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We present a theoretical framework for evaluating effective interactions between localized spins mediated by
itinerant electrons in double-exchange models. Performing the expansion with respect to the spin-dependent part
of the electron hopping terms, we show a systematic way of constructing the effective spin model in the large
Hund’s coupling limit. As a benchmark, we examine the accuracy of this method by comparing the results with
the numerical solutions for the spin-ice type model on a pyrochlore lattice. We also discuss an extension of the
method to the double-exchange models with Heisenberg and XY localized spins.
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I. INTRODUCTION

Spin-charge coupled systems, which consist of itinerant
electrons interacting with localized moments, are of special
interest in the study of itinerant magnets for their rich physics
from the interplay between magnetic moments and itinerant
electrons. A key aspect that gives rise to the rich physics is the
effective interactions between localized moments mediated
by the itinerant electrons. In the weak-coupling limit, the
itinerant electrons induce long-ranged effective exchange
interactions with oscillating signs [1–3]. The weak-coupling
theory of effective spin interactions, so-called Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions, has achieved a
success in the study of metallic magnets, such as transition-
metal and rare-earth compounds [2,3] and spin-glass behavior
in alloys lightly doped with magnetic ions [4].

On the other hand, a strong ferromagnetic coupling be-
tween localized moments and itinerant electrons may arise
in the transition metal systems due to the strong Hund’s
coupling. In the strong-coupling limit, the spins of itinerant
electrons are fully polarized along the localized moments.
Such a situation is well described by the double-exchange
(DE) model. In this model, the kinetic motion of electrons
induces an effective ferromagnetic (FM) interaction between
localized moments [5,6]. This is called the DE interaction,
which stabilizes a metallic FM state at low temperature. In
these oxides, however, there generally exists antiferromagnetic
(AFM) super-exchange (SE) interaction between the localized
moments as well, and the competition of two interactions
may give rise to nontrivial phenomena. One such example
is found in perovskite manganese oxides. They are renown for
the colossal magnetoresistance [7–9], in which inhomogeneity
in the competing region between FM and AFM phases have
been studied in relation to the magnetoresistance [10–14].

While the simple picture based on the above argument
appears to work well in the manganese oxides, recent nu-
merical studies of DE models on geometrically frustrated
lattices [15–18] have discovered emergence of intermediate
phases in the competing region. In the case of checkerboard
and triangular lattices, instabilities toward noncoplanar spin
orderings were observed in the Monte Carlo (MC) simulation
for the models with localized classical Heisenberg moments
[15,16]. Meanwhile, a thermally induced intermediate phase
with spontaneously broken spatial inversion symmetry was

found in the model with Ising moments on a pyrochlore lattice
[17]. These results imply that, in the frustrated systems, the
subdominant interactions beyond the simple DE mechanism
potentially give rise to the nontrivial phases in the phase
competing region. Indeed, in the previous study by the authors
[17], effective further-neighbor interactions derived from a
strong-coupling theory successfully predicted the presence
of the intermediate phase. However, the method of the
strong-coupling expansion was not described in detail, and
its accuracy has not been examined systematically.

In this paper, we present the framework of the strong-
coupling theory for the effective spin interactions between the
localized moments in DE models. We illustrate the technique
for a spin-ice type DE model on a pyrochlore lattice (Fig. 1).
We show that the second-order expansion gives rise to various
four-spin interactions in addition to the two-spin interactions
between second- and third-neighbor sites. The results for the
effective spin model are compared with numerical results for
the DE model, to test the accuracy of this theory. We find that
the expansion up to second order correctly reproduces the trend
of magnetic phases while changing the AFM SE interaction
and the itinerant electron density.

The organization of this paper is as follows. In Sec. II, we
introduce the model we consider, and elaborate the details of
strong-coupling expansion used here. In Sec. III, we investigate
the accuracy of this method by comparing the results with those
of numerical diagonalization and MC simulation. In the last,
an extension of our theory to Heisenberg and XY localized
moments is briefly discussed in Sec. IV. Section V is devoted
to discussions and summary of this paper.

