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Angular momentum in spin-phonon processes
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Quantum theory of spin relaxation in the elastic environment is revised with account of the concept of a
phonon spin recently introduced by Zhang and Niu [L. Zhang and Q. Niu, Phys. Rev. Lett. 112, 085503 (2014)].
Similar to the case of the electromagnetic field, the division of the angular momentum associated with elastic
deformations into the orbital part and the part due to phonon spins proves to be useful for the analysis of the
balance of the angular momentum. Such analysis sheds important light on microscopic processes leading to the
Einstein–de Haas effect.
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I. INTRODUCTION

The problem of conservation of angular momentum in
systems containing magnetic moments has been around since
the discovery a century ago of Einstein–de Haas [1] and
Barnett [2] effects. The first effect demonstrated that the
change in the magnetic moment of a freely suspended body
generates mechanical rotation, while the second demonstrated
that mechanical rotation induces magnetization. For some
time, the Einstein–de Haas and Barnett effects were used to
measure the gyromagnetic ratio of solids [3]. The significance
of such measurements was diminished by the discovery of the
electron-spin resonance and the ferromagnetic resonance that
provided a more accurate determination of the gyromagnetic
ratio. After that, the experiments on macroscopic magne-
tomechanical gyroscopic effects were largely abandoned.
Surprisingly, however, microscopic mechanisms of the transfer
of the spin angular momentum to the phonon system, and
subsequently to the body as a whole, remain poorly understood
even for a single spin in a crystal.

The tradition that goes back to the pioneering work on
spin-phonon relaxation by Van Vleck [4] consists of ignoring
conservation of angular momentum, with the excuse that the
Hamiltonian of the system does not possess full rotational in-
variance. It is clear, however, that in theory (and in experiment)
the angular momentum in a system of interacting spins and
phonons is conserved. This has prompted a significant effort
by a number of researchers to formulate the theory of magne-
toelastic interactions in a rotationally invariant manner [5–11].
The advantage of such approach is that it is parameter free in
the sense that spin-phonon rates can be expressed in terms of
the well-known independently measured parameters.

The emergence of micro- and nanoelectromechanical de-
vices (MEMS and NEMS) rejuvinated interest in the problem
of angular momentum in magnetomechanical systems [12].
The Einstein–de Haas effect at the nanoscale has been
experimentally studied in magnetic microcantilevers [13,14]
and theoretically explained by the motion of domain walls [15].
The switching of magnetic moments by mechanical torques
in nanocantilevers has been proposed [16–18]. Mechanical
resonators containing single magnetic molecules have been
studied by quantum methods [19–23]. Experiments have
progressed to the measurement of the angular momentum
exchange between a single molecular spin and a carbon
nanotube [24,25].

In nanoresonators, the problem is somewhat simpler due
to the finite number of resonant modes. For a single spin in
a macroscopic body, however, the number of phonon degrees
of freedom is practically infinite. In relation to the angular
momentum, this problem has received significant recent
attention in experiments with atomic spin-based qubits [26,27]
and in application to spintronics [28]. To address this problem,
Zhang and Niu recently introduced the concept of the phonon
spin [29].

In this paper, we investigate this concept for the process of
the relaxation of a single atomic spin in a macroscopic body. By
developing an approach similar to that for photons, we find that
within the elastic theory, the angular momentum of phonons
can be naturally split into the orbital angular momentum
L(1) and the spin angular momentum L(2). The orbital part
corresponds to the rotation of the elastic medium around a
certain point, while the spin part corresponds to small-radius
circular shear displacements of points of the elastic media
around their equilibrium positions; see Fig. 1.

The paper is structured as follows. The concept of the
angular momentum in classical and quantum theories of
elasticity is discussed in Sec. II. Conservation of the total
angular momentum is studied in Sec. III by computing its
commutator with the Hamiltonian. Quantum dynamics of the
angular momentum of the relaxing spin and emitted phonons
is investigated in Sec. IV. Section V contains a summary of
the results and some final comments.

