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Magnetic properties of the S = 1
2 antiferromagnet α-Cu2V2O7 have been studied using magnetization, quantum

Monte Carlo (QMC) simulations, and neutron diffraction. Magnetic susceptibility shows a broad peak at ∼50 K
followed by an abrupt increase indicative of a phase transition to a magnetically ordered state at TN = 33.4(1) K.
Above TN , a fit to the Curie-Weiss law gives a Curie-Weiss temperature of � = −73(1) K suggesting the dominant
antiferromagnetic coupling. The result of the QMC calculations on the helical-honeycomb spin network with two
antiferromagnetic exchange interactions J1 and J2 provides a better fit to the susceptibility than the previously
proposed spin-chain model. Two sets of the coupling parameters J1 : J2 = 1 : 0.45 with J1 = 5.79(1) meV and
0.65 : 1 with J2 = 6.31(1) meV yield equally good fits down to ∼TN . Below TN , weak ferromagnetism due to spin
canting is observed. The canting is caused by the Dzyaloshinskii-Moriya interaction with an estimated bc-plane
component |Dp| �0.14J1. Neutron diffraction reveals that the S = 1

2 Cu2+ spins antiferromagnetically align in
the Fd ′d ′2 magnetic space group. The ordered moment of 0.93(9) μB is predominantly along the crystallographic
a axis.
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I. INTRODUCTION

Low-dimensional quantum magnetism has attracted much
interest from both theoretical and experimental condensed
matter physicists for many decades [1,2]. It is known that in
a one-dimensional (1D) antiferromagnetic system, long-range
order is absent even at zero temperature [3], leading to various
fascinating magnetic ground states and phenomena at low
temperatures such as the spin-Peierls state in CuGeO3 [4,5]
and TiOCl [6,7], the singlet ground state in the alternating spin-
chain system (VO)2P2O7 [8], the fractional spinon excitations
in CuSO4 · 5D2O [9], and the Bose-Einstein condensation
(BEC) of magnons in the double spin-chain system TlCuCl3
[10], in which weakly interacting dimers are formed at
low temperatures and BEC is realized as the field-induced
three-dimensional (3D) magnetic ordering. However, some
approximate 1D antiferromagnets exhibit long-range order
with a remnant of quantum fluctuations in a form of quantum
renormalization of spin waves [11,12]. Hence, in order to
apprehend diverse physics of these low-dimensional quantum
magnets, it is crucial to identify a spin network and relevant
underlying interactions that consequently cause magnetic
ordering and govern spin dynamics.

Among various compounds, copper-based oxides with
Cu2+ ions (3d9), titanium-based oxides with Ti3+ ions (3d1),
and vanadium-based oxides with V4+ ions (3d1) are generally
considered as a good realization of the low-dimensional
spin- 1

2 system. Copper divanadate Cu2V2O7 is a promising
realization of the low-dimensional spin- 1

2 system. There are
two polymorphs of Cu2V2O7 that are generally found in
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a stable phase, namely the α phase and the β phase with
a structural phase transition at around 605 ◦C [14]. Other
forms such as the γ and β ′ phases were also reported as
complex and unstable high-temperature phases [14–16]. The
α phase of Cu2V2O7 crystallizes in the orthorhombic system
of space group Fdd2 with a = 20.645(2) Å, b = 8.383(7) Å,
and c = 6.442(1) Å [17,18]. Structurally, Cu2+ ions that are
surrounded by five oxygen ions appear to form a chain of
edge sharing CuO5 polyhedra while the nonmagnetic V5+
ions, each of which is surrounded by four oxygen ions to
form V2O7 double corner-sharing tetrahedra, are intercalated
between the chains as shown in Fig. 1(a). Within the bc

plane, the S = 1
2 spins of Cu2+ ions form a zigzag chain

and interact with their nearest neighbors via two inequivalent
Cu–O–Cu pathways. The distance between the two copper
ions Cu1 and Cu4 connected by the blue bonds in Fig. 1(a)
is approximately 3.1 Å. Intrachain interactions between these
two coppers are formed by the bridging of Cu1(Cu2) with
Cu4(Cu3) along [011] ([011̄]) via O(2) and O(3). The deviation
of the Cu–O(2)–Cu angle from 90◦ [Fig. 1(b)] leads to a
preferable and strong antiferromagnetic interaction along the
chain [19]. In the previous study this system has been proposed
as a realization of a zigzag spin-chain model [20]. However,
the possibly strong next-nearest-neighbor interactions between
the Cu2+ spins, which link the zigzag chains along the
crystallographic a axis as shown by the green bonds in
Fig. 1(a), suggest a highly anisotropic and nontrivial spin
network with three coordinate spins for each site that resembles
a disconnected honeycomb (helical-honeycomb) lattice when
viewed along the b axis (Fig. 9). The next-nearest-neighbor
bond of length 4.0 Å, which is slightly longer than the
nearest-neighbor bond, is formed by the bridging of Cu1(Cu3)
with Cu2(Cu4) via two equivalent O(1) ions [Fig. 1(c)]
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FIG. 1. (Color online) (a) Crystal structure of α-Cu2V2O7. The
chains of edge sharing CuO5 polyhedra are along [011] and [011̄]
with two corner-sharing V2O7 tetrahedra intercalated between the
chains. Blue (J1) and green (J2) bonds represent the antiferromag-
netic couplings between the nearest-neighbor, intrachain spins and
next-nearest-neighbor, interchain spins, respectively. (b) The DM
interactions, the directions of which can be determined from the cross
product of r⊥ × rij and r′