II. MODEL AND METHOD

In this section, we introduce the model and method we
used. In Sec. II A, we introduce the DE model we consider in
this paper. We explain the strong-coupling expansion method
in Sec. II B.

A. Model

The DE model we consider in this paper consists of itinerant
electrons and classical localized moments that are strongly
coupled to each other. The Hamiltonian is given in the general
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FIG. 1. (Color online) Schematic picture of a pyrochlore lattice.
Each figure indicates the two-spin exchange interactions, Jl , and the
four-spin interactions, Kl (l is an integer). For the latter, four Ising
spins at the two colored sites 〈k,l〉 and two black sites 〈i,j〉 interact
with each other. The arrows on the sites in the right panel indicate
anisotropy axes of the Ising moments ni . See the text for details.

form [5,6]

H = −
∑
i,j

tij c
†
i cj + 1

2

∑
i,j

Jij Si · Sj , (1)

where ci (c†i ) is the annihilation (creation) operator of an
itinerant electron and Si is the localized moment at ith site. The
electrons are described by spinless fermions, as their spins are
perfectly polarized parallel to the localized spins. The first sum
is the kinetic term of itinerant electrons. The transfer integral
tij depends on the relative position of ith and j th sites, and
also depends on the localized spins at the two sites [19,20]:

tij = t
(bare)
ij

{
cos

θi

2
cos

θj

2
+ sin

θi

2
sin

θj

2
exp[i(φj − φi)]

}
.

(2)

Here, θi and φi are the polar and azimuthal angles of Si ,
respectively; t

(bare)
ij is the transfer integral between ith and j th

sites in the absence of the coupling to localized spins. The
second sum in Eq. (1) is the AFM SE interaction term in
which Jij is the exchange coupling between ith and j th sites.
In this paper, we particularly consider the case of Ising local
moments, i.e., Si = ±ni with ni being a unit vector parallel
to the anisotropy axis at ith site.

B. Strong-coupling expansion

To investigate the magnetic properties of the model in
Eq. (1), understanding the nature of effective spin interactions
mediated by the coupled fermions is of crucial importance.
To evaluate the effective spin interactions, we start by
approximating the transfer integral in Eq. (2) by its amplitude,

t̃ij∣∣t (bare)
ij

∣∣ =
∣∣∣∣∣

tij

t
(bare)
ij

∣∣∣∣∣ =
√

1 + cos θij

2
, (3)

where θij is the angle between Si and Sj [21]. The DE model
with this approximated form of the transfer integral t̃ij was
used to study the magnetic properties of manganese oxides
in several previous works [22–25]. Using this approximation,
and considering that the localized moments are of Ising type,

we can rewrite the transfer integral as

t̃ij = t0
ij + t1

ij S̃i S̃j , (4)

where S̃i = Si · ni = ±1 is the projected spin parameter along
ni , and

t0
ij =

∣∣t (bare)
ij

∣∣
2

(
cos

θ0
ij

2
+ sin

θ0
ij

2

)
, (5)

t1
ij =

∣∣t (bare)
ij

∣∣
2

(
cos

θ0
ij

2
− sin

θ0
ij

2

)
, (6)

are real coefficients. Here, θ0
ij is the relative angle between ni

and nj .
We consider the hopping term with the coefficient t0

ij as
the unperturbed Hamiltonian, H0, and perform the expansion
of Matsubara Green’s function with respect to the remaining
term with t1

ij , H1. The Dyson equation is given by

Gi,j (iω) = gi,j (iω) −
∑
k,l

gi,k(iω)
[
t1
kl S̃kS̃l

]
Gl,j (iω). (7)

Here, Gi,j (iω) is Matsubara Green’s function and gi,j (iω) is
bare Green’s function of the unperturbed Hamiltonian. The
term in the square bracket in Eq. (7) is the scattering by H1.
The internal energy of the system is given by

