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Three-dimensional Ising critical behavior in R0.6Sr0.4MnO3 (R = Pr, Nd) manganites
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Magnetic as well as calorimetric measurements have been performed on single crystal samples of
Pr0.6Sr0.4MnO3 and Nd0.6Sr0.4MnO3 to develop a complete critical behavior study of the paramagnetic to
ferromagnetic transition in both manganites. The critical exponents α,β,γ, and δ have been independently
obtained. For Pr0.6Sr0.4MnO3, these are α = 0.09, β = 0.312, γ = 1.106, and δ = 4.545, while for
Nd0.6Sr0.4MnO3 they are α = 0.11, β = 0.308, γ = 1.172, and δ = 4.75. All these values agree with the
three-dimensional (3D)-Ising universality class (α = 0.11, β = 0.3265, γ = 1.237, and δ = 4.79) and are very
far away from any other known universality class. This suggests the presence of magnetocrystalline anisotropies
in the system that must be taken into account to fully describe the magnetism of these manganites, which
deviates from a simple double exchange model.
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I. INTRODUCTION

Scaling analysis within the framework of renormalization
group theory assesses that the critical behavior of second order
phase transitions in the near vicinity of the critical temperature
TC is characterized by a set of critical exponents associated
with different thermal and magnetic properties, whose values
are interrelated [1]. Different sets of values of those exponents
correspond to different models (universality classes), which
have been theoretically developed after a certain expression of
the Hamiltonian describing the physical system; the particular
values of the exponents have been predicted by different
methods [2–5].

The physical magnitudes to which those exponents (named
α,β,γ, and δ) are associated are specific heat (cp), sponta-
neous magnetization (MS), inverse of initial susceptibility
(χ−1

0 ), and critical isotherm [M(H ) at T = TC], respectively.
They fulfill the following equations near TC , written as a
function of the reduced temperature t = (T − TC)/TC :

cp(T ) ∼ A±|t |−α (A− for T < TC, A+ for T > TC),

(1)

where A± are the critical coefficients, whose ratio A+/A− is
also theorized for each universality class,

MS(T ) ∼ |t |−β (T < TC), (2)

χ−1
0 (T ) ∼ |t |γ (T > TC), (3)

M(H ) ∼ H 1/δ (T = TC). (4)

Finally, the magnetic equation of state in the critical region
is given by

M(H,t) = |t |βf±
(
H/|t |β+γ

)
, (5)

where f− and f+ are regular analytic functions for T < TC

and T > TC , respectively.

The following scaling laws give the relations among the
critical exponents

α + 2β + γ = 2 (6)

δ = 1 + γ /β. (7)

The attribution of a certain second order phase transition to
a particular class gives an insight of the underlying physics,
such as the range and dimensionality of the magnetic exchange
interactions as well as the role that other mechanisms can play
if the critical parameters obtained do not exactly comply with
one of those classes (role of spin-orbit interactions or dipolar
long-range order interactions, for instance). Table I summa-
rizes the values of the critical exponents and coefficients for
the most common universality classes of application in the
case of ferromagnetic materials when dimensionality is three.
The mean field model is equivalent to the classical Landau
model and is based on long-range interactions. The other three
models describe the ferromagnetic phenomena on the basis
of short range interactions among the spins: the Heisenberg
model corresponds to an isotropic ferromagnetic material, the
XY model is of application when there is an easy plane for
the magnetization, and the Ising model is applicable when there
is a uniaxial anisotropy. It is worth analyzing the difference
among the particular values that the critical exponents take
in the different models. The ones obtained from magnetic
measurements (β and γ ) increase their values from the uniaxial
anisotropic model (Ising) to the isotropic one (Heisenberg), but
the difference is small, which sometimes makes it difficult to
discriminate among the models. On the other hand, the critical
exponent associated with the specific heat α changes its sign
from one model to the other one, and the ratio of the critical
parameters A+/A− is very different (from 0.53 to 1.52). So,
even if Eq. (6) tells us that it would be enough with the magnetic
critical exponents to elucidate the universality class to which
the phase transition belongs (without the need to evaluate α), it
is safer to independently obtain all three parameters to extract
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TABLE I. Main universality classes for magnetic systems
(Refs. [2–5]).

Universality class α β γ δ A+/A−

Mean-field Model 0 0.5 1.0 3.0 -
3D-Ising 0.11 0.3265 1.237 4.79 0.53
3D-XY − 0.014 0.34 1.30 4.82 1.06
3D-Heisenberg − 0.115 0.365 1.386 4.80 1.52

sensible conclusions. Finally, δ is not useful to discriminate
among the short-range models as its value is nearly the same in
the three of them, but it is important to extract it independently
from experiments as a further confirmation.