⊥ × rij for two inequivalent Cu1–O(2)–Cu4
and Cu1–O(3)–Cu4 bonds, respectively, yield a nonzero value. (c) On
the other hand, the equivalent Cu1-O(1)-Cu2 pathways connecting
the interchain spins give rise to a net vanishing DM interaction. The
structures are visualized using VESTA [13].

with the Cu–O(1)–Cu angle of 104◦, possibly leading to an
antiferromagnetic interaction that could be comparable to
the intrachain interaction. This sizable interchain interaction
that enables the forming of the helical-honeycomb lattice is
not surprising. Using first-principle calculations on its cousin
phase β-Cu2V2O7, Tsirlin et al. [21] also suggested that the
β phase could be better described by a honeycomb lattice
than by a spin-chain model. The coordination number of three
is the lowest for any two-dimensional (2D) lattices and only
a 1D chain has a lower coordination number. Therefore, the
helical-honeycomb model could share many properties unique
to the low-dimensional magnets even though the lattice extends
in three dimensions.

Magnetic susceptibility and heat capacity on a powder sam-
ple reveal that the antiferromagnet α-Cu2V2O7 magnetically
orders at a Néel temperature TN of 34 K [20,22]. The magnetic
ground state of α-Cu2V2O7 was previously proposed to be a
canted antiferromagnetic spin chain [20,22,23]. The canting
of spins is due to Dzyaloshinskii-Moriya (DM) interactions,
which give rise to the presence of weak ferromagnetism
below TN . However, the magnetic structure and spin dynamics
of α-Cu2V2O7 have not been studied. Among the various
probing techniques, neutron scattering is the most powerful
at revealing the microscopic properties of such magnetic ma-
terials; however, a good quality large single crystal is required.
Here we report the first detailed study of magnetic properties
on single-crystal α-Cu2V2O7 using magnetization, quantum
Monte Carlo (QMC) simulations, and neutron diffraction
measurements.

The paper is organized as follows. In Sec. II we briefly
discuss single-crystal growth and experimental techniques

used to characterize and study magnetic properties of the
compound. The results in Sec. III are divided into three parts,
where x-ray diffraction (Sec. III A), magnetization and QMC
simulations (Sec. III B), and neutron diffraction (Sec. III C)
will be discussed. Finally, we end with the summary in Sec. IV.

II. EXPERIMENTAL DETAILS

Prior to the single-crystal growth, powder Cu2V2O7 was
prepared from high purity CuO and V2O5. The chemicals
were dehydrated and weighed with stoichiometric ratio and
then ground thoroughly with ethanol. The mixture was then
calcined at 500 ◦C for 24 h. The obtained powder was inserted
into a quartz tube. The bottom end of the tube was shaped
into a taper for seed selection while the top end was tightly
closed with silica wool. The sample was melted in air at 850 ◦C
for 10 hours to ensure homogeneity and then lowered through
a constant temperature gradient of about 40 ◦C/cm inside a
vertical Bridgman furnace at a speed of 1 cm/day. The sample
was finally cooled from 700 ◦C to room temperature at a rate
of 5 ◦C/min. Single crystals were extracted from the quartz
tube by mechanical separation. A pure-phase powder sample
of α-Cu2V2O7 was also synthesized by the standard solid state
reaction and used in powder neutron diffraction measurements.

Small pieces of the crushed crystals were collected and
ground for powder x-ray diffraction measurements using
CuKα radiation. The results were fit using the Rietveld
method in FullProf [24]. To confirm the crystal structure,
single-crystal x-ray diffraction data were collected at room
temperature using a Bruker X8 APEX CCD diffractometer
with MoKα radiation. The refinements were done using the
software ShelXle [25]. The magnetization M of the single-
crystal sample was measured to the lowest temperature of
2 K using a superconducting quantum interference device
(MPMS-XL, Quantum Design).

QMC simulations with the LOOP algorithm [26] were
performed using the simulation package ALPS [27]. The
magnetic susceptibility was calculated on a cluster of 100
spins for the spin-chain model and up to 432 spins (27
unit cells) for the helical-honeycomb model with a periodic
boundary condition in the temperature range of 0.01 � t � 5
(t = kBT /J ) using 100 000 sweeps for thermalization and
500 000 Monte Carlo steps after thermalization.

To check crystallinity quality and investigate the magnetic
transition, single-crystal neutron diffraction was performed at
the BT7 Double Focusing Thermal Triple Axis Spectrometer
[28] at NIST Center for Neutron Reseach, USA, on a single
crystal with a mosaic of 0.8◦. Elastic neutron scattering were
performed at 2.5 and 50 K using fixed incident energies of 14.7
and 30.5 meV. The position-sensitive detector (PSD) was em-
ployed in a two-axis mode with open–80′–sample–80′(radial)–
PSD horizontal collimations to map out the broad reciprocal
space in the (hk0) scattering plane [Fig. 6(a)]. A detailed
investigation of the nuclear and magnetic Bragg reflections
were performed using a triple-axis mode with a single detector
and the horizontal collimations of open–80′–sample–80′–120′.
For all diffraction measurements, one pyrolytic graphite (PG)
filter and two PG filters were placed along the incident and
scattered beams, respectively, to reduce higher-order neutron
contamination. Neutron diffraction on the powder sample
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FIG. 2. (Color online) Powder x-ray diffraction was measured
on crushed single crystals, black for the observed data, red for
the calculated pattern, blue for the difference, and green for the
Bragg positions. The symbols � and � indicate Cu0.64V2O5 and
β-Cu2V2O7 impurities, respectively. The inset shows a photograph
of the α-Cu2V2O7 single crystals.

were performed at the high-resolution neutron diffractrometer
Echidna, ANSTO, Australia using neutrons with wavelength
2.44 Å (13.7 meV). The data were collected at 3 and 40 K
to extract the magnetic scattering. Additional single-crystal
neutron diffraction measurements were carried out at 4 and
50 K using the Laue diffractometer Koala, ANSTO, Australia.
The Laue data images were processed using the LaueG
software [29].

