “red shift” in DTNX.
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FIG. 3. (Color online) Constant-Q cuts at the center (O) and
at the boundary (A) of antiferromagnetic Brillouin zone of 6%
DTNX. Squares and circles correspond to Ei = 1.17 meV and Ei =
2.26 meV, respectively. Voigt fits (4) are shown by solid lines. The
shaded areas represent the experimental energy resolution.

The intensities SQ obtained in fits to individual cuts are
plotted in symbols in the lower panel of Fig. 4. In the RPA,
SQ is simply proportional to 1/�ωQ. As shown by the solid
line, this expectation is in a reasonable agreement with the

FIG. 4. (Color online) (Top panel) Magnon dispersion relation
measured in 6% DTNX, as deduced from Voigt fits to individual
constant-Q cuts of Ei = 2.26 meV data set. The solid line is a fit to the
RPA prediction of Eq. (5) with the parameters summarized in the last
column of Table I. The dashed line is the reference magnon dispersion
in disorder-free DTN following Ref. [27]. (Bottom panel) Integrated
intensity corrected for the magnetic form factor and polarization
factor SQ, as determined in fits to the same individual cuts. The
solid line is the RPA result, which is simply the inverse of �ωQ.

data. The remaining discrepancies might be attributed to the
possible contribution of longitudinal fluctuations, not included
in our approach.

B. Approaching criticality

Due to a random distribution of Br substitutes in the sample,
the parameters of the microscopic Hamiltonian, including
exchange constants and anisotropy, will themselves vary from
one unit cell to the next in a random manner. This said, it stands
to reason that the values obtained from analyzing magnon
dispersion curves correspond to the average values of these
parameters. The main mechanism leading to a decrease of the
spin gap and driving DTNX closer to the QCP is a then a
steadily decreasing D/Jc ratio.

Fortunately, the phase diagram of Hamiltonian (1) is well
known numerically [36,49,50], and shown in Fig. 5. For small
anisotropy and almost isolated chains it includes a gapped
topological Haldane phase. Sufficiently strong interchain inter-
actions restore XY-like long-range magnetic order. However,
the system is again in a gapped nonmagnetic “single ion” state
for large anisotropy. The values of Hamiltonian parameters
determined for the parent DTN compound [27], allow us to
place it in the latter region of the phase diagram (see Fig. 5).
As mentioned above, Br substitution does not change the Ja/Jc

ratio significantly. Instead, by decreasing D/Jc, the system is
driven left on the phase diagram, towards the line of long-range
XY ordering. The inset of Fig. 5 show the energy gap � in
DTNX as a function of Br content, as deduced from the current
and previous studies [27,37,38]. The decrease is roughly linear,
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TABLE I. Results of fitting the RPA dispersion relation (5) to the measured excitation energies in 6% DTNX. Additional perturbations to
the basic Hamiltonian (1) are considered (see Appendix A for more details). The results of an analogous analysis for disorder-free DTN from
Ref. [27] are also shown.

DTN 6% DTNX

Zapf Present study Present study Present study Present study
et al. (2006) [27] Eq. (1) only Eq. (1) + Jd Eq. (1) + Jc2 Eq. (1) + Jd + Jc2

D 0.780(3) meV 0.792(3) meV 0.812(2) meV 0.805(2) meV 0.807(2) meV
Jc 0.141(3) meV 0.155(1) meV 0.158(1) meV 0.149(1) meV 0.150(1) meV
Ja 0.014(1) meV 0.0158(3) meV 0.0161(2) meV 0.0155(2) meV 0.0157(2) meV
Jd – – 0.0059(5) meV – 0.0060(4) meV
Jc2 – – – −0.0095(7) meV −0.0096(7) meV
D/Jc 5.5(1) 5.11(3) 5.14(3) 5.40(3) 5.38(3)
Ja/Jc 0.098(7) 0.102(2) 0.102(2) 0.104(2) 0.105(2)

and the gap may be expected to close around 20% Br content.
At present it is not clear whether DTNX samples with such
high Br concentrations are stable.