Another important issue when studying critical behavior is
to do it on appropriate samples. It is well known that single
crystals are ideal for that kind of study as polycrystalline
samples present a strong smearing in the phase transitions,
making it difficult to evaluate the critical parameters. Besides,
in order to fully reveal the critical behavior, high quality
crystals are needed, with good stoichiometry and as few defects
as possible, as the real critical behavior might be masked if
this is not achieved.

In this paper, the critical behavior study of two ferro-
magnetic phase transitions in manganites is carried out in
Pr0.6Sr0.4MnO3 and Nd0.6Sr0.4MnO3. We have selected this
particular concentration (substituting 40% the rare-earth ion
with Sr) as it is the one at which the colossal magnetoresis-
tance (CMR) is especially important and for which the low
temperature phase is ferromagnetic in the whole temperature
range [6,7]. It can be seen from the phase diagrams that
both Pr1−xSrxMnO3 and Nd1−xSrxMnO3 are very similar in
the region around x = 0.4 (paramagnetic insulator above TC ,
ferromagnetic metallic under it, with close values of TC) so the
study of the critical behavior of both of them using the same
techniques and under the same conditions could give valuable
information about the appropriateness of a physical description
simply by means of a double exchange interaction, which
would be described by a Heisenberg model [8] or if any other
mechanisms must be taken into account, such as magnetic
anisotropies, disorder, dipolar interactions, phase separation,
and such.

There are many studies on the critical behavior of different
manganites, but there is a lack of systematic research on
its evolution as doping is introduced in a particular parent
compound. The starting point is similar in both cases as
PrMnO3 and NdMnO3 have been found to belong to the three-
dimensional (3D)-Heisenberg case, though not as perfectly
as in the case of LaMnO3 [9]; however, all three parent
compounds are antiferromagnets while they turn into metallic
ferromagnets when they are hole-doped. The way this affects
their critical behavior is far from being well established.
Several studies have been already made on the critical behavior
of R1−xSrxMnO3(R = La, Pr, Nd) for Sr concentrations in the
ferromagnetic metallic region (which corresponds to 0.25 �
x � 0.45 for Pr and Nd and in the case of La to x higher than
≈ 0.18), but the conclusions differ and, in some cases, are not
well substantiated.

In the case of La1−xSrxMnO3 (the most studied one by
far), some authors claim that long-range interactions describe

well that transition by means of a mean field model (see
Mohan et al. and Schwartz et al. for x = 0.2 [10,11], Lofland
et al. for x = 0.3) [12], Nair et al. found for x = 0.125
critical exponents with values corresponding to the Heisenberg
model [13], Ghosh et al. found Heisenberg exponents for
x = 0.3 [14], while the values obtained by Vasiliu-Doloc and
Lynn (x = 0.2, 0.3) [15], Martin et al.(x = 0.3) [16], Kim
et al. (x = 0.25) [17], Oleaga et al.(x = 0.30) [18], and Lin
et al.(x = 0.3) [19] all sustain the anisotropic Ising model.

The critical behavior of Pr1−xSrxMnO3 has not been studied
much in this region. The particular concentration x = 0.4
has been studied by Hcini et al. [20], Rößler et al. [21],
and Masheswar Repaka et al. [22]. They all claim that the
suitable model is the Heisenberg model, but even if the β

exponent they found is around the theoretical one, γ is between
Heisenberg and Ising. There is another paper on x = 0.45 by
Fan et al. where their conclusion is that a mean field model is
of application [23].

Finally, Nd1−xSrxMnO3 has been scarcely studied in
the ferromagnetic metallic region. A paper on x = 0.3 by
Venkatesh et al. gave critical exponents between the mean field
model and the Heisenberg one [24]; Oleaga et al., measuring
thermal diffusivity, concluded that the Ising model better
illustrated the transition for x = 0.4 [25].

One of the drawbacks of several of the studies performed is
that they have been done on polycrystalline samples, where it
is much more difficult to extract information about the critical
behavior of the transition. In most of the papers cited above,
only the magnetic exponents have been extracted, without
employing techniques that can also bring the critical exponent
α and the critical ratio A+/A−.

Thus, the aim of this paper is to make a complete study of
the critical behavior of Pr0.6Sr0.4MnO3 and Nd0.6Sr0.4MnO3

on high quality single crystals, grown at the same lab,
applying high resolution calorimetric techniques as well as
magnetic ones to extract independently all critical parameters
α, A+/A−, β, γ, and δ and trying to elucidate which univer-
sality class best suits the results.

II. SAMPLES AND EXPERIMENTAL TECHNIQUES

Single crystals Pr0.6Sr0.4MnO3 and Nd0.6Sr0.4MnO3 were
grown by the floating zone technique using a two mirror optical
furnace, in air, using growth speeds of around 4–6 mm/h [26].
Crystal quality and orientation were determined using the x-ray
Laue diffraction technique. The crystals were cut from the
as-grown boule in the shape of plane-parallel slabs of around
500 μm thickness for the measurements.