III. RESULTS AND DISCUSSION

A. X-ray diffraction

The obtained single crystals are shown in the inset of Fig. 2.
The largest crystal was about 1 × 1 × 0.5 cm3 with a mass of
1.4 g. The naturally cleaved facet is the (1,0,0) plane. Small
crystals were collected for the x-ray diffraction measurements,
while large crystals were allocated for the neutron scattering
experiments. The result of the powder x-ray diffraction (Fig. 2)
shows that the major phase of the crystals is α-Cu2V2O7

(∼ 95%) with a small amount of impurities that can be
identified as β-Cu2V2O7 and Cu0.64V2O5 [30]. We note that
no trace of these impurities is detected in the powder sample
(Fig. 7). The lattice constants obtained from the refinement are
a = 20.678(6) Å, b = 8.405(2) Å, and c = 6.446(2) Å, which
are in good agreement with those reported in Ref. [18]. The
impurities are still present after several crystal growth attempts
with different cooling conditions, which are an important
factor to control the ratio of α and β phases [14,31]. We
found that the fraction of β phase increases with an increasing
cooling rate. Hence it is crucial to slowly cool the sample
through the phase transition temperature at 605 ◦C to avoid a
mixture of the two polymorphs. It should be noted that these
impurities comprise only a small percentage, are most likely in
a powder form, and hence will not mislead the interpretation of
the neutron scattering data (Figs. 6 and 8). Room-temperature

TABLE I. Refined values of fractional coordinates of α-Cu2V2O7

from single-crystal x-ray diffraction measured at room temperature
and from single-crystal neutron diffraction measured at 50 K.

Atom x/a y/b z/c U

X-ray diffraction
Cu 0.16572(5) 0.3646(1) 0.7545(1) 0.0143(3)
V 0.19898(5) 0.4055(1) 0.2370(2) 0.0067(3)
O(1) 0.2455(3) 0.5631(9) 0.274(1) 0.022(1)
O(2) 0.1445(3) 0.4375(6) 0.0308(8) 0.0100(9)
O(3) 0.1617(3) 0.3475(7) 0.4575(9) 0.014(1)
O(4) 1

4
1
4 0.156(2) 0.030(2)

R1 = 0.039, wR2 = 0.095, GOF = 1.063

Neutron diffraction
Cu 0.16551(2) 0.36460(5) 0.7520(1) 0.0036(1)
V 0.1990(3) 0.4046(8) 0.237(2) 0.0006(9)
O(1) 0.24605(3) 0.56165(8) 0.2723(2) 0.0072(2)
O(2) 0.14428(3) 0.43776(7) 0.0286(2) 0.0040(2)
O(3) 0.16200(3) 0.34608(9) 0.4551(2) 0.0052(2)
O(4) 1

4
1
4 0.1507(3) 0.0087(3)

R1 = 0.081, wR2 = 0.073, GOF = 1.215

single-crystal x-ray diffraction was performed on the crystal
a few hundreds of micrometers in size. The data were refined
against space group Fdd2 with the previously reported lattice
parameters [17] yielding the agreement factor R1 = 0.039 for
1031 reflections with Fobs < 4σ (Fobs). The result is shown
in Table I. The refinement result from single-crystal neutron
diffraction measured at 50 K, which will be discussed later, is
also shown in the table for comparison.

B. Magnetic susceptibility

To investigate the magnetic transition on single-crystal
α-Cu2V2O7, we measured the magnetic susceptibility (χ =
M/H ) as a function of temperature when the applied magnetic
field of 1 T was parallel and perpendicular to the a axis in the
zero-field-cooled mode. In Fig. 3(a) the susceptibility exhibits
clear anisotropy at low temperatures and shows a sharp tran-
sition at �33 K in agreement with TN = 33.4(1) K obtained
from the order parameter measured by neutron diffraction on
a single crystal at BT7 (the inset). The Néel temperature is
consistent with that obtained from the susceptibility measured
on our powder sample (not shown), as well as with those from
the previous powder-sample studies [20,22].