E = −
∑
i,j

t̃ij 〈c†i cj 〉 + 1

2

∑
i,j

Jij Si · Sj . (8)

By replacing 〈c†i cj 〉 by
∑

ω Gj,i(iω)eiω(−0) and expanding
Green’s functions using the Dyson equation, one obtains the
effective spin model: the energy in Eq. (8) gives the effective
Hamiltonian for the Ising spins S̃i . In this paper, we consider
the expansion up to O[(t1

ij )2], which leads to effective four-spin
interactions in addition to two-spin ones.

Regarding to the accuracy of this method, we note that in
Eq. (6), |t1

ij | becomes small when θ0
ij is close to π/2. Hence it is

expected that the perturbation is expected to be accurate when
θ0
ij ∼ π/2, namely, the local anisotropy axes are perpendicular

to each other. On the other hand, the approximation becomes
less accurate as we approach the collinear case, t0

ij = t1
ij .

In the following sections, we test this method for a DE
model on a pyrochlore lattice with only nearest-neighbor (NN)
transfer integrals and the localized Ising moments having spin-
ice type anisotropy [26,27]. In this model, the anisotropy axes
of two NN spins have the relative angle of θ0

ij ∼ 109◦, which
is close to π/2.

III. RESULTS

In this section, as the benchmark of the method in the
previous section, we study the effective spin interactions
in a spin-ice type DE model on a pyrochlore lattice. In
Sec. III A, we present the effective spin model obtained from
the strong-coupling expansion. The accuracy of this method is
investigated by comparing the ground-state energy (Sec. III B)
and magnetic phase diagram for n and J (Sec. III C). The later
is obtained by a variational method. The relevance of the phase
diagram is further investigated in Sec. III D by a MC method.
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A. Effective spin interactions

To test the accuracy of the strong-coupling theory,
we consider an Ising spin DE model on a pyrochlore
lattice with hoppings and SE interactions for NN
sites only. The anisotropy axes for Ising moments are
defined along local [111] axes: na = (1/

√
3)(1,−1,−1),

nb = (1/
√

3)(−1,1,−1), nc = (1/
√

3)(−1,−1,1), and
nd = (1/

√
3)(1,1,1) (see Fig. 1). For simplicity, we replace

the NN hopping integral tij by t̃ij as in Eq. (4); the starting
Hamiltonian is given by

H = −
∑
〈i,j〉

t̃ij (c†i cj + H.c.) + J
∑
〈i,j〉

Si · Sj , (9)

where the sum 〈i,j 〉 is taken over the NN sites on the
pyrochlore lattice. Hereafter, we take the bare hopping for
NN sites, t = 1, as the energy unit.

Applying the strong-coupling expansion in Sec. II B to this
model, we construct an effective Ising model on the pyrochlore
lattice, whose Hamiltonian is given by

Heff =
∑
i,j

Jij S̃i S̃j + 1

2

∑
〈i,j〉,〈k,l〉,

i,j �=k,l

K〈i,j〉,〈k,l〉S̃i S̃j S̃kS̃l − J

3

∑
〈i,j〉

S̃i S̃j ,

(10)

up to a constant given by the contribution from H0. Here,
the first term represents effective two-spin interactions for
nearest-, second-, and third-neighbor sites, while the second
term describes the four-spin interactions. The last term is the
AFM SE interaction already present in Eq. (9), where the
coefficient −1/3 comes from the projection of the Ising spins
to the anisotropy axes at each site. In the model in Eq. (9),
the leading order in expansion gives NN two-spin interaction,
while the second order gives four spin interactions between
spins on the edge of two bonds at arbitrary distance. The
second- and third-neighbor two-spin interactions also arise
from the second order expansion, when the two bonds share a
site, e.g., j = k. In general, the two-spin interactions between
sites with l Manhattan distance arise from the lth order in
expansion, i.e., they decay exponentially with distance in
contrast to the RKKY interaction.