Magnetization (M) measurements have been carried out
in a vibrating sample magnetometer (VSM) by Cryogenic
Limited under external applied magnetic fields Ha ranging
from 0 to 80 kOe. Isotherms were collected over a range of
about ±15 K around TC (�T = 1 K) in order to adequately
cover the critical region. The magnetic field Ha has been
corrected for demagnetization effects to extract the internal
field using the relation Hi = Ha − NM , where M is the
measured magnetization and N is the demagnetization factor.
N has been obtained from ac susceptibility measurements
following the method given by Jiang et al. [27], and the
obtained Hi has been used for the scaling analysis. The

024409-2



THREE-DIMENSIONAL ISING CRITICAL BEHAVIOR IN . . . PHYSICAL REVIEW B 92, 024409 (2015)

FIG. 1. (Color online) Magnetization as a function of tempera-
ture measured in a field-cooled state using a magnetic field of 100 Oe
for Pr0.6Sr0.4MnO3 (�) and Nd0.6Sr0.4MnO3 (•).

magnetic susceptibility was measured with AC Measurement
System Option in Physical Properties Measurement System
(PPMS) by Quantum Design. The demagnetization factors
obtained have been N = 9.3 gOe/emu for Pr0.6Sr0.4MnO3 and
N = 14.0 gOe/emu for Nd0.6Sr0.4MnO3.

The specific heat measurements have been carried out
with a high resolution ac photopyroelectric calorimeter in the
back detection configuration. The details of the experimental

setup, as well as of the theory that explains how the thermal
parameters are obtained from the photopyroelectric signal can
be found elsewhere [28–30]. The range of cooling and heating
rates used has been from 60 mK/min for measurements on
a wide temperature range down to 10 mK/min for high-
resolution runs close to TC covering a similar range as in
the case of the magnetic measurements.

III. EXPERIMENTAL RESULTS AND FITTINGS

Figure 1 shows the magnetization of both samples as a
function of temperature under an applied field of 100 Oe where
the very well known ferromagnetic transitions are displayed.
The transition temperatures obtained from these measurements
are TC ≈ 307.5 K for Pr0.6Sr0.4MnO3 and TC ≈ 276 K for
Nd0.6Sr0.4MnO3. In what follows, the full scaling analysis will
be presented for each sample, presenting first the magnetic
measurements and then the specific heat ones in each case.

A. Pr0.6Sr0.4MnO3

Figure 2(a) contains the standard Arrott Plot, where M2

is represented as a function of H/M (in what follows, H
will always be the internal field Hi) for isotherms in the
temperature range 292–322 K. If long-range interactions were
responsible for the ferromagnetic transition, there would
be a linear behavior at high fields, which clearly is not the
case. As all curves present a downward slope, a nonmean
field behavior is present in this case. Following the Banerjee

(a) (b)

(c) (d)

FIG. 2. (Color online) (a) Arrott Plot of isotherms collected around TC for Pr0.6Sr0.4MnO3. MAPs with the Heisenberg (b) and Ising (c)
trial exponents showing the parallelism of the linear fittings at high fields. (d) Optimized MAP after the iteration procedure.
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criterion [31], the positive slope of the curves confirms the
second order character of the transition. To establish the value
of the critical exponents and thus the class of universality
to which Pr0.6Sr0.4MnO3 might belong, we have turned our
attention to the Modified Arrott Plots (MAPs), plotting M1/β

versus (H/M)1/γ . As starting trial values, we have taken the
ones corresponding to the Heisenberg (β = 0.365, γ = 1.386)
and Ising models (β = 0.3265, γ = 1.2372), which are shown
in Figs. 2(b) and 2(c), respectively. Linear fittings of the
experimental points in those graphs at high field values do
not render perfect parallel curves but are much better in the
case of the Ising class than in the Heisenberg one. This can be
visually seen but also quantitatively evaluated by the deviation
of the slopes with respect to the average value, which is ±15%
for Heisenberg exponents and ±8% for the Ising case. So the
Ising exponents have been taken as the starting point from
which a rigorous iterative process has been carried out. A
linear extrapolation of the isotherms in Fig. 2(c) has been taken
from the high field values to extract (MS)1/β and (χ−1

0 )1/γ as
an intercept on M1/β and (H/M)1/γ axis, respectively. These
values of MS(T ) and χ−1

0 (T ) have been independently fitted to
Eqs. (2) and (3), respectively, thus extracting new values of β

and γ . The process is repeated till convergence is reached and
the best values of β, γ , and TC , which give the best parallelism,
are obtained, which in this case are β = 0.319 ± 0.01 and
γ = 1.157 ± 0.007 [the MAP corresponding to these values
is shown in Fig. 2(d)]. The obtained MS(T ) and χ−1

0 (T ) are
plotted as a function of temperature in Fig. 3, whose fit to
Eq. (2) gives β = 0.3147 ± 0.006, TC = 308.27 ± 0.01 K and
to Eq. (3) gives γ = 1.095 ± 0.07, TC = 308.37 ± 0.04 K.
Both values are very close to the Ising theoretical values (see
Table I).