Above 100 K, a linear fit of χ−1 as a function of T

to the Curie-Weiss law (χ = C
T −�

) as shown in Fig. 3(b)
gives a Curie-Weiss constant C = 0.545(2) cm3 K/mol Cu
and a Curie-Weiss temperature � = −73(1) K. The negative
Curie-Weiss temperature suggests that the dominant exchange
interactions are antiferromagnetic. From the Curie-Weiss con-
stant, the calculated effective moment μeff = √

3kBC/NA =
2.087(4) μB is obtained. This value is slightly higher than
the spin-only value of μeff = gμB

√
S(S + 1) = 1.73 μB for

g = 2 and S = 1
2 for Cu2+ ions. The order of frustration

defined by f = |�/TN | is �2.2, which suggests that the spin
interactions are not strongly frustrated (a typical value for
strongly frustrated systems is f > 10). Assuming the mean-
field approximation, one can calculate the antiferromagnetic
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FIG. 3. (Color online) (a) Magnetic susceptibility was measured
with the applied field of 1 T parallel (H‖a) and perpendicular (H⊥a)
to the crystallographic a axis. The inset shows an order parameter
as a function of temperature measured by neutron scattering at the
magnetic Bragg reflection (0,2,0). (b) The Curie-Weiss law (red) is
fit to the susceptibility with H⊥a.

exchange interaction from � = −zJCWS(S + 1)/3kB , where z

is a number of the coordinate spins and S = 1
2 . The calculations

give JCW = 12.6(2) meV for the spin-chain model with z = 2
and 8.4(2) meV for the helical-honeycomb lattice, in which
each spin has three coordinate spins, two along the zigzag
chain and one between the chains [Figs. 1(a) and 9(a)], giving
z = 3.

Below TN , when the magnetic field is applied parallel to the
a axis, a small cusp can be observed at the magnetic ordering
transition. This cusp is a signature of an antiferromagnetic
transition and suggests that the spins align antiparallel along
the crystallographic a axis. On the other hand, when the field is
applied perpendicular to the a axis, the susceptibility shows a
broad maximum around 50 K suggesting a rise of short-range
correlations, typical for low-dimensional magnets, before an
abrupt increase indicative of long-range ordering at lower
temperatures. The weak ferromagnetism for H⊥a below TN

is a result of small spin canting due to the DM interactions.
Hence, to first approximation, the spin Hamiltonian can be
described by

H =
∑

〈i,j〉
[Jij Si · Sj + Dij · (Si × Sj )], (1)

where Jij denotes the exchange couplings representing the
nearest-neighbor, intrachain J1 and next-nearest-neighbor,
interchain J2 interactions as shown by the blue and green bonds
in Fig. 1(a), respectively. Di j is the DM vector whose strength
is proportional to spin-orbit coupling and scaled with the
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FIG. 4. (Color online) Magnetization as a function of magnetic
field was measured on single-crystal α-Cu2V2O7 with H ⊥ a at T =
2 and 50 K. The lower inset shows the data for H ‖ a. The upper inset
shows the magnetization as a function of magnetic field measured on
a powder sample at T = 5 K.

exchange interaction between Si and Sj . The DM interaction
is present in α-Cu2V2O7 for the Cu1–Cu4 bond [Fig. 1(b)]
since there is no inversion center between the magnetic
Cu2+ ions [32]. The magnitude of spin canting η resulting
from the DM interactions was estimated to be �2◦ from the
previous magnetization measurements on the powder sample
[20].

To determine the spin canting and DM parameter on the
single-crystal sample, the magnetization measurements as a
function of magnetic field up to a maximal field of 5 T were
performed with two orthogonal magnetic field orientations,
i.e., H‖a and H⊥a. Figure 4 shows the magnetization
measurement on the single crystal with the applied magnetic
field perpendicular to the a axis. Above TN (T = 50 K) the
magnetization is linear throughout the measuring field range.
However, below TN (T = 2 K) starting from zero applied field
the magnetization sharply rises to a finite value with only
a slight increase in magnetic field before attaining the same
linear response as that observed in the 50 K data. The rapid
increase of the magnetization, which is indicative of weak
ferromagnetism due to the spin canting, is not observed for
H‖a as shown in the lower inset. The small kink around
zero field is most likely due to slight misalignment. The
same measurements on the power sample show a similar
weak ferromagnetic component as shown in the upper inset.
However, the jump is less sharp and about a factor of 2
smaller due to powder average. For the single-crystal data,
a hysteresis loop, which is typical for ferromagnetism, is not
clear with a very small coercive field (<10 Oe, which is the
resolution of the measurements), but it is more pronounced
for the powder data, possibly due to the powder average
over all orientations, which could broaden the magnetization
reversal.

Quantitatively, the red line in Fig. 4 (and in the upper inset
for the powder sample) denotes a linear fit to the magnetization
for H � 5000 Oe and is extrapolated to intercept the y axis
to obtain the value of M(0), the canted moment at zero field.
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From the single-crystal (powder) data, M(0) = 0.0698(1) μB

[0.0364(1) μB] is obtained. On the other hand, with H‖a
the value of M(0) is approaching zero as expected since the
predominant spin component is antiparallel along the a axis
and the canted moments only stay within the bc plane. We note
that there exist two sets of the zigzag chains along [011] and
[011̄] on the alternating planes. These chains are about 75◦
with respect to each other [Fig. 9(b)]. We will assume that for
the single-crystal data the measured canted moment M(0) is a
saturated value, where the canted moments on both sets of the
chains are aligned along the direction of the applied magnetic
field. The canting angle can be calculated from the relation
η = sin−1( M(0)

gμBS
). Given the expected spin-only S = 1

2 , g = 2,
and M(0) from the single-crystal data, the canted moment of
η = 4.0◦ is obtained.