Figure 2 shows the effective spin interactions that arise
from the expansion for the model in Eq. (9) as functions
of the itinerant electron density n = ∑

i〈c†i ci〉/N (N is the
number of sites). We here show the results for 1/4 < n < 1/2,
as the higher order terms appear to be relevant for lower n (see
below). We note that we cannot fix n in the range of 1/2�n<1
by tuning the chemical potential, as the density of states for the
unperturbed Hamiltonian has flat bands at the top edge of the
density of states. The definition of each interaction is shown in
Fig. 1. As shown in Fig. 2, the most dominant interaction medi-
ated by itinerant fermions is the FM NN interaction J1, consis-
tent with what is expected in DE models. This dominant inter-
action gives rise to instability toward a FM state when the SE
interaction J between localized moments is sufficiently weak.

In addition, we also have other two-spin and four-spin
interactions, which are an order of magnitude smaller than J1.
These interactions potentially become important in the phase
competing region between DE-driven FM and SE driven
AFM phases, i.e., when the SE interaction cancels the NN

FIG. 2. (Color online) Effective spin interactions mediated by
itinerant electrons: (a) two-spin and (b) four-spin interactions as
functions of the electron density n. The definition of interactions
is given in Fig. 1.

FM interaction. Some of these subdominant interactions are
also plotted in Fig. 2. In this density range, most of the
four-spin interactions decay rapidly with distance; K0 is the
interaction of four spins on the same tetrahedron, while Ki

(i �= 0) are interactions between spins with further distance.
As a consequence, the dominant interactions are J2, J3, and
K0 for electron densities n � 1/4. The result implies that, for
n � 1/4, only considering a limited number of interactions are
sufficient in reproducing the qualitative nature of the model.

B. Numerical diagonalization

To examine the accuracy of above theory, we start by
evaluating the ground-state energy. The results are compared
to those of numerical diagonalization for several different spin
configurations. We here consider q = 0 orders with all spins
on a tetrahedron pointing inward or outward (all-in/all-out;
AIAO) and two spins inward and two spins outward (two-in
two-out; 2I2O) as an example of the magnetic order with AFM
and FM NN correlation, respectively. In addition to these
phases, two magnetic orders that were found in the related
Kondo lattice models, 32-sublattice (32-sub) order [28] and
spin cluster (SC) order [17], are also considered.

Figure 3 shows the result of the ground-state energy
calculated for different magnetic orders in the effective spin
model in Eq. (10) by considering J1, J2, J3, and K0. For
n � 1/4, the results of strong-coupling expansion are in
accordance with those of numerical diagonalization for the
model in Eq. (9). As the NN FM interaction J1 gives the largest
contribution to the ground-state energy, this result shows

024415-3



HIROAKI ISHIZUKA AND YUKITOSHI MOTOME PHYSICAL REVIEW B 92, 024415 (2015)

FIG. 3. (Color online) n dependence of the ground-state energy
for different spin configurations at J = 0. The lines are the results
obtained by numerical diagonalization of the DE model in Eq. (9),
and the symbols are those for the effective spin model in Eq. (10)
obtained from the strong-coupling expansion. See the text for details.

that the estimate of J1 is successful in the strong-coupling
expansion.

We also calculated the ground-state energy for n � 1/4. In
this region, however, the results show strong deviation from
the result of numerical diagonalization (not shown here). This
is presumably due to the presence of longer-range interactions
than second- and third-neighbors. which are more dominant
than the case for n � 1/4.

C. Variational phase diagram

Next, to evaluate the effect from further-neighbor two-
spin and four-spin interactions in Eq. (10), we study the

ground-state phase diagram by a variational calculation with
changing the AFM SE interaction J . As J tends to cancel
the effective NN FM interaction from the DE mechanism, this
essentially corresponds to studying the effect of subdominant
interactions that arise from the second-order expansion in the
strong-coupling theory. For this purpose, we here perform a
variational calculation comparing the ground-state energy for
different spin configurations: 2I2O, 32-sub, SC, and AIAO
orders [29].