II. THE ANGULAR MOMENTUM

A. Angular momentum in the classical theory of elasticity

The angular momentum of the elastic solid is defined as

L =
∫

d3r(r + u) × p, (1)

where time-independent r corresponds to the nondeformed
body, u(r,t) is deformation, and p(r,t) = ρu̇(r,t) is the
momentum density. It consists of two parts,

L = L(1) + L(2), (2)

where

L(1) =
∫

d3rρ r × u̇, L(2) =
∫

d3rρ u × u̇. (3)
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FIG. 1. Conceptual representation of the motion of the elastic
medium that generates the orbital angular momentum L(1) and the
phonon-spin angular momentum L(2).

The orbital part described by L(1) corresponds to the rotation
of the elastic medium around the origin, while the spin part
described by L(2) corresponds to small-radius circular shear
displacements of points of the elastic media around their
equilibrium positions; see Fig. 1.

Applying a time derivative to these expressions, one obtains

L̇(1) =
∫

d3rρ r × ü, L̇(2) =
∫

d3rρ u × ü. (4)

The dynamical equation for the displacement field is the
Newton’s equation,

ρ
∂2uα

∂t2
= ∂σαβ

∂rβ

, (5)

with the force on the right-hand side being a gradient of
the stress tensor σαβ = δH/δeαβ . Here, H is the Hamiltonian
density of the system and eαβ = ∂uα/∂rβ is the strain tensor.
After integrating by parts in Eqs. (4) and assuming zero elastic
stress at the boundary of the body, one obtains

L̇(1)
α = −

∫
d3rεαβγ σγβ, L̇(2)

α = −
∫

d3rεαβγ eβδσγ δ. (6)

Within the linear elastic theory in the absence of internal
torques (ignored by the conventional theory of elasticity [30]),
the stress tensor σαβ is symmetric, and thus L̇(1) is zero.
However, L̇(2) is not vanishing in this approximation, and thus
L̇ = 0, expected on physical grounds, is not fulfilled.

To prove L̇ = 0 for elastic systems, one has to take into
account the intrinsic anharmonicity of the elastic theory due
to the nonlinearity of the strain tensor [30],

uρη = 1
2 (eρη + eηρ + eνρeνη). (7)

The fact that H must depend on uρη leads to

σγ δ = δH
δeγ δ

= δuρη

δeγ δ

δH
δuρη

= δH
δuγ δ

+ eγρ

δH
δuρδ

, (8)

which is nonsymmetric. Substituting this into Eq. (6), one can
prove L̇ = L̇(1) + L̇(2) = 0.

B. Spins as a source of internal torques

Anharmonicity, however, is not the only reason for σαβ to
be nonsymmetric. It also happens in the presence of spins

because spin dynamics generates internal torques. Consider,
e.g., a uniaxial spin Hamiltonian of the form

ĤS = −D(n · S)2, (9)

with n being the magnetic anisotropy axis. The corresponding
Hamiltonian density is HS = ĤSδ(r). Elastic deformations of
the body rotate the anisotropy axis n by a small angle φ,

φ = 1
2∇ × u(r), φα = 1

2εαβγ eγβ. (10)

To the first order in φ, one has n = ez + [φ × ez]. Expanding
ĤS up to the linear terms in φ, we get ĤS = ĤA + Ĥs−ph,
where ĤA = −DS2

z and the spin-lattice coupling is given
by [31]

Ĥs−ph = −D(SxSz + SzSx)φy + D(SySz + SzSy)φx. (11)

The corresponding stress tensor σαβ = δHs−ph/δeαβ is non-
symmetric. Writing it as

σαβ = δHs−ph

δeαβ

= δHs−ph

δφγ

δφγ

δeαβ

= 1

2

δHs−ph

δφγ

εγαβ (12)

and using εαβγ εδβγ = 2δαδ , in Eq. (6), one obtains

L̇(1) = −
∫

d3r
δHs−ph

δφ
= −∂Ĥs−ph

∂φ
. (13)

This explicitly expresses the internal mechanical torque in
terms of rotation of the lattice and the spin with respect to
each other in the presence of spin-lattice coupling. In what
follows, we will show that L(2) associated with the phonon spin
is also generated in the problem of relaxation of the atomic
spin, although we could not obtain for L(2) a simple formula as
for L(1) above. The phonon-spin angular momentum L(2) turns
out to be important for the conservation of the total angular
momentum, even in cases when the problem is solved with
harmonic noninteracting phonons.