C. Magnon lifetimes

Beyond a simple change of average Hamiltonian parame-
ters, several key features of the spectrum are to be attributed
to disorder, i.e., to a microscopic random variation of these
parameters in the sample. As shown in Fig. 3, the excitations at
the antiferromagnetic zone center O have a significant energy
width beyond the resolution of the instrument. This is further
emphasized by comparing data obtained with different neutron

FIG. 5. (Color online) Ground states of Hamiltonian (1), based
upon the results of Refs. [49,50]. The arrow indicates the approximate
trajectory of DTNX upon Br substitution. The inset shows the energy
gap in DTNX as a function of bromine content. Data points are the
result of the present and previous studies [27,37,38]. The dashed line
is a guide for the eye.

incident energy. For Ei = 1.17 meV the energy resolution
is much sharper than for Ei = 2.26 meV, but the obtained
broad peak at Q = (1/2,1/2,1/2) is similar in both cases,
with effective Lorentian linewidth 	 = 34 ± 4 μeV. Although
at high energies the excitations are sharper, their linewidth is
still pronounced. Fitted linewidth at, for instance, point A
is 	 = 22 ± 3 meV. As the resolution function of a time-
of-flight spectrometer sharpens with the increase in energy
transfer [45,46], the linewidth 	 still exceeds the estimated
instrument resolution σ at �ω � 1 meV almost twice.

Wave-vector resolution effects alone cannot account for
the observed increase of linewidth. A conservative esti-
mate of Q-resolution contribution to the peak width in
energy cuts can be done as σQ � |�ωQ+δQ − �ωQ|. In
our case, for the antiferromagnetic zone center this gives
only σQ � 5 μeV, which is much less than the observed
broadening.

The contour map of measured intrinsic line width 	Q is
shown in Fig. 6. One can see that 	Q varies significantly
along the tetragonal axis, but has a less pronounced variation
in a transverse direction. The broadest excitations are found

FIG. 6. (Color online) False color map of measured intrinsic
Lorentian magnon linewidth 	Q as found from Voigt fits to individual
constant-Q cuts (Ei = 2.26 meV data set). Regions of reciprocal
space with no data are shown hatched.
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around the antiferromagnetic zone center where the dispersion
is a minimum. This is in a strong contrast with the picture
of excitation broadening previously observed in another
bond-disordered gapped antiferromagnet PHCX [20]. In the
latter case, magnon damping is due to scattering on isolated
(discrete) impurities. As a result, it roughly scales with the
single-magnon density of states, and is a maximum at the band
top. In DTNX we find exactly the opposite. As will be argued
below, the observed behavior of 	Q is consistent with a smooth
continuous distribution of Heisenberg exchange strengths in
the material.

D. Localized states

Figure 7 shows a high-contrast false color plot of I (Q,ω)
integrated over the whole Brillouin zone and projected onto
a c∗ direction. Note that here we use a linear intensity scale,
compared to the logarithmic scale used above in Fig. 2. In
Fig. 7, the magnon band looks completely “overexposed.”
There are clearly no additional states visible inside the gap.
However, additional states are found just above the top of the
band at �ω � 1.25 meV. These are local excitations, as they
show no dispersion.

Given the low intensity of the feature in 6% DTNX, how
reliable is this observation? An important argument here is that
the feature at 1.25 meV has an intensity distribution, perfectly
matching the sample’s reciprocal lattice. The intensity is
cosine modulated along [001] and constant along [110].
This is nontypical for the spurious features usually having
no Q structure [51]. As the numerical calculations show,
localized feature of this kind can actually be expected in
a bond-disordered system [12,52] (this will be discussed in
more details below). Indirect evidence of high-energy states

FIG. 7. (Color online) High contrast false color map of I (Q,ω)
for Q along c∗ (here Ei = 2.26 meV). The integration range in trans-
verse direction is the entire Brillouin zone. Note the dispersionless
(local) excitations just above the top of the magnon band denoted by
arrows.

in DTNX also comes from the experimentally observed pre-
saturation “pseudoplateau” in magnetization [37]. The width
of the plateau �H � 1.5 T and the observed energy separation
between the band top and the localized state ��ω � 0.2 meV
are in a rough agreement. As these states are located at the
regions of reciprocal space, equivalent to Q = 0 momentum
transfer, they should also be observable by such techniques as
electron spin resonance and THz spectroscopy. A very recent
THz spectroscopy experiment does show the presence of an
additional feature at approximately the same energy in DTNX
and its absence in the parent material [53].