As the next step in the scaling analysis, we have followed
the Kouvel Fisher method to determine more accurately β,γ ,
and TC [32]. After this method, both MS(dMS/dT )−1 and
χ−1

0 (dχ−1
0 /dT )−1 have a linear behavior with respect to T,

with slopes 1/β and 1/γ , respectively. One of the advantages
of this method is that the value of the critical temperature
is not introduced a priori but extracted from the intercept of

FIG. 3. Spontaneous magnetization (left) and inverse of initial
susceptibility (right) vs temperature for Pr0.6Sr0.4MnO3 as obtained
from the optimized MAP. The solid curves correspond to the fits to
Eqs. (2) and (3), as explained in the text.

FIG. 4. Kouvel Fisher plot of spontaneous magnetization (left)
and inverse of initial susceptibility (right) for Pr0.6Sr0.4MnO3. The
straight lines are linear fits, from which TC and the critical exponents
are obtained.

the straight fitted lines on the temperature axis. The Kouvel
Fisher plot is shown in Fig. 4. The critical parameters obtained
are β = 0.312 ± 0.002, TC = 308.20 ± 0.02 K, γ = 1.106 ±
0.005, and TC = 308.32 ± 0.04 K. It is worth remarking how
MAPs and the Kouvel Fisher method give close values of all
critical parameters, confirming the robustness of the results.

After Eq. (4), the critical exponent δ can be extracted from
the fitting of the critical isotherm to be compared with the
values obtained from the scaling law [Eq. (7)]. Figure 5 shows
the critical isotherm at T = 308 K in log-log scale as this
should render a straight line (as it happens), whose slope is
δ. In this particular case, the fitting gives δ = 4.545 ± 0.008,
while the values extracted using Eq. (7) from MAP is 4.48 ±
0.03 and Kouvel-Fisher method 4.54 ± 0.04. So there is a
strong coherence among the different results. All the exponents
obtained are listed in Table II.

The last confirmation of the validity of the results obtained
so far would come from the equation of state Eq. (5) if it were
fulfilled with the obtained critical exponents. Figure 6 shows
how all results collapse into two different branches, below and

FIG. 5. (Color online) M vs H plot in a log-log scale collected at
T = 308 K (≈TC) for Pr0.6Sr0.4MnO3. The straight line is the linear
fit from which the exponent δ is obtained.
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TABLE II. Values of the obtained critical exponents and parameters β, γ, δ, α, and A+/A−.

Material Technique β γ δ α A+/A−

Pr0.6Sr0.4MnO3 Modified Arrott Plot 0.3147 ± 0.0006 1.095 ± 0.007 4.48 ± 0.03a

Kouvel-Fisher Method 0.312 ± 0.002 1.106 ± 0.005 4.54 ± 0.04a

Critical Isotherm 4.545 ± 0.008
Photopyroelectric calorimetry 0.09 ± 0.01 0.57 ± 0.15

Nd0.6Sr0.4MnO3 Modified Arrott Plot 0.321 ± 0.003 1.183 ± 0.017 4.68 ± 0.08a

Kouvel-Fisher Method 0.308 ± 0.004 1.172 ± 0.011 4.80 ± 0.09a

Critical Isotherm 4.75 ± 0.02
Photopyroelectric calorimetry 0.11 ± 0.02 0.52 ± 0.19

aCalculated from Eq. (7) δ = 1 + γ /β.

above TC . This is generally taken as the most severe test for
proper scaling.

The value of the critical exponent α can be evaluated from
Eq. (6), but in order to confirm the universality class to which
Pr0.6Sr0.4MnO3 belongs, it is especially interesting to obtain it
independently from calorimetric experiments. As explained in
Sec. II, an ac photopyroelectric calorimeter has been used to
obtain high resolution specific heat data in the near vicinity of
TC . See the revision paper by Zammit et al. [33], where a full
description of the capabilities of this technique to study critical
behavior of second order phase transitions is presented.

The experimental specific heat curves have been fitted to
the well-known equation:

cp = B + Ct + A±|t |−α(1 + E±|t |0.5), (8)

where t = (T − TC)/TC is the reduced temperature and
α,A±, B,C, and E± are adjustable parameters. Superscripts
+ and − stand for t > TC and t < TC , respectively. The linear
term represents the background contribution to the specific
heat, while the last term is the anomalous contribution to the
specific heat. The factor under parenthesis is the correction to
scaling that represents a singular contribution to the leading
power, as known from experiments and theory. A nonlinear
least square routine using a Levenberg-Marquardt method

FIG. 6. (Color online) The renormalized magnetization plotted
as a function of the renormalized field following Eq. (5) for
Pr0.6Sr0.4MnO3. All data collapse in two separate branches, one above
and one below TC .

has been used to simultaneously fit the experimental data for
t > TC and t < TC . The details of the fitting procedure can be
found elsewhere [34].