C. Quantum theory of phonon angular momentum

To obtain the second-quantized expression for the angular
momentum, we use canonical quantization of phonons,

u(r) =
√

�

2ρV

∑
kλ

ekλe
ik·r

√
ωkλ

akλ + H.c., (14)

where ρ is the mass density, V is the volume, ekλ are
polarization vectors, ωkλ are phonon frequencies, and a†,a
are creation and annihilation operators of phonons. One uses
Eq. (14) as well as

p(r) = ρu̇(r) = −i

√
ρ�

2V

∑
kλ

ekλ

√
ωkλe

ik·rakλ + H.c. (15)

The angular momentum of the body, given by Eq. (1),
consists of two contributions, L̂ = L̂(1) + L̂(2), that have been
discussed earlier. Here, L̂(1) is first order in phonon operators
and it can be interpreted as the orbital angular momentum of
the phonons. The term L̂(2) is second order in phonon operators
and it can be interpreted as the spin of the phonons. Splitting
the angular momentum into two parts is similar to that of
photons. It will be shown below that the spin of a phonon
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is � and the phonon-spin eigenstates are circularly polarized
phonons.

The operator of the orbital angular momentum becomes

L̂(1) =
√

ρ�

2V

∑
kλ

√
ωkλ[ekλ × jk]akλ + H.c., (16)

where jk ≡ i
∫

d3r reik·r. As, by symmetry, jk can only be
directed along k, only transverse phonons contribute into L̂(1).
In an infinite body, wave vectors are continuous, so that one
can replace summation by integration,

1

V

∑
k

. . . ⇒
∫

d3k

(2π )3
. . . . (17)

Then one can express jk as

jk = (2π )3∂kδ(k). (18)

Dropping the terms aa and a†a† in L̂(2) that do not
conserve the number of phonon excitations, one obtains, after
integration over the volume,

L̂(2) = i�

2

∑
kλλ′

[ekλ × ekλ′ ]akλa
†
k′λ′ + H.c. (19)

Keeping only transverse phonons, λλ′ = 1,2, and using
[ek1 × ek2] = k/k, one arrives at

L̂(2) = i�
∑

k

k
k

(a†
k2ak1 − a

†
k1ak2). (20)

This operator becomes diagonal in terms of numbers of
circularly polarized phonons ak± ≡ (ak1 ± iak2)/

√
2,

L̂(2) = �

∑
k

k
k

(−a
†
k+ak+ + a

†
k−ak−). (21)

Each such phonon carries an angular momentum � parallel or
antiparallel to its wave vector that can be interpreted as the
spin of the phonon.

III. CONSERVATION OF ANGULAR MOMENTUM

Let us now check conservation of the total angular momen-
tum,

J = L + �S, (22)

that implies that J must commute with the Hamiltonian. The
dynamical change of the spin operator has to be absorbed by
the angular momentum of the elastic matrix, whose evolution
is given by

ˆ̇L = i

�
[Ĥs−ph,L̂]. (23)

In particular, the precession of the spin around the anisotropy
axis creates the cowiggling of the elastic matrix with the spin.

It turns out that by commuting operators, one can prove
conservation of some parts of the angular momentum, whereas
the complete proof of conservation requires a full quantum-
mechanical solution for the relaxing spin and phonons created
by its precession, presented in the next section. The situation is
different for the angular momentum components perpendicular
and parallel to the anisotropy axis.