The direction of the DM vector Dij is determined by r⊥ ×
rij , where rij is a unit vector connecting the spins Si and Sj ,
and r⊥ is perpendicular to rij and points toward the oxygen
ligand as shown in Fig. 1(b). The two pathways Cu1–O(2)–
Cu4 and Cu1–O(3)–Cu4 are structurally inequivalent giving
rise to noncompensating DM interactions. We note that the
DM interactions arising from the two equivalent Cu1–O(1)–
Cu2 bonds [Fig. 1(c)] compensate each other resulting in the
vanishing DM vector. Although the resulting r⊥ × rij does not
restrict the DM vector to a specified high-symmetry plane, the
cross product of a spin pair, Si × Sj , constrains the relevant
component of the DM vector, which causes the canting, to be
only within the bc plane. We will later show in Sec. III C that
the canted moments in the bc plane are parallel, and hence
the component of Si × Sj along the a axis vanishes. If only
the relevant interaction J1 between Cu1 and Cu4 is taken into
account, the in-plane DM parameter Dp can be related to the
canting angle η and J1 through the following relation:

tan(2η) =
∣∣∣∣
Dp

J1

∣∣∣∣, (2)

where the absolute value denotes the undetermined direction
of the in-plane DM vector.

In order to estimate the exchange couplings J1 and J2, we
first analyze magnetic susceptibility based on a weakly coupled
spin-chain model (J2 � J1). We reconsider the magnetic
susceptibility as a function of temperature shown in Fig. 3
and fit the data to the result of the high-accuracy numerical
Bethe ansatz calculations [33] χBethe(T ) for the 1D Heisenberg
antiferromagnetic system. A fit of the measured magnetic
susceptibility (Fig. 5) to

χ (T ) = χ0 + χBethe(T ), (3)

where χ0 is a temperature-independent susceptibility back-
ground, yields χ0 = 1.68(7) × 10−4 cm3/mol Cu, the intra-
chain coupling J1 = 5.95(2) meV, and the Landé g factor g =
2.16(1). The Curie-Weiss exchange coupling JCW = 12.6 meV
obtained from the mean-field approximation for a number
of coordinate spins z = 2 is substantially larger than J1

obtained from the susceptibility fit to the spin-chain model
(|J1 − JCW|/JCW � 0.53) suggesting that the coordination
number must be greater than two. Therefore, the interchain
interaction is non-negligible. Using Schulz’s calculation of
the interchain interaction for parallel chains in the mean-field
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FIG. 5. (Color online) (a) Fit of magnetic susceptibility with
H ⊥ a to the Bethe ansatz numerical result (black-dashed line),
QMC simulations on the uniform spin-chain model (green line), QMC
simulations on the helical-honeycomb model with J1 > J2 (red), and
with J1 < J2 (blue). (b) Residual curves (|χdata − χfit|) between the
data and fit curves of different lattice models.

approximation, |Jinter| = |J2| = TN/[1.28
√

ln(5.8Jintra/TN )]
[34], where Jintra is an intrachain interaction, and apply-
ing it to α-Cu2V2O7 with TN = 33.4 K and Jintra = J1 =
5.95 meV, we obtain |J2| � 1.42 meV. Even though the
sign of J2 cannot be determined from this calculation,
the discrepancy between JCW for z = 2 and J1 suggests that
the interchain interaction is dominantly antiferromagnetic and
hence J2 > 0. Neutron diffraction, which will be discussed
in the next section, reveals antiferromagnetic alignment of
spins in the [011] and [011̄] chains on different bc planes
as shown in Fig. 9. Therefore, the leading antiferromagnetic
interchain interactions [denoted by green bonds in Fig. 9(a)],
which induce the antiparallel arrangement of spins along the
a axis, link the chains on the adjacent planes giving rise to
the helical-honeycomb spin network. The Cu–O–Cu bond
angle of this interchain interaction, which is greater than
90◦ [Fig. 1(c)], is also consistent with the antiferromagnetic
coupling. The coupling between the parallel chains in the
same bc plane is expected to be much smaller because the
bonding is not of the Cu–O–Cu type but must be via the V2O7

double tetrahedra. The value of |J2/J1| � 0.23 is substantially
larger than that measured in other 1D systems such as KCuF3,
Sr2CuO3, and BaCu2Si2O7, where the value of |Jinter/Jintra|
is 0.001–0.01 [35–37], suggesting that the magnetism in
α-Cu2V2O7 is far from being an ideal realization of the 1D
spin system, and probably invalidating the above analysis
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as well as other previous studies, which are based on the
coupled spin-chain model [20,22,23]. Furthermore, we note
that since the dominating interchain interaction is between the
[011] and [011̄] chains, of which the spin coordination number
is different from that of the parallel chains, Schulz’s results
used above could potentially provide an erroneous magnitude
of J2.

To obtain the better estimates of J1 and J2, we per-
form QMC simulations with the LOOP algorithm on the
helical-honeycomb spin network, which shows a disconnected
hexagon when viewed along the b axis [Figs. 9(a) and 9(c)].
The magnetic susceptibility was computed and fit to the data. In
addition, the susceptibility for the uniform spin-chain model
was calculated and compared with χBethe(T ) [Eq. (3)]. The
QMC numerical results were first fit using the following
formula:

χ∗(t) = 1

4t
P (q)

(r) (t), (4)

where t = kBT /Jmax and the Padé approximant is given by

P (q)
(r) (t) = 1 + ∑q

n=1 Nn/tn

1 + ∑r
n=1 Dn/tn

. (5)

The coefficient 1/4 is from S(S + 1)/3 for S= 1
2 and the

factor 1/t ensures that χ∗(t) approaches the Curie law at high
temperature. Jmax is the maximum of J1 and J2 and the smaller
interaction is equal to αJmax, where the parameter α is fixed for
each QMC simulation. The numerical parameters Nn and Dn

were obtained up to q = 5 and r = 6 from the fit. The resulting
Padé approximant for each QMC calculation was then used to
fit the measured susceptibility data using