Figure 7 shows the experimental specific heat curve in the
near vicinity of the critical temperature as well as the fitting,
along with the deviation plot of the fitting with respect to the

FIG. 7. (Color online) Experimental (dots) and fitted curves
(continuous lines) of the specific heat as a function of the reduced
temperature for Pr0.6Sr0.4MnO3 in the near vicinity of TC (top). And
the deviation plots for the fittings (bottom). Open circles are for
T < TC , crosses are for T > TC .
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(a) (b)

(c) (d)

FIG. 8. (Color online) (a) Arrott Plots of isotherms collected around TC for Nd0.6Sr0.4MnO3. MAPs with the Heisenberg (b) and Ising (c)
trial exponents showing the parallelism of the linear fittings at high fields. (d) Optimized MAPs after the iteration procedure.

experimental curve. The fitting is quite good, and the obtained
parameters are α = 0.09 ± 0.01, A+/A− = 0.57 ± 0.15 (for
the Ising class these are α = 0.11, A+/A− = 0.53), having
used a fitting range of 5.3 × 10−2 − 4 × 10−3 for t < TC and
4.6 × 10−2 − 1.6 × 10−5 for t > TC . One of the advantages
of this technique is that we can get really close to the critical
temperature. As a confirmation test, a fitting was intended
using the theoretical Heisenberg exponents and parameters,
but no fitting was found, the exponents kept turning to the
Ising ones. The final values have been included in Table II.

This means that all critical exponents and parameters
α,A±, β, γ, and δ agree with the anisotropic Ising model.

B. Nd0.6Sr0.4MnO3

An equivalent analysis to the one performed on
Pr0.6Sr0.4MnO3 has been carried out with Nd0.6Sr0.4MnO3.
Figure 8(a) contains the standard Arrott Plot for isotherms in
the temperature range 260–290 K. Again, a mean field model
does not describe well the critical behavior of this transition,
which is confirmed as second order by the positive slope of
the curves. Figures 8(b) and 8(c) show the MAPs, with the
Heisenberg and Ising exponents as trial values. Once again,
the linear fittings of the experimental points at high field
values give a better parallelism for the Ising class than for the
Heisenberg one. The deviation of the slopes with respect to the
average value is ±19% for Heisenberg exponents and ±12%
for the Ising case. Thus, the same rigorous iterative process has
been carried out starting with the Ising values. The values for

which the best parallelism is found are β = 0.317 ± 0.006 and
γ = 1.139 ± 0.010, and this is shown in Fig. 8(d). The values
of MS(T ) and χ−1

0 (T ) obtained from that graph are plotted
as a function of temperature in Fig. 9, whose fit to Eq. (2)
gives β = 0.321 ± 0.003 and TC = 277.17 ± 0.03 K, and to
Eq. (3) gives γ = 1.183 ± 0.017 and TC = 277.21 ± 0.09 K.
Both values are quite close to the Ising theoretical values.

FIG. 9. Spontaneous magnetization (left) and initial susceptibil-
ity (right) vs temperature for Nd0.6Sr0.4MnO3 as obtained from the
optimized MAP. The solid curves correspond to the fits to Eqs. (2)
and (3), as explained in the text.
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FIG. 10. Kouvel Fisher plot of spontaneous magnetization (left)
and inverse of initial susceptibility (right) for Nd0.6Sr0.4MnO3. The
straight lines are linear fits, from which TC and the critical exponents
are obtained.

Figure 10 shows the Kouvel Fisher plots, from whose
fittings the critical parameters β = 0.308 ± 0.004, TC =
276.95 ± 0.06 K, γ = 1.172 ± 0.011, and TC = 277.25 ±
0.07 K are obtained. It is worth remarking how MAPs and the
Kouvel Fisher method again give close values of all critical
parameters, confirming the robustness of the results.

Figure 11 shows the critical isotherm at T = 277 K in
log-log scale, which gives a straight line of slope δ. In this
particular case, the fitting gives δ = 4.75 ± 0.02 while the
values extracted using Eq. (7) from MAP is 4.68 ± 0.08
and the Kouvel-Fisher method is 4.80 ± 0.09. So there is a
strong coherence among the different results. All the critical
exponents found are listed in Table II.

Figure 12 shows the plot corresponding to the equation of
state Eq. (5) with those critical exponents found. All results
collapse into two different branches, below and above TC ,
though not as well as in the case of Pr0.6Sr0.4MnO3.