We will study the spin-lattice model introduced above
quantum mechanically (H ⇒ Ĥ ). Introducing spin operators
S± ≡ Sx ± iSy that follow commutation relations [S±,Sz] =
±S±, one obtains, from Eq. (11),

Ĥs−ph = − iD

2
(S+Sz + SzS+)φ− + H.c., (24)

where φ± ≡ φx ± iφy . Using Eqs. (10) and (14) with the
atomic spin located at r = 0, one obtains

φ± = 1

2

√
�

2ρV

∑
kλ

e± · [ik × ekλ]√
ωkλ

(akλ − a
†
kλ), (25)

where e± ≡ ex ± iey .
We will need commutators

[φ±,L̂(1)] = i
�

2V

∑
kλ

(e± · [k × ekλ])[ekλ × jk] (26)

and

[φ±,L̂(2)] = �

2

√
�

2ρV

∑
kλ

k√
ωkλ

(e± · ekλ)(akλ − a
†
kλ) (27)

that follow from Eqs. (25), (16), and (20).
Let us first consider dynamics of the transverse components

of the angular momentum. The dominant source of spin
precession around the anisotropy axis is the unperturbed spin
Hamiltonian ĤA:

Ṡx = i

�
[ĤA,Sx] = − i

�
D

[
S2

z ,Sx

] = D

�
(SzSy + SySz). (28)

For the matrix, let us first consider the dynamics of the phonon
orbital angular momentum L̂(1). From Eq. (26), with the help
of the identity∑

λ=1,2

(ekλ · A)(ekλ · B) = A · B −
(

k
k

· A
)(

k
k

· B
)

(29)

and Eq. (18), one obtains[
φ±,L̂(1)

x

] = i
�

2V

∑
kλ

(e± · [k × ekλ])(ex · [ekλ × jk])

= i
�

2V

∑
kλ

(ekλ · [e± × k])(ekλ · [jk × ex])

= i
�

2V

∑
k

[e± × k] · [jk × ex]

= i
�

2V

∑
k

{(e± · jk)(ex · k) − (e± · ex)(k · jk)}

= i
�

2

∫
d3k

{
kx∂kx

δ(k) − (k · ∂kδ(k))
}

= i�. (30)

Now from Eqs. (23) and (24), one obtains

ˆ̇L(1)
x = −D(SySz + SzSy). (31)

Combining this with Eq. (28), one obtains the conservation
law

�Ṡx + ˆ̇L(1)
x = 0. (32)

In the same way, one can obtain �Ṡy + ˆ̇L(1)
y = 0.
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However, Eq. (32) is not the whole story. One has to con-
sider ˆ̇L(2)

x,y using Eqs. (27) and (24). The resulting expression
is a sum over k, linear in phonon operators. It is of the same
order as the contribution to �Ṡx,y due to the spin-phonon
interaction, i[Ĥs−ph,Sx,y], that was ignored above. Both terms
discussed here are much smaller than the dominant terms in the
angular momentum, conserved according to Eq. (32). These
small terms are related to the spin-lattice relaxation of the
spin. It is impossible to prove conservation of these terms
without performing the full quantum-mechanical solution of
the problem of spin relaxation.

Considering dynamics of the longitudinal component of the
angular momentum, one can prove

L̇(1)
z = i

�

[
Ĥs−ph,L

(1)
z

] = 0 (33)

by a calculation similar to that in Eq. (30). The terms Ṡz and
L̇(2)

z are related to spin-lattice relaxation and they are sums
over k, linear in phonon operators. However, one cannot prove

�Ṡz + L̇(2)
z = 0 (34)

without the full solution of the quantum problem that will be
presented below.

IV. QUANTUM THEORY OF THE RELAXING SPIN

This problem resembles the problem of the relaxation of
the excited state of an atom accompanied by the radiation of
a photon. The atom is characterized by the discrete energy
levels, while the electromagnetic field has a continuum of
quantized photon states of an arbitrary energy. In a similar
manner, a spin in the uniaxial crystal field has discrete energy
levels characterized by the magnetic quantum number m, while
phonons have a continuum of states characterized by energies
�ωkλ.