χ (T ) = χ0 + χQMC(T ), (6)

where

χQMC(T ) = NAμ2
Bg2

kBJmax
χ∗(kBT /Jmax), (7)

to obtain Jmax and g. NA, μB , and kB are the Avogadro
constant, the Bohr magneton, and the Boltzmann constant,
respectively. For the helical-honeycomb model, α is manually
adjusted until the best fit is acquired. Figure 5 shows the
best fits for both uniform spin-chain and helical-honeycomb
models where the obtained fit parameters are summarized
in Table II for comparison. The QMC simulation on the
spin-chain model exactly match the result obtained from the
Bethe ansatz calculations with the same magnitude of J1,

proving the validity to the QMC simulations. For the helical-
honeycomb model, two sets of the exchange parameters, for
J1 > J2 Jmax = 5.79(1) meV, α = 0.45, and g = 2.24(1) and
for J1 < J2 Jmax = 6.31(1) meV, α = 0.65, and g = 2.25(1),
fit the data equally well and provide a noticeably better fit
than the spin-chain model for most of the temperature range
from 300 K down to ∼TN as shown by the residual analysis
in Fig. 5(b). The obtained average exchange interaction
J̄ = (2J1 + J2)/3 for the coupled spin-chain model is much
lower than the mean-field value JCW obtained from the
Curie-Weiss fit with |J̄ − JCW|/JCW � 0.47. Our proposed
helical-honeycomb model shows a slightly smaller deviation
with |J̄ − JCW|/JCW � 0.44 and �0.42 for J1 > J2 and
J1 < J2, respectively. Additional exchange and anisotropic
interactions could affect the value of J̄ , potentially leading
to closer agreement between J̄ and JCW. Unfortunately, based
on combined susceptibility analysis and QMC simulations,
we were unable to uniquely identify the leading coupling
constant. It was previously proposed that the leading coupling
connects Cu1 and Cu4 via J1 forming the zigzag chains along
[011] and [011̄] directions [Fig. 1(a)], but the competition
between ferromagnetic coupling via Cu1–O(3)–Cu4 with the
bond angle close to 90◦ and antiferromagnetic coupling via
Cu1–O(2)–Cu4 with the bond angle of 106◦ [Fig. 1(b)] could
render a weaker net antiferromagnetic interaction for J1 than
the noncompeting antiferromagnetic coupling J2 between
Cu1 and Cu2 via two equivalent Cu1–O(1)–Cu2 bridges
[Fig. 1(c)]. Further theoretical analyses based on first-principle
calculations, which will provide complementary support to
our analysis, are desirable in order to identify the leading
interaction.

Given J1 obtained from the two helical-honeycomb models
discussed above and the canting angle η = 4.0◦ from the
magnetization data, we estimate the in-plane DM parameter
|Dp| using Eq. (2) to be 0.814(1) meV for the helical-
honeycomb model with J1 > J2 and 0.576(1) meV for J1 <

J2, or �0.14J1. The values of |Dp| for all considered lattice
models are summarized in Table II. The magnitude of the DM
vector shows good agreement with Moriya’s calculation [32]
as 
g/g ∼ 0.12 ∼ |Dp/J1|, where g is the free electron Landé
g factor and 
g denotes its shift caused by the crystalline
environment. The helical-honeycomb lattice formed by J1

and J2 of comparable strength and the presence of the DM
interactions in α-Cu2V2O7 induce the magnetically ordered
state below the Néel temperature. Hence, the long-range order
observed in this system does not defy the Mermin-Wagner
theorem [38].

TABLE II. Parameters obtained from the fit of magnetic susceptibility with H ⊥ a using different lattice models.

Bethe ansatz
QMC (this work)

calculation [33] Uniform Helical-honeycomb

(coupled spin chain) spin chain J1 > J2 J1 < J2

J1 (meV) 5.95(2) 5.95(2) 5.79(1) 4.10(1)
J2 (meV) �1.42 – 2.61(1) 6.31(1)
g 2.16(1) 2.16(1) 2.24(1) 2.25(1)
χ0(10−4 cm3/mol Cu) 1.68(7) 1.69(7) 0.94(6) 0.89(3)
|Dp| (meV) 0.836(3) 0.836(3) 0.814(1) 0.576(1)
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(b)

(a)

(c)

FIG. 6. (Color online) (a) An intensity map of single-crystal
α-Cu2V2O7 was measured in the (h,k,0) plane at 2.5 K. The intensity
is presented in a log scale. (b) and (c) show the θ -2θ scans around
the (4,0,0), (0,2,0), and (6,0,0) Bragg reflections at 2.5 and 50 K,
respectively. The solid line is a guide to the eye. Error bars represent
one standard deviation throughout the article.

C. Neutron diffraction

In order to investigate the magnetic structure of the ordered
state, we performed elastic neutron scattering to search for
magnetic Bragg reflections. Figures 6(b) and 6(c) show clear
extra scattering intensity below TN at (0,2,0), indicative of
magnetic scattering; small peaks at (0,2,0) and (6,0,0), which
are structurally forbidden by symmetry, at 50 K are due
to higher-order neutron contamination. On the other hand,
the intensities at (4,0,0) and (6,0,0), which are also allowed
magnetic Bragg reflections, do not show a significant change
below TN . In neutron scattering, only the spin component
that is perpendicular to the momentum transfer contributes
to the magnetic scattering intensity, due to the dipole-dipole
interaction as described by the geometric factor

∑
α,β (δα,β −

Q̂αQ̂β) [39], where α denotes the spin components and Q̂α is
the unit vector of Q along the component α. For α-Cu2V2O7

most of the spin component is parallel to the a axis, which
is also evidenced by the magnetic susceptibility. Hence the
magnetic Bragg reflections (h,0,0) become negligibly small.