Finally, critical exponent α has been obtained by measuring
and fitting the specific heat, and this is shown in Fig. 13.
The fitting agrees quite well with the experimental results,

FIG. 11. (Color online) M vs H plot in a log-log scale collected at
T = 277 K (≈TC) for Nd0.6Sr0.4MnO3. The straight line is the linear
fit from which the exponent δ is obtained.

FIG. 12. (Color online) The renormalized magnetization plotted
as a function of the renormalized field following Eq. (5) for
Nd0.6Sr0.4MnO3. All data collapse in two separate branches, one
above and one below TC .

FIG. 13. (Color online) Experimental (dots) and fitted curves
(continuous lines) of the specific heat as a function of the reduced
temperature for Nd0.6Sr0.4MnO3 in the near vicinity of TC (top). And
the deviation plots for the fittings (bottom). Open circles are for
T < TC , crosses for T > TC .
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TABLE III. Critical exponents α,β,γ in literature and in this work.

Material Author α β γ

PrMnO3 Oleaga et al. [9] −0.11
Pr0.6Sr0.4MnO3 Hcni et al. [20] 0.379 1.304

Röβler et al. [21] −0.13 0.365 1.309
Masheswar Repaka et al. [22] 0.364 1.336

This work +0.09 0.312 1.106
Pr0.55Sr0.45MnO3 Fan et al. [23] 0.462 1.033
Pr0.52Sr0.48MnO3 Sabayasachi et al. [47] 0.462 1.210
Pr0.5Sr0.5MnO3 Pramanik et al. [46] 0.448 1.334

NdMnO3 Oleaga et al. [9] −0.11
Nd0.7Sr0.3MnO3 Ventakesh et al. [24] 0.57 1.16
Nd0.6Sr0.4MnO3 Oleaga et al. [25] +0.12

This work +0.11 0.308 1.172

LaMnO3 Oleaga et al. [9] −0.10
La0.875Sr0.125MnO3 Nair et al. [13] 0.37 1.38
La0.8Sr0.2MnO3 Mohan et al. [10] 0.5 1.05

Schwartz et al. [11] 0.45
Vasiliu-Doloc et al. [15] 0.30

La0.75Sr0.25MnO3 Kim et al. [17] +0.05 0.40 1.27
La0.7Sr0.3MnO3 Lofland et al. [12] 0.45

Gosh et al. [14] 0.37 1.22
Vasiliu-Doloc et al. [15] 0.30

Martin et al. [16] 0.295
Oleaga et al. [18] +0.11

Lin et al. [19] 0.31
La0.65Sr0.35MnO3 Oleaga et al. [18] +0.11

La0.8Ca0.2MnO3 Zhang et al. [42] 0.259–0.349 0.918–1.231
Jiang et al. [43] 0.37 1.38

Ferreira et al. [44] ≈+0.2
La0.75Ca0.25MnO3 Jiang et al. [43] 0.12 1.62

La0.6Ca0.4MnO3 Kim et al. [41] +0.48 0.25 1.03
Zhang et al. [42] 0.2549–0.263 0.776–1.008

Ferreira et al. [44] ≈+0.18

Pr0.75Ca0.25MnO3 Ho et al. [45] 0.351 1.372
Pr0.73Ca0.27MnO3 Ho et al. [45] 0.362 1.132

Jiang et al. [27] 0.36 1.36
Pr0.71Ca0.29MnO3 Ho et al. [45] 0.521 0.912

Jiang et al. [27] 0.37 1.38

though not as nicely as in the previous sample; the obtained
parameters are α = 0.10 ± 0.02, A+/A− = 0.52, having used
a fitting range of 4.8 × 10−2 − 9.4 × 10−3 for t < TC and
4.6 × 10−2 − 1.1 × 10−4 for t > TC . It was also confirmed
that the theoretical Heisenberg parameters did not allow the
fitting of the curve.

Thus, also in this second case, all critical exponents
α,A±,β,γ, and δ agree with the anisotropic Ising model.

IV. DISCUSSION

All the experimental results and fittings shown in the
previous section are clearly in agreement with the 3D-Ising
universality class, thus stating that the effects of magne-
tocrystalline anisotropies are the leading terms in the critical
fluctuations close to the critical temperature, in opposition
to the exchange mechanism, which is consistent with the

3D-Heisenberg class. A crossover behavior from a long-range
mean field model to a short range one is expected as TC

is approached due to the growing relevance of the critical
fluctuations of the order parameter. Kim et al. found in a similar
system (La0.75Sr0.25MnO3) [17] that the expected crossover
sequence (mean-field model to 3D-Heisenberg to 3D-XY to
3D-Ising) can be overruled if the temperature region in which
the 3D-Heisenberg model could suitably describe the system
is overlapped by the region in which the magnetic anisotropies
are important. They were able to evaluate in that case the
crossover temperatures and indeed found an overlap, which did
not allow them to see a 3D-Heisenberg behavior but directly
a 3D-Ising one, as it is now the case with Pr0.6Sr0.4MnO3 and
Nd0.6Sr0.4MnO3.