E. Disorder analysis

To understand the emergence of local excitations and
other features of the observed spectrum, we can establish
a crude qualitative “mapping” between the Hamiltonians
of DTN (1) and that of the dimer modeled studied in
Ref. [12]. The latter has two parameters: the intradimer
exchange constant J and the interdimer coupling K. The
dimer strength J primarily determines the gap and interdimer
exchange K determines the bandwidth. The increase of the
former drives the system away, and of the latter—closer
to QCP. In this sense, our S = 1 individual magnetic sites
with single-ion anisotropy can be seen as spin-gap objects
analogous to the S = 1/2 dimers. The parameter J is then
naturally mapped to the single-ion anisotropy D and the
critical coupling K corresponds to the Heisenberg exchange J .
Similar mapping between dimerized and single-ion anisotropy
systems has also been used in a recent theoretical study of
Utesov et al. [52].

The numerical study Ref. [12] predicts the presence of
in-gap states in two cases of discrete disorder distribution:
a small fraction of isolated sites having J < 〈J 〉 (in our
correspondence with DTN D < 〈D〉) [54] or a small fraction
of sites with K > 〈K〉 (in our case J > 〈J 〉) [55]. Our analysis
of the magnon spectrum in DTNX shows that anisotropy D is
effectively increased by Br substitution, so the former scenario
is clearly not applicable. Thus, not having any in-gap bound
states in DTNX may indicate that the disorder of the exchange
constant J is either weak or nondiscrete. At the same time, as
captured by the simulations of Ref. [12] (Fig. 5 therein), a small
number of sites with a singular large value of J > 〈J 〉 (i.e.,
D > 〈D〉) produces a localized state near the top of the magnon
band. This is totally in line with our observation of high-energy
local excitations in DTNX. The underlying assumption is that
the anisotropy distribution is discrete, with just a few Ni2+

ions having a substantially increased D term. The simulations
also predict a broadening of the main magnon branch, in the
case of a continuous broad distribution of either K and J . The
former broadens the magnons evenly in the entire Brillouin
zone (Supplementary Material in Ref. [12], Fig. S4), while
the latter mostly affects magnons at the bottom of the band
(Fig. S5). Comparing it to our observations, we may again
guess that the exchange constants in DTNX show a rather
broad continuous distribution.

Certainly, the above discussion is based on a rather tenuous
analogy between two very different Hamiltonians. However,
if we accept this qualitative correspondence, the following
picture emerges. The average values of both 〈D〉 and 〈J 〉
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FIG. 8. (Color online) A cartoon highlighting the main effects of
various kinds of disorder on the spin excitation spectrum. The solid
line is the magnon dispersion in the absence of disorder. The blurred
curve is the spectrum of the disordered system.

are increased with the Br substitution, modifying the magnon
dispersion relation accordingly. The anisotropy is decreased
on only a few sites, probably in direct proximity of the Br
substitutes. The exchange constants, however, have a broad
statistical distribution around the average value. Schematically,
this scenario is borne out in Fig. 8. A broad distribution of
exchange constants in DTNX is not unexpected. It results from
each Br substitute affecting a large number of bonds. Each such
size-mismatched Br defect creates a strain field in the crystal,
which, in turn, affects bond angles and thereby superexchange
interactions. The strain field falls off as ∼r−3 (Ref. [56]), and
in a soft material like DTNX is expected to be rather long
range.