Figure 4 shows the results of ground-state energy for
different magnetic orders measured from that for the 2I2O
state. Figure 4(a) shows the result for the effective spin model
in Eq. (10) obtained by the strong-coupling theory at n = 0.3.
We find all four phases with increasing J ; the transition
takes place from the 2I2O to 32-sub state at J ∼ 0.109, to
SC state at J ∼ 0.121, and to AIAO state at J ∼ 0.157. A
similar trend is also found in the result calculated by numerical
diagonalization of the model in Eq. (9) [Fig. 4(c)]. Note that
the electronic phase separation is not considered here; see
Fig. 5.

In the results for n = 0.4, the strong-coupling theory
predicts four magnetic phases in the ground state, as shown in
Fig. 4(b). On the other hand, as shown in Fig. 4(d), there are
only three phases for the model in Eq. (9): 2I2O, 32-sub, and
AIAO phases.

Performing the above variational calculation while varying
n and J , we map out the ground-state phase diagram. Figure 5
shows the variational phase diagrams calculated for the
effective spin model and the DE models. Figure 5(a) shows
the result for the effective spin model constructed from the
strong-coupling theory [Eq. (10)]. For all 1/4 < n < 1/2,
we found both SC and 32-sub phases between the 2I2O and

FIG. 4. (Color online) J dependence of the ground-state energy for different spin configurations calculated for the effective spin model in
Eq. (10) obtained from the strong-coupling theory [(a) and (b)] and the DE model in Eq. (9) by numerical diagonalization [(c) and (d)]. The
energies are measured from those for the 2I2O state. The electron density were set at n = 0.3 (0.4) for (a) and (c) [(b) and (d)].
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FIG. 5. (Color online) Variational phase diagrams for (a) the effective spin model obtained by the strong-coupling expansion [Eq. (10)],
(b) the DE model in Eq. (9), and (c) the DE model in Eq. (1). The phase diagram in (a) is calculated by only considering J1, J2, J3, and K0.

AIAO phases. As all the transitions are between two different
magnetic orders, they are of first order.

On the other hand, the DE model shows a slightly different
phase diagram. Figure 5(b) shows the phase diagram for
the model in Eq. (9). We determined the phase boundary
by comparing the energies of different spin configurations
with a fixed chemical potential, and the region of phase
separation was obtained from the jump of electron density at
the boundary (for technical details, for example, see Ref. [30]).
The numerical errors for electron density are also plotted; they
are typically smaller than the symbol sizes. In Fig. 5(b), we
found only the 32-sub state in the intermediate range of J

for 0.321 � n � 0.466, while only the SC state appears for
n � 0.288 and n � 0.471; the two phases appear in the narrow
range of 0.288 � n � 0.321 successively while increasing
J . As different ordered phases possess different electron
densities in general, a phase separation appears in between two
magnetically ordered phases, as indicated by the gray shades
in the figure. The result indicates that, with varying n, there are
two regions in the phase diagram where the phase competing
region is dominated by either 32-sub or SC order. This result is
in contrast to the strong-coupling theory, where the two phases
appear for all n. Nevertheless, the strong-coupling theory
predicts the trend of instability toward the correct intermediate
ground states found in the DE model.

In the last, we discuss the variational phase diagram for
the DE model in Eq. (1), without approximating tij by t̃ij
in Eq. (4). The result is shown in Fig. 5(c). The SC phase
appears only for n � 0.25, while the 32-sub phase appears
for 0.323 � n � 0.418; no intermediate phase is found for
0.25 � n � 0.323 and n � 0.418. Hence, despite the absence
of quantum phase in the hopping term, the two DE models
show qualitatively similar ground-state phase diagrams. This
is a crucial observation for justifying the approximation we
used in this paper, as we ignored the effect of the quantum
phase in the strong-coupling theory.