A. General solution

To facilitate solving the problem of spin-lattice relaxation,
we reduce the spin-phonon Hamiltonian to the rotating-
wave approximation (RWA) form that conserves the energy.
Consider transitions of the spin |m − 1〉 → |m〉 for m > 0
decreasing its energy and call the spin states |1〉 and |0〉,
respectively. With the help of Eq. (24), one obtains the spin
matrix element of this transition,

〈m − 1|Ĥs−ph|m〉 = iD

2
(2m − 1)lm−1,mφ+, (35)

where lm−1,m ≡ √
S(S + 1) − m(m − 1). The explicit form of

φ+ in terms of the phonon operators, given by Eq. (25), then
yields the following operator of the RWA coupling:

V̂ =
∑
kλ

(A∗
kλX

01a
†
kλ + AkλX

10akλ), (36)

where

Akλ ≡ −D

4
(2m − 1)lm−1,m

√
�

2ρV

e+ · [k × ekλ]√
ωkλ

, (37)

and the X operators are defined by

X01|1〉 = |0〉, X10|0〉 = |1〉. (38)

The quantum state of the system can be specified by

� =
(

cX10 +
∑
kλ

ckλa
†
kλ

)
|00〉, (39)

where |00〉 is the “vacuum” state. � has only one excitation,
spin or phonon. Considering the excited state of the spin as the
reference-energy state, one obtains the Schrödinger equation
for the coefficients,

ċ = − i

�

∑
kλ

Akλckλ,

(40)
ċkλ = −i(ωkλ − ω0)ckλ − i

�
A∗

kλc,

where ω0 ≡ (E1 − E0)/� is the frequency of the transition
between the spin levels.

One can integrate the equations for the phonon modes ck
assuming the initial condition of the phonon vacuum:

ckλ(t) = − iA∗
kλ

�

∫ t

0
dt ′e−i(ωkλ−ω0)(t−t ′)c(t ′)

= − iA∗
kλ

�

∫ t

0
dτe−i(ωkλ−ω0)τ c(t − τ ), (41)

and insert the result into the equation for the spin c:

dc

dt
= − 1

�2

∑
kλ

|Akλ|2
∫ t

0
dτe−i(ωkλ−ω0)τ c(t − τ ). (42)

In this integro-differential equation, c(t − τ ) is a slow
function of time, whereas the memory function f (τ ) =∑

kλ |Akλ|2e−i(ωkλ−ω0)τ is sharply peaked at τ = 0. Thus one
can replace c(t − τ ) ⇒ c(t), after which integration over τ and
keeping only real contribution responsible for the relaxation
yields the equation

dc

dt
= −�

2
c, (43)

and thus

c = e−(�/2)t , (44)

where

� = 2π

�2

∑
kλ

|Akλ|2δ(ωkλ − ω0) (45)

is the spin-relaxation rate. Now, adopting this solution in
Eq. (41) and integrating over time, one obtains, for the
phonons,

ckλ(t) = A∗
kλ

�

e−i(ωkλ−ω0)t − e−(�/2)t

ωkλ − ω0 + i�/2
. (46)

B. Dynamics of the phonon-spin angular momentum

Let us now compute the phonon-spin angular momentum
L(2)

z resulting from the relaxation of the spin. Remember
that L(1)

z = 0 according to Eq. (33). It is not necessary to
use circularly polarized phonons: one can work with linearly
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polarized phonons using Eqs. (21) and (39). For the quantum
expectation value, one obtains

L(2) = i�
∑

k

k
k

(c∗
k2ck1 − c∗

k1ck2). (47)

Using Eq. (46) and setting ωkλ ⇒ ωk, one obtains

L(2) = i

�

∑
k

k
k

(Ak2A
∗
k1 − Ak2A

∗
k1)

× 1 + e−�t − (e−i(ωk−ω0)t + ei(ωk−ω0)t )e−(�/2)t

(ωk − ω0)2 + �2/4
. (48)

In the integration over ωk, one goes to the upper and lower
complex half plane for the two different oscillating terms. As
the result, one obtains

L(2) = 2π

��
(1 − e−�t )

∑
k

k
k
δ(ωk − ω0)(iAk2A

∗
k1 + H.c.).