V. CONCLUSIONS

In summary, Br substitution has a profound effect on the
spin dynamics of DTN, even at rather low concentrations. On
the one hand, both anisotropy and exchange interactions are,
on the average, increased. The ratio D/Jc actually decreases,
reducing the spin gap and driving the system closer to the QCP.
Simultaneously, new features emerge due to disorder. Magnon
lifetimes are shortened, predominantly at the bottom of the
band. Somewhat counterintuitively, localized states appear not
inside the spin gap, but just above the top of the magnon
band. This behavior can be explained by a hand-waving
analogy with disorder in the Heisenberg-dimer model [12].
We hope that our experiments will stimulate a study of ran-
domness in the anisotropic single-ion Hamiltonian appropriate
for DTN.
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APPENDIX A: ADDITIONAL INTERACTIONS

Here we describe some features in our inelastic data that
point to the presence of additional magnetic interactions, not
included in the Hamiltonian (1). The first additional interaction
is the so-called “diagonal” Heisenberg exchange between the
two tetragonal sublattices. The presence of this exchange Jd

was already noted in the ESR experiment by Zvyagin et al.
[57] and confirmed in neutron scattering investigation by
Tsirulin et al. [31]. The introduction of Jd leads to additional
double-period modulation of the dispersion relation. This
new periodicity can be indeed spotted in the data. Figure 9
shows a comparison of dispersion curves (actually, dispersion
squared) measured along the (h,h,0) and (h,h,1) directions
(symbols). The difference between the otherwise equivalent
reciprocal-space directions is naturally explained by a nonzero

FIG. 10. (Color online) Contour map of weighted peak intensity
SQ · �ωQ in the (h,h,l) plane (Ei = 2.26 meV). Note the half-period
modulation along c∗, i.e., the peaks at both integer and half-integer
values of l.
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TABLE II. Results of fitting Eqs. (B1)–(B3) to our 6% DTNX dispersion data and to those for the parent compound (Ref. [27]). For the
parent compound, parameters deduced from the spin-wave dispersion measured in the saturated phase, are also listed [31].

DTN 6% DTNX

Zapf Tsirulin Present study Present study Present study Present study
et al. (2006) [27] et al. (2013) [31] Eq. (1) only Eq. (1) + Jd Eq. (1) + Jc2 Eq. (1)+Jd + Jc2

s2 0.943 - 0.921 0.923 0.926 0.924
D 0.700(3) meV 0.767 meV 0.682(3) meV 0.702(2) meV 0.702(2) meV 0.701(3) meV
Jc 0.150(3) meV 0.177 meV 0.168(1) meV 0.171(1) meV 0.161(1) meV 0.162(1) meV
Ja 0.015(1) meV 0.0134(3) meV 0.0172(5) meV 0.0174(2) meV 0.0167(2) meV 0.0170(5) meV
Jd – 0.0069(9) meV – 0.0064(5) meV – 0.0065(4) meV
Jc2 – – – – −0.0103(7) meV −0.0104(7) meV
D/Jc 4.7(1) 4.34 4.06(3) 4.10(3) 4.36(3) 4.33(3)
Ja/Jc 0.098(7) 0.076(2) 0.102(2) 0.102(2) 0.104(2) 0.105(2)

Jd , as shown by the solid line which corresponds to the best-fit
value of Jd . For comparison, the dashed line is the proposed
DTN dispersion from Ref. [27], where Jd is not included.

The second additional term that we consider is the next-
nearest neighbor exchange coupling Jc2 along the chain
direction. The evidence for this term comes from the very
specific pattern found in the intensity distribution. The product
SQ · �ωQ shown in Fig. 10 exhibits a half-period modulation
along the c∗ direction. This implies the presence of additional
interaction with the translation vector r = 2c. Additionally,
J2c manifests itself in a slight “blunting” of the cos-like
dispersion along the c axis, near the top of the band. That, too,
is consistent with our data. Note that next-nearest-neighbor
interactions along the c axis could not be detected in the
high-field experiment of Ref. [31], as their scattering plane was
orthogonal to c. Analyzing the measured dispersion in DTNX,
we find Jc2 to be ferromagnetic, and therefore nonfrustrating.
Both Jd and Jc2 corrections are relatively small, and don’t
qualitatively affect the general picture for DTN.

