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The elastic moduli, elastic anisotropy coefficients, sound velocities and Poisson’s ratio of hcp solid helium
have been calculated using density functional theory in generalized gradient approximation (up to 30 TPa),
and pair + triple semiempirical potentials (up to 100 GPa). Zero-point vibrations have been treated in the
Debye approximation assuming 4He isotope (we exclude the quantum-crystal region at very low pressures from
consideration). Both methods give a reasonable agreement with the available experimental data. Our calculations
predict significant elastic anisotropy of helium (�P ≈ 1.14, �S1 ≈ 1.7, �S2 ≈ 0.93 at low pressures). Under
terapascal (TPa) pressures helium becomes more elastically isotropic. At the metallization point, there is a sharp
feature in the elastic modulus CS , which is the stiffness with respect to the isochoric change of the c/a ratio.
This is connected with the previously obtained sharp minimum of the c/a ratio at the metallization point. Our
calculations confirm the previously measured decrease of the Poisson’s ratio with increasing pressure. This is
not a quantum effect, as the same sign of the pressure effect was obtained when we disregarded zero-point
vibrations. At TPa pressures, Poisson’s ratio reaches the value of 0.31 at the theoretical metallization point
(Vmol = 0.228 cm3/mol, p = 17.48 TPa) and 0.29 at 30 TPa. For p = 0, we predict a Poisson’s ratio of 0.38,
which is in excellent agreement with the low-p-low-T experimental data.

DOI: 10.1103/PhysRevB.92.024102 PACS number(s): 67.80.B−, 62.20.de, 62.20.dj, 71.15.Mb

I. INTRODUCTION

Helium is the second element in the periodic table, as
well as the second most abundant chemical element in the
universe. It is a major constituent of both stars and giant
planets, and it is involved in several different nuclear fusion
reactions. Its high-pressure physical properties are therefore
rather important for many different branches of natural science.
The low-temperature behavior of helium is well-known but
rather peculiar: it stays liquid up to the absolute zero while
becoming superfluid, quantum freezes under pressure, and
demonstrates quantum-crystal behavior in the solid phase.
These quantum effects are a consequence of the relatively
small mass of the He atom (≈7296 electron masses for
4He) and weak interatomic interaction. Solid helium is a
close-packed atomic crystal with nearly spherically symmetric
He atoms. 4He has hexagonal close-packed (hcp) structure
everywhere except for the small body-centered cubic (bcc)
and face-centered cubic (fcc) regions near the melting line on
the (p,T ) phase diagram [1]. The c/a ratio of the hcp structure
is close to the ideal value

√
8/3 ≈ 1.633 [2,3].

While helium has been an object of intensive experimental
study for more than a century, the high-pressure experimental
breakthrough happened in the last few decades due to the
invention of diamond anvil cells. The elastic moduli of hcp
helium up to 32 GPa, as well as the sound velocities, the
Poisson’s ratio (PR), and the elastic anisotropy parameters,
have been measured experimentally by Zha et al. [4].
The results were somewhat unexpected. First, a significant

anisotropy of elastic properties was found. The problem of
the elastic anisotropy of helium is important for high-pressure
experimental techniques, as helium is frequently used as a
quasi-hydrostatic medium [5]. Second, the Poisson’s ratio
was found to decrease with increasing pressure, which is a
rather unusual behavior, as for most solids PR increases with
pressure, approaching 1/2 at megabar pressures. A similar
decrease of PR with pressure has been observed in solid
hydrogen [6]. Such anomalous PR behavior of He was often
thought to be a quantum zero-point vibration (ZPV) effect,
however, as we show in the present paper and in Ref. [7], this is
not the case. A theoretical calculation of elastic moduli by Nabi
et al. [8] using density functional theory (DFT) in the local
Airy gas (LAG) approximation, local density approximation
(LDA), and generalized gradient approximation (GGA) soon
followed the experiment. The calculated elastic moduli were in
a reasonably good agreement with experiment. Unfortunately,
the authors of Ref. [8] did not calculate Poisson’s ratio, and
did not study the elastic anisotropy in any detail either.