As stated in the Introduction, the critical behavior of
Pr0.6Sr0.4MnO3 has already been studied by Hcini et al. [20],
Rößler et al. [21], and Masheswar Repaka et al. [22], Table III
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presents the critical exponents found in those studies together
with the ones obtained in the present paper; all the rest of the
critical exponents cited in the Introduction have also been
included in that table. In order to compare the quality of
the results, some things must be considered, apart from the
final figures given in each paper: the type of crystals, the
particular experiments performed, and the data treatment;
the way parallelism is checked or arrived at for the MAPs;
and the number of points used for the fit in the Kouvel Fisher
method are hints of the rigor employed in extracting conclu-
sions from the data. Though δ is not a good discriminator
among models (as it is too similar for several of them), the
critical isotherm method from which it is extracted is important
to verify if indeed theory is complied in a wide enough region
of magnetic field and to check the fulfillment of Eq. (7) so that
everything is coherent. Finally, the fulfillment of the magnetic
equation of state [Eq. (5)] with the curves collapsing in two
independent branches is also a strong indicator of the quality
of the study. So all of this must be taken into account besides
the particular values of α,β,γ in Table III. It has already
been pointed out in the Introduction that the specific heat
critical parameters are the most reliable because of the bigger
difference among models.

In the three cases mentioned above for Pr0.6Sr0.4MnO3,
the conclusions were that this particular composition belongs
to the Heisenberg class. But in the first and the third
papers, the samples were not single crystals. The transitions
are heavily rounded in the near vicinity of the critical tem-
perature in polycrystals compared to single crystals, making
it more difficult to reveal the possible nonisotropic features
in the critical behavior, as the critical exponents are extracted
from the shape of the transition close enough to TC . Thus,
average effects can arise in polycrystals. Besides, in Ref. [20],
the parallelism of the MAP curves for the Heisenberg case
is nearly nonexistent, the number of points for the Kouvel
Fisher plots is too small to draw significant conclusions,
and the value for γ (1.304) is really in the middle of the
ones for Heisenberg and Ising (1.386–1.237). Reference [22]
only presents the MAP, there is no further analysis (Kouvel
Fisher, critical isotherm, magnetic equation of state, etc.).
Reference [21], on the other hand, is a very complete study
done using single crystals. Though their conclusion is that the
Heisenberg model is of application, they also ascertain that
their MAPs give straight parallel lines both for the Heisenberg
and Ising theoretical values (though they only show the first
one so it is not possible to make the comparison). In several
occasions through the paper, they affirm that there is an
expected crossover to a 3D-Ising model but that they are
not able to see it. Finally, the information about the critical
exponent α is extracted from a specific heat curve with low
resolution; higher resolution measurements are necessary to be
able to discriminate among the different short range models
(they do not mention whether a fitting with the Ising values was
tried, for instance). In their conclusions they accept that the
magnetic anisotropy influences the scaling analysis even if they
do not obtain the Ising exponents, as it has happened with our
paper.

Concerning Nd0.6Sr0.4MnO3, its critical behavior has only
been studied once, to our knowledge, using the inverse of
thermal diffusivity, and the conclusion was that it corresponded

to the Ising universality class [25]. This last study was done
with a single crystal different to the one used here, grown
at another lab. The only close composition studied (which
corresponds to a similar phase diagram) is Nd0.7Sr0.3MnO3,
and the conclusion was that the critical exponents were
in-between the mean field model and the Heisenberg case,
but, unfortunately, the quality of the MAP, Kouvel Fisher, and
scaling plots is not as good as in this case [24].

What is not yet clear is the origin of the magnetocrystalline
anisotropies that make Pr0.6Sr0.4MnO3 and Nd0.6Sr0.4MnO3

well described by the 3D-Ising universality class. A first
possibility is the rare-earth magnetism of Pr and Nd, which
might interact with the manganese spin network, as it has been
proposed in some manganites [21,34]. Besides, it must be
taken into account that although these concentrations (x = 0.4)
are thought to be far from the charge-ordered antiferromag-
netic phase with charge localization (x = 0.5) where phase
segregation is well established [35], in some studies it was
found that Nd1−xSrxMnO3 (x = 0.3,0.4) also presented a
weaker mechanism of carrier localization as well as phase
segregation [36–38]. In other papers for x = 0.3, a competition
between the double exchange mechanism and correlations
arising from coupled spin and lattices degrees of freedom
was found [24,37]. All of this suggests that the paramagnetic
to ferromagnetic transition at these concentrations is not a
conventional continuous phase transition. In fact, the CMR
effects observed in manganites have been theorized to be
related to the formation of correlated magnetic polarons as
well as electronic phase separation [39]. The way this might
affect the description of the critical behavior is still a question
to be developed from the theoretical point of view. Bear in mind
that if a ferromagnetic system is simply and fully described
by the double-exchange mechanism, theory assesses that it
should be described by the 3D-Heisenberg model [8]. This
implies that the description of these ferromagnetic transitions
is much more complex than thought.