(49)
It remains to show that the integral over k in this expression
can be expressed through � so that � cancels and the result
simplifies. Indeed, the combination that enters Eq. (45) after
simplifications becomes

|Ak1|2 + |Ak2|2 = D2[(2m − 1)lm−1,m]2 �

4ρV

k2
z

ωk
. (50)

On the other hand, in Eq. (49), one obtains

iAk2A
∗
k1 + H.c. = −D2[(2m − 1)lm−1,m]2 �

4ρV

kkz

ωk
. (51)

Note that in Eq. (49), only the longitudinal component L(2)
z is

nonzero by symmetry. The latter is just the negative of Eq. (50)
that enters �, given by Eq. (45). Thus, in Eq. (49), � cancels
out and one obtains the simple behavior

Lz = L(2)
z = −(1 − e−�t )�, (52)

as the spin undergoes a relaxational transition |m − 1〉 → |m〉.
This means that the total angular momentum in the system spin
+ phonons is conserved.

V. DISCUSSION

We have analyzed the transfer of the angular momentum
from the atomic spin to the orbital and spin angular momentum
of phonons. These two parts of the angular momentum of the
phonon system are clearly distinguishable. The orbital part is
first order on the phonon operators. Its classical counterpart
is the twist of the elastic matrix around the position of the
atomic spin, which is linear on the displacement field. The
spin part of the phonon angular momentum is second order

on phonon operators. Its classical counterpart corresponds to
the rotational shear deformations that are quadratic on the
displacement field.

Conservation of the angular momentum in the process of
the relaxation of the atomic spin has been demonstrated by
us explicitly. It turns out that the change in the transverse
part of the atomic spin is balanced by the orbital part of the
phonon angular momentum, while the change in the relaxing
longitudinal part of the atomic spin is balanced by the spin
part of the phonon angular momentum. These findings can be
useful in schemes where individual atomic spins (e.g., used as
qubits) are manipulated by phonons.

The solution of the full quantum many-body problem of
the angular momentum conservation in a system of many
relaxing spins in the elastic environment is missing at this time.
It should be solved first for an isotropic elastic environment
with the spin-phonon interaction of the simplest form (11) for
which the mechanism of the transfer of the angular momentum
between the spin and the elastic environment is apparent. Spins
coupled by exchange interaction in a ferromagnet represent
a many-body extension of the single-spin model studied in
this paper. This problem can be readily solved only for small
deviations of the spin system from equilibrium, described
in terms of magnons and their interaction with phonons.
However, theoretical description of magnetization reversal and
the ensuing transfer of the angular momentum is a complicated
problem that is beyond the scope of this paper. The problem
of many paramagnetic spins interacting with the lattice is also
nontrivial due to coherent and incoherent collective effects
such as super-radiance and phonon bottleneck. Solutions of the
Schrödinger equation have been obtained before in the context
of phonon-laser [32] and phonon bottleneck [33] effects, but
the analysis of the angular momentum conservation for these
problems is significantly more complicated.

Another outstanding problem, not addressed in this paper, is
how the orbital and spin angular momenta carried by phonons
get transferred to the rotation of the body as a whole in
the Einstein–de Haas effect. To answer this question, one
must recall that in a typical Einstein–de Haas experiment,
one induces rotational oscillations of a macroscopic body by
the low-frequency ac magnetic field. The corresponding time
scales are much greater than lifetimes of phonons emitted
in atomic spin transitions. Consequently, such phonons fully
equilibrate on the time scale of the transfer of the angular
momentum from atomic spins to the body as a whole.
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