The goal of the present paper is to clarify the two issues
introduced above. We calculate the elastic moduli of hcp He
as a function of pressure using two complementary methods:
DFT-GGA and semiempirical (SE) potentials, specifically fo-
cusing on the Poisson’s ratio and elastic anisotropy parameters.
We extend our GGA calculations into the metallic phase (up to
p = 30 TPa) in order to check the effect of terapascal pressures
and the metallization transition on the elastic properties of
helium. We also study the effect of zero-point vibrations in the
Debye approximation on the physical quantities in question
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(for 4He) in order to determine whether quantum effects play
any significant role at high (p � 10 GPa) pressures.

The paper is organized as follows. In Sec. II, we outline the
two approaches for calculating the total energy (DFT-GGA
and SE), and then give a brief introduction to the elasticity
of hexagonal crystals and the algorithm of calculating elastic
moduli of an hcp crystal [9], and define the physical quantities
used in the present paper. In Sec. III, we present the results of
our calculations.

II. METHOD

A. Total energy calculations

Helium consists of electrons and nuclei, and due to the
relatively small mass of the latter, their quantum zero-point
motion cannot be ignored in general. Many different numerical
methods have been applied to solid helium [10–12]. The elec-
tronic subsystem can either be described from first principles,
like in density functional theory (DFT)-based methods, or
replaced by empirical pairwise or n-body interactions between
nuclei. The quantum and thermal motion of the nuclei can
be analyzed either in the harmonic approximation, or using
anharmonic approaches, such as diffusion Monte Carlo (DMC)
and other Monte Carlo methods [10].

For the elasticity calculations, pair potentials are not
sufficient. We have opted to use DFT in the generalized
gradient approximation (GGA) as our main method. We have
also used pair and three-body empirical potentials for the
p � 100 GPa range. For the quantum zero-point vibrations,
we have used a simple harmonic Debye approximation (see
below). While such approach is rather crude, and the use
of harmonic approximations for He atoms has been recently
criticized in Ref. [11], we chose it as it is computationally
cheap and consistent with a full DFT treatment of the electronic
subsystem.

For the density functional theory calculations, we have
used the all-electron full-potential linear muffin tin orbital
(FP-LMTO) code RSPt [13] with the GGA functional of
Perdew, Burke, and Ernzerhof (PBE) [14]. The basis set
included the 1s, 2p, and 3d electrons of helium, with two
LMTO basis functions with kinetic energies −0.1 and +0.1 Ha
per each atomic orbital, respectively. We used 847 k points in
the Brillouin zone.

For the semiempirical calculations, we have used the pair
and triple SE potentials described in Ref. [15]. They include
the Aziz pair potential in the Silvera-Goldman form and the
three-body potential in the Slater-Kirkwood form. These are
exactly the potentials used in our previous works [2,3,7,16,17]
on helium. The cutoff radii R2 = 50.2a and R3 = 10.2a were
used for pair and triple forces, respectively, with a being the
lattice constant.

Both DFT and SE calculations were performed for zero
temperature, and the zero-point vibrations were neglected at
first. The effect of ZPV was later accounted for in the Debye
approximation. In contrast to Ref. [8], we found the pressure-
dependent equilibrium c/a ratios as described in Refs. [2,3]
and used them for all our calculations. All our results are well
converged with respect to the number of k points (GGA) and
cutoff radii (SE), respectively.

DFT-GGA and SE can be seen as complementary methods.
Semiempirical potentials usually work very well for low
pressures, but fail for higher pressures where four-body and
higher-order n-body forces become important. For helium, the
threshold pressure is of the order of 100 GPa [2,3]. GGA, on
the other hand, can be inaccurate at low pressures due to the
poor description of the van der Walls (vdW) forces. It has been
shown [11] that the effect of the vdW forces is rather small in
the gigapascal pressure range.