FIG. 7. (Color online) (a) Neutron diffraction data of powder
α-Cu2V2O7 at 3 K show the magnetic Bragg scattering at (0,2,0)
(indicated by an arrow). The inset shows the intensity difference with
allowed magnetic Bragg reflections indexed. (b) The powder neutron
diffraction data collected at 3 K are refined using FullProf.

The integrated intensity of the (0,2,0) magnetic Bragg
reflection as a function of temperature (Fig. 3 inset) shows an
upturn around 33 K indicating a transition to the antiferromag-
netic ordered state, coincident with the jump in the magnetic
susceptibility [Fig. 3(a)]. A fit of the order parameter to the
power law I (T ) ∝ (1 − T/TN )2β for 24 < T < 34 K gives
a critical exponent β = 0.21(1) and TN = 33.4(1) K. The fit
value of β is typical for low-dimensional magnetic systems
[35,36,40].

Figure 7 shows the powder neutron diffraction data col-
lected at 3 and 40 K at Echidna to investigate intensity
difference due to magnetic scattering. Figure 7(a) shows a
small shoulder peak for the 3 K data as indicated by the arrow,
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TABLE III. Magnetic representations and their basis vec-
tors for Cu1(x,y,z), Cu2(−x, − y,z), Cu3(x + 1/4, − y + 1/4,z +
1/4), and Cu4(−x + 1/4,y + 1/4,z + 1/4) (see Fig. 1).

Cu1 Cu2 Cu3 Cu4

IR BV ma mb mc ma mb mc ma mb mc ma mb mc

1 ψ1 1 0 0 −1 0 0 1 0 0 −1 0 0
ψ2 0 1 0 0 −1 0 0 −1 0 0 1 0
ψ3 0 0 1 0 0 1 0 0 1 0 0 1

2 ψ1 1 0 0 −1 0 0 −1 0 0 1 0 0
ψ2 0 1 0 0 −1 0 0 1 0 0 −1 0
ψ3 0 0 1 0 0 1 0 0 −1 0 0 −1

3 ψ1 1 0 0 1 0 0 1 0 0 1 0 0
ψ2 0 1 0 0 1 0 0 −1 0 0 −1 0
ψ3 0 0 1 0 0 −1 0 0 1 0 0 −1

4 ψ1 1 0 0 1 0 0 −1 0 0 −1 0 0
ψ2 0 1 0 0 1 0 0 1 0 0 1 0
ψ3 0 0 1 0 0 −1 0 0 −1 0 0 1

which corresponds to the (0,2,0) magnetic Bragg reflection.
In the inset, the intensity difference between 3 and 40 K data
clearly shows the magnetic Bragg reflections at (1,1,1), (0,2,0),
and (3,1,1), and negligible magnetic scattering intensities at
(4,0,0) and (6,0,0). This absence of magnetic Bragg intensity
at the (h,0,0) reflections is consistent with the single-crystal
data discussed previously.

The magnetic structure of α-Cu2V2O7 was analyzed by the
irreducible representation theory. The calculations were car-
ried out using the software BasIreps [24]. The decomposition
of the irreducible representations (IRs) for Cu2+ ions (16b)
can be described by

 = 31 + 32 + 33 + 34. (8)

The basis vectors for each IR are summarized in Table III. The
coupled intrachain Cu2+ spins are between Cu1–Cu4 along
[011], and between Cu2 − Cu3 along [011̄]. As discussed
above, the antiferromagnetic spin component of the Cu2+

ions is predominantly along the a axis. Therefore, among the
four possible magnetic models we can simply rule out 2

and 3, which according to the Bertaut’s notation [41] give
rise to the Ax and Fx configurations, respectively; both IRs
give ferromagnetic spin component along the a axis. On the
other hand, 1 and 4, which give rise to the Gx and Cx

configurations, respectively, result in the antiferromagnetic
arrangement along the a axis for the spins along the zigzag
chains. The canted moments, which are in the bc plane, of the
spins in the same chain for 1 and 4 are parallel. Hence the
cross product Si × Sj does not have a component along the a

axis, making the DM component along the a axis irrelevant
as previously stated. Both 1 and 4 can give rise to the
weak ferromagnetism observed in the magnetic susceptibility.
However, 1 gives a better fit to the powder neutron diffraction
data. Figure 7(b) shows the full pattern refinements for 1

with the spin component along the a axis mx as the only
fit parameter while the other two components, i.e., my and
mz, were fixed to zero. The magnetic R factors from the
refinements for 1 and 4 yield 0.040 and 0.134, respectively,

FIG. 8. (Color online) False color representation of the single-
crystal neutron diffraction measured at 4 K on the Laue diffractometer
Koala. The halo around the center of the image is due to scattering
from a polycrystalline aluminum crystal holder.

attesting to the validity of 1 over 4. The obtained magnetic
moment along the a axis mx is 0.9(2) μB for 1.