D. Monte Carlo simulation

For further comparison, we study the models in Eq. (1)
using the unbiased MC method, which allows calculating
thermodynamic quantities of the model in Eq. (1) without
any approximations [31]. This method and its variants [32,33]

have recently been used to explore unconventional phases in
the phase competing region of the DE models on frustrated
lattices [15–18].

The calculations were done with the system size N = 4×Ns

with Ns = 43 under the periodic boundary conditions. Thermal
averages of physical quantities were calculated for typically
3600 MC steps after 600 steps for thermalization. Some of
the low-temperature data were calculated for longer MC steps
up to 10 400 steps. We divided the MC measurements into
five bins and estimated the statistical errors by the standard
deviations among the bins.

MC results for both DE and effective spin models at
n = 0.25 have already been published by the authors [17],
which are in accordance with the variational phase diagram
in Fig. 5(c). In the DE model, only the SC state was found
at the lowest temperature while increasing J , as the ground
state in intermediate region. In addition, a fluctuating SC state
with spatial inversion symmetry breaking was obtained in the
intermediate temperature range above the critical temperature
of the SC order. However, we did not find the 32-sub order in
accordance with the variational phase diagram.

To check the existence of the 32-sub order in the region
n > 1/4, we here performed the MC simulation for the
DE model in Eq. (1). Figure 6 shows the result of MC
simulation for N = 4×43 sites at n = 0.38. Figures 6(a) and
6(b) show ratio of tetrahedra with two-in two-out (ρ22) and
all-in/all-out (ρ40) configurations. When J = 0.06, the results
show enhancement of ρ22 and decrease of ρ40 with decreasing
temperature. This is a sign of the FM correlation for the NN
bonds [34,35]. However, we could not reach the transition
temperature for the long-range order in our simulation due
to the freezing at lower temperatures. In contrast, for J =
0.22, ρ40 increases with decreasing temperature, approaching
ρ40 → 1. In addition, the structure factor

Sα(q) = 1

N

∑
i,j∈α

〈Si · Sj 〉 exp[iq · (r i − rj )] (11)

for q = 0 shows increase from zero as shown in Fig. 6(c),
indicating the AIAO order in the ground state.

On the other hand, the result for J = 0.14 shows
ρ22 → 0.375 and ρ40 → 0.125 with decreasing temperature
[Figs. 6(a) and 6(b)]. This is a sign of the phase transition to
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FIG. 6. (Color online) Results of Monte Carlo simulation for the
DE model in Eq. (1) at n ∼ 0.38: (a) ρ22, (b) ρ40, and (c) S(q)/N .
See the text for details.

32-sub order, where 6/16 (2/16) tetrahedra are in 2I2O
(AIAO) spin configuration [28]. This transition is also con-
firmed by the spin structure factor for q = (π,π,π ) plotted in
Fig. 6(c).

From these results, we conclude that, a sequence of states,
2I2O, 32-sub, and AIAO, appears for n = 0.38 with increasing
J . On the other hand, at n = 0.25, the presence of SC order
in the intermediate J region was previously reported [17],
consistently with the variational phase diagram in Fig. 5(c).
The results support that the effective spin model by the strong-
coupling theory can predict the trend of intermediate phases
in the competing region in the DE model.

IV. EXTENSION TO HEISENBERG AND XY MOMENTS

In the last, we briefly discuss potential extension of this
method to DE models with Heisenberg or XY type localized
moments. In these cases, we cannot use the expansion in
Eq. (4). One alternative approach is to replace cos θij in Eq. (2)
by Si · Sj , and consider t̃ij − αt

(bare)
ij as the perturbation, where

0 < α < 1. In the leading order, this gives FM NN interaction
of the form |Jij | ∝ t̃ij ; the classical spin model with Jij of this

form as the NN interaction was studied motivated by the DE
models [36].