APPENDIX B: SELF-CONSISTENT CORRECTIONS
TO THE RPA

The RPA result (5) can be modified to account for the
quantum renormalization of the dispersion relation. In the
framework of a generalized spin-wave approach [27,48],
relying on artificial restriction of Hilbert space for the

spin-wave operators, Eq. (5) is transformed into:

�ω(Q) =
√

D′2 + 4D′s2γ (Q). (B1)

Structurally this formula is identical to the RPA result (5).
The difference is that the single-ion anisotropy D is replaced by
the effective value D′. In addition, instead of the bare exchange
couplings Jr, one uses renormalized s2Jr. The values of D′
and s2 are related to the “true” values D and Jr by a set of
self-consistent equations:

D = D′
(

1 + 1

4π3

∫
BZ

γ (Q)

�ω(Q)
d3Q

)
, (B2)

s2 = 2 − 1

(2π )3

∫
BZ

D′ + 2s2γ (Q)

�ω(Q)
d3Q. (B3)

The integration is performed over the full Brillouin zone.
Applying this correction to the parameters in Table I results
in the values, summarized in Table II. The parameters of pure
DTN, determined from the spin-wave dispersion in the fully
polarized phase [31], are also given for comparison.

An alternative approach was developed by Sizanov and
Syromyatnikov [58]. Their dispersion equation, based upon
the bosonization and subsequent expansion in 1/D, is:

�ω(Q) = D + 3

2D

∫
BZ

γ (P)2

(2π )3
d3P

+ 1

D2

∫∫
BZ

γ (P)γ (K)γ (P − K)

(2π )6
d3Pd3K

TABLE III. Results of fitting the dispersion obtained through the 1/D expansion (B4) to the data for 6% DTNX. The results of an analogous
treatment for the parent compound are also shown, following Ref. [58].

DTN 6% DTNX

Sizanov and Present study Present study Present study Present study
Syromyatnikov (2011) [58] Eq. (1) only Eq. (1) + Jd Eq. (1) + Jc2 Eq. (1)+Jd + Jc2

D 0.666 meV 0.661(1) meV 0.661(1) meV 0.672(2) meV 0.672(2) meV
Jc 0.160 meV 0.176(1) meV 0.177(1) meV 0.169(1) meV 170(2) meV
Ja 0.0172 meV 0.0190(3) meV 0.0192(2) meV 0.0190(3) meV 0.0193(2) meV
Jd 0.0086 meV – 0.0075(6) meV – 0.0075(5) meV
Jc2 – – – −0.007(1) meV −0.007(1) meV
D/Jc 4.16 3.75(3) 3.73(3) 3.96(4) 3.95(6)
Ja/Jc 0.108 0.108(2) 0.109(2) 0.112(2) 0.113(3)
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+ γ (Q) − 1

2D
γ (Q)2 + 1

2D2
γ (Q)3

− 1

D2
γ (Q)

∫
BZ

7
4γ (P)2 + 1

2γ (P)γ (P − Q)

(2π )3
d3P

+ 5

4D2

∫∫
BZ

γ (P)γ (K)γ (P − K + Q)

(2π )6
d3Pd3K.

(B4)

Applying this approach to our data results in the interaction
parameters, summarized in Table III. Values for pure DTN, as
obtained in Ref. [58] by analyzing the data of Ref. [27], are
also given for comparison. Although this approach leads to
slightly different parameter values, the conclusion still holds:
DTNX approaches QCP primarily due to the reduction of the
ratio D/Jc.
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[21] D. Hüvonen, G. Ballon, and A. Zheludev, Field-concentration
phase diagram of a quantum spin liquid with bond defects, Phys.
Rev. B 88, 094402 (2013).

[22] V. N. Glazkov, G. Skoblin, D. Hüvonen, T. S. Yankova, and A.
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