To further confirm the magnetic structure and obtain a better
estimate of the ordered moment, we performed single-crystal
neutron diffraction at the Laue diffractometer, Koala. The
diffraction data were collected at 4 and 50 K to investigate
the nuclear and magnetic structure. The Laue diffraction
pattern measured at 4 K shows distinct Bragg peaks (Fig. 8).
The structural parameters for the 50 K data were refined
against Fdd2 space group using ShelXle yielding R1 = 0.081
for 998 reflections with Fobs < 4σ (Fobs). The result is in
agreement with the single-crystal x-ray diffraction refinement
(see Table I). For the 4 K data, where the system becomes
magnetically ordered, the magnetic structure refinements were
performed using Jana2006 [42]. The reflections were refined
against Shubnikov space group Fd ′d ′2, which is equivalent
to the irreducible representation 1 that gives the best fit to
the magnetic structure in this system. The spin components
along the b and c axes were fixed to zero due to the
unresolved spin canting. The ordered moment along the a axis
mx = 0.93(9) μB was obtained with wR = 0.051. This value
of the ordered moment, which is consistent with the value
obtained from powder neutron diffraction, is slightly lower
than (but close to) the expected value of 1 μB . This discrepancy
could be a result from the constrained spin component to
only the a axis, discarding the spin canting that is not
obtainable from the neutron diffraction data. In addition,
quantum fluctuations might also play a role in reducing the
ordered moment. The antiferromagnetic spin structure on
the helical-honeycomb lattice is depicted in Fig. 9(a). The
spins on the parallel zigzag chains ferromagnetically align
as a result of the antiferromagnetic coupling J2 around the
helical-honeycomb loop as shown in Fig. 9(c), allowing the
ordering to propagate along the transverse directions and
prompting the 3D long-range order. Due to the very small
spin canting we cannot determine the magnitude and direction
of the canted moments in the bc plane from the neutron
diffraction data. However, 1 allows the canted moments of
the spins on the same chain to be parallel. For the spins on the
different chains that are located on the adjacent bc plane, the
c component (b component) is parallel (antiparallel) as shown
in Fig. 9(b).
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FIG. 9. (Color online) (a) The magnetic structure of the S= 1
2

Cu2+ spins in α-Cu2V2O7 shows the major spin component along the
a axis with the antiferromagnetic arrangement. Blue bonds represent
J1 while green bonds J2. (b) The two zigzag chains connected by
J1 (J2 not shown) on adjacent bc planes are along [011] and [011̄]
and are about 75◦ with respect to each other. We note that the canted
moments in the bc plane are exaggerated for visualization, and the
drawn spins do not represent the actual canting, neither in terms of
magnitude nor direction. (c) The connectivity of J1 and J2 gives rise
to the helical-honeycomb pattern when viewed along the b axis.

IV. SUMMARY

We have proposed a spin model to describe magnetic
properties of α-Cu2V2O7. Combined studies of magnetization,
QMC simulations, and neutron diffraction show the helical-
honeycomb pattern of spin network connected by two different
exchange couplings. Magnetic susceptibility shows a broad
peak at ∼50 K, which is an evidence of rising short-range
spin correlations, followed by an abrupt increase indicative
of a phase transition to a magnetically ordered state at TN =
33.4(1) K. The Bethe ansatz calculations for the S= 1

2 uniform
Heisenberg chain fit the H ⊥ a data very well above TN

but our proposed helical-honeycomb model shows substantial
improvement of the fit for J1 : J2 = 1 : 0.45 with J1 = 5.79(1)
meV and for J1 : J2 = 0.65 : 1 with J2 = 6.31(1) meV. There-
fore, we conclude that the helical-honeycomb model describes
the underlying spin network of α-Cu2V2O7 more accurately
than the previously held spin-chain model.

The anisotropy below TN suggests that the majority of the
spin component is along the crystallographic a axis, which
is confirmed by neutron diffraction experiments. The weak
ferromagnetism is a result of spin canting within the bc plane
due to the DM interactions. Magnetization measurements with
H ⊥ a show the spontaneous magnetization from which the
canting angle η of 4.0◦ and the in-plane DM parameter |Dp| �
0.14J1 are obtained.

The analysis of the neutron diffraction data shows that the
S= 1

2 Cu2+ spins antiferromagnetically align along the helical-
honeycomb loops with the ordered moment of 0.93(9) μB

predominantly along the crystallographic a axis. The spin
network of two comparable exchange couplings forming the
helical-honeycomb lattice and the DM interactions lead to
the long-range magnetic ordering below TN . However, due
to the complex exchange pathways and the presence of weak
frustration, the exact value of both exchange interactions could
deviate from our analysis. Further theoretical analyses based
on first-principle calculations and studies of spin dynamics by
means of inelastic neutron scattering are therefore required
in order to better determine the exchange interactions and
confirm the helical-honeycomb spin model. With the current
availability of large single crystals, an inelastic neutron
scattering study is possible and will reveal a complete picture
of the relevant microscopic Hamiltonian parameters, as well as
influences of the low spin-coordination number and quantum
fluctuations on spin dynamics.

Note added in proof. Recently, we became aware of the
work by Sannigrahi et al. [43], in which they performed density
functional theory to calculate the relevant exchange interac-
tions in α-Cu2V2O7. However, the QMC calculations of the
susceptibility show that their lattice model with the dominant
third-nearest-neighbor antiferromagnetic interactions (J3 =
13.61 meV) gives a broad peak at a higher temperature than
∼50 K, inconsistent with the experimental data.
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