Another route to evaluate the effective interactions is to use
an asymptotic expansion, for instance, Taylor series

t̃ij = t√
2

√
1 + Si · Sj , (12)

= t√
2

[
1 + Si · Sj

2
− (Si · Sj )2

8
+ · · ·

]
. (13)

This expansion naturally predicts the presence of positive
biquadratic interaction as the subleading interaction. Recently,
the positive biquadratic interaction has been proposed [37]
as the possible origin of noncoplanar phases found in the
weak-coupling region of a triangular Kondo lattice model
[38–40]. The same noncoplanar state has also been found in
the DE limit, but its mechanism have not been fully understood
[15]. A simple argument based on our theory suggests that the
noncoplanar phase in the DE limit may also be stabilized by
the biquadratic interaction that arises from the strong-coupling
expansion. This also implies that, in the DE models with
Heisenberg moments, even O(t1

ij ) in the expansion may give
rise to unconventional magnetism.

V. DISCUSSIONS AND SUMMARY

To summarize, in this paper, we studied the fermion-
mediated effective spin interaction in an Ising spin double-
exchange model on a pyrochlore lattice. To evaluate the
effective interactions from microscopic theory, we used a
strong-coupling expansion and calculated the effective interac-
tions up to second order in terms of the spin-dependent electron
hopping. We showed that effective four-spin interactions
appear in the second-order expansion. We also found that the
effective interactions are limited to short range for this model,
at least, for electron density 1/4 � n � 1/2.

Focusing on this region, we studied the accuracy of strong-
coupling theory. From comparison to the numerical results
on the double-exchange model, we found the strong-coupling
theory gives a good estimate of the ground-state energy.
In addition, we studied the ground-state phase diagram in
the presence of antiferromagnetic superexchange interactions
between the localized moments. The calculations were done
by a variational method, and some of the results were also
confirmed by a Monte Carlo simulation. We found that
the strong-coupling method correctly captures the trend of
intermediate phases found in the double-exchange models.

It is interesting that the expansion up to second order
appears to capture the correct trend of the DE model,
although the energy scale we are discussing is very small,
E/t ∼ 0.01. This may be related to the fact that the ground
state of a spin model is often sensitive only to the sign and
not to the magnitude of interactions. For the effective spin
model we studied, the 32-sublattice and spin-cluster states
appear in the region of both second- and third-neighbor
exchange interactions being antiferromagnetic [17]. Hence,
although the second order in expansion is not sufficient in
correctly predicting which phase wins, it is still successful
in guessing the correct candidates for the intermediate phase.
This arguments cast a possible restriction on the application of
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the strong-coupling theory we presented; the strong-coupling
theory predicts the correct trend only when the double-
exchange model has a few subdominant interactions that are
relevant, in addition to the ferromagnetic nearest-neighbor
interaction. However, if this condition is satisfied, we can
expect that the theory gives the correct trend.

Recently, the effect of spin-charge coupling on the mag-
netism has gained renewed interest in frustrated magnetism as
a source of emergent magnetic phenomena. In these studies,
application of a Monte Carlo method [31–33] has proceeded
exploration of novel phenomena in the classical spin limit
by providing numerically exact results. However, due to the
large computational costs in the calculation, application of
the method has been limited to two dimensions with only
few exceptions. The large computational costs also restrict
application of the method to more complicated models such
as multiorbital systems and the models constructed from
ab initio methods. The method we investigated in this paper,

on the contrary, provides a convenient method for analyzing
the models with strong spin-charge coupling. In addition, as
the method presented is a perturbation theory, it is not difficult
to apply the method to more complicated models with larger
degrees of freedoms such as lattice distortions. To conclude,
our method presented here potentially provides a convenient
approach for understanding the effective magnetic interaction
and resultant magnetism in the systems with strong spin-charge
coupling.
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