So far, we have only included in the comparisons the man-
ganite systems that are very similar (from the point of view of
the phase diagram) to the concentrations studied in this paper,
but the comparison can also be made with a broader perspective
to include other manganite systems whose critical behavior
has been studied as well. Table III contains all the critical
parameters in the papers cited in what follows. After Dagotto
et al.’s classification, the manganites systems can be subdi-
vided into large-bandwidth manganites (as La1−xSrxMnO3),
intermediate-bandwidth manganites (as La1−xCaxMnO3), and
low-bandwidth manganites (as Pr1−xCaxMnO3), with phase
diagrams very different from one group to another, though
there are certain similarities at particular concentrations [40].
Though Nd1−xSrxMnO3 could be included in the intermediate-
bandwidth group due to the presence of a charge-order phase
in a thin range of concentrations, the general aspect of the
phase diagram is much more similar to that of La1−xSrxMnO3.
The Pr1−xSrxMnO3 phase diagram is certainly closer to
La1−xSrxMnO3 than to Pr1−xCaxMnO3, which does not even
have a ferromagnetic metallic phase but an insulator one.
This means that Nd1−xSrxMnO3 and Pr1−xSrxMnO3 fall
better in the large-bandwidth group. The critical behavior of
La1−xCaxMnO3 and Pr1−xCaxMnO3 has also been studied
lately at the same time that their phase diagrams have been
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refined. La0.6Ca0.4MnO3 is not a good comparison with
the samples studied in this paper, as there is a tricritical
point at that concentration, with critical exponents obtained
in agreement with that tricriticality [41,42]. An interesting
result is that in La1−xCaxMnO3 the 3D-Heisenberg model
is only of application for x < 0.2, having observed severe
deviations at x � 0.2 (at x = 0.3 there is even a first order
transition) [43,44]. In particular, at x = 0.2, the observed
critical exponents are between the 3D-Heisenberg and the
3D-Ising model [42]. On the other hand, Pr1−xCaxMnO3

has been found to agree with the Heisenberg model for
x = 0.25, 0.27, but there are discrepancies for x = 0.3 where
a mean-field model behavior has also been found [27,45]. The
general conclusion from this broad comparison is that critical
behavior is especially complex when hole- or electron-doping
is higher than a certain minimum value and that the evolution
of the critical exponents with doping is different in the three big
families. Our paper as well as other literature results suggest
that the 3D-Ising behavior needs to be strongly taken into
account in the large-bandwidth manganites at intermediate
concentrations, as plainly seen in Table III.

Finally, we can go further and compare the critical
behavior found in this paper with the one observed for
R1−xSrxMnO3 (R = Pr, Nd), with x close to 0.5 (where
charge order and charge localization are well established):
they have in common that anisotropies also need to be taken
into account to explain the experimental results. The critical
exponents found in those cases are between the mean field
model and the 3D-Heisenberg class, and a new universality
class has been proposed where the Hamiltonian could combine
a model of two-dimensional Heisenberg spins with long
range interaction [46,47]. A magnetostructural coupling has
been found for the case of R = Pr [35], while for R = Nd
long-range dipolar interactions have been invoked to explain
the deviations from the exchange regime [48].

This implies that much more experimental work
is needed to fully characterize the magnetism of
R1−xSrxMnO3 (R = Pr, Nd) with x = 0.4. Besides, it would
also be interesting to perform complete critical behavior stud-
ies in more manganites R1−xSrxMnO3 (0.25 � x � 0.45),
extracting independently α, β, γ, and δ, to fully evaluate the
extension of the universality of the Ising class in this range, as
several studies point out through the years.

V. CONCLUSIONS

A comprehensive and detailed critical behavior study of
the paramagnetic to ferromagnetic transition in R0.6Sr0.4MnO3

manganites (R = Pr, Nd) has been carried out using magnetic
as well as calorimetric techniques in order to independently
extract the critical exponents α,β,γ, and δ. In each case (R =
Pr or Nd), the values of these exponents match among them
and correspond to the 3D-Ising universality class, indicating
that the description of the magnetic transition must take
into account the existence of mechanisms that introduce
magnetocrystalline anisotropies in the system and thus can-
not be simply described by the expected double exchange
mechanism. Further studies concerning the magnetism of these
systems should be undertaken in order to find a theoretical
explanation for this anisotropy.
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