B. Elasticity under initial pressure

This section and the remaining part of Sec. II deal with
the elasticity theory for a hexagonal crystal under pressure
and the method of calculating elastic moduli numerically. It
includes the main results of Refs. [9,18,19], and other works.
This material has never before been gathered in one place,
therefore we decided to give a brief introduction to the method
as a whole, presenting all relevant formulas and stressing some
important points.

If a strain is applied to an elastic medium, each point r of
the medium is shifted to a new position r′(r), and we can define
tensor uij as

uij ≡ ∂x ′
i

∂xj

= eij + ωij , (1)

where eij = (uij + uji)/2 and ωij = (uij − uji)/2 are the
symmetric strain tensor and the antisymmetric rotation tensor,
respectively, and the tensor indices i,j = 1,2,3 number the
three Cartesian (not crystal) coordinates. Summation over
repeated tensor indices is assumed. In the present paper,
we do not consider rotations, so we always assume that
uij = uji = eij and ωij = 0. Note that we are not using the
Lagrangian strain tensor ηij ≡ (uij + uji + ukiukj )/2 in the
present paper. The difference between eij and ηij is important
under external pressure.

The volume of the strained medium is

V ′ = V det(δij + uij ) = V + �V + O(u3), (2)

where

�V = V
(
uii + 1

2 (uii)
2 − 1

2uijuji

)
(3)

is the change of volume up to the second order in uij , and we
have used the identity det Â = exp Tr ln Â to expand V ′ in
powers of uij .

The elasticity theory for a medium under external stress
σ

(0)
ij is rather nontrivial [18,20] and there is no straightforward

generalization of the zero-pressure stiffness tensor Cijkl .
However, theory simplifies for the case of the isotropic external
pressure σ

(0)
ij = −pδij . The stress-strain relation up to the first

order in uij is [18]

σij = Cijkl(p)ukl − pδij , (4)

where the rank-four pressure-dependent stiffness tensor
Cijkl(p) (tensor of elastic moduli, called c̊αβστ in Ref. [18])
has the same symmetry as the zero-pressure Cijkl , namely,

Cijkl = Cjikl = Cijlk = Cklij . (5)
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The elastic energy density up to the second order in uij is [18]

ε ≡ E

V
= 1

2
Cijkl(p)uijukl − p

�V

V
, (6)

where �V is defined in Eq. (3). The terms of the order u2 in
�V are important, as they are of the same order as the first
term in Eq. (6). Note that the energy density ε is defined with
respect to the undeformed volume V , not V ′. The total energy
E gives the adiabatic stiffness tensor, while for the isothermic
one, the Helmholtz free energy F = E − T S should be used
instead. In this paper, we limit ourselves to the case T = 0,
so there is no distinction between the two. The equation of
motion of the elastic medium up to the first order in uij is [18]

ρ
∂2ui

∂t2
= Cijkl(p)

∂2uk

∂xj∂xl

, (7)

where ui ≡ x ′
i − xi .

When calculating the elastic moduli numerically from
Eq. (6), one must be careful with the −p�V/V term, as it
includes u2 terms. One way of addressing the problem is to
calculate bulk and shear moduli separately [9,21]. The Voigt
bulk modulus is defined as the bulk modulus under the uniform
strain (i.e., the lattice geometry is not allowed to change as the
volume changes):

KV = −V
d2E

dV ′2

∣∣∣∣
V ′=V, fixed geometry

. (8)

It can be shown that KV (p) = Ciikk(p)/9 and it does not
depend on p explicitly. The Reuss bulk modulus is defined
as the bulk modulus under the uniform stress (i.e., the lattice
geometry is changed as the pressure changes):

KR = −V
d2E

dV ′2

∣∣∣∣
V ′=V, relaxed geom.

= V

(
dV ′

dp′

∣∣∣∣
p′=p

)−1

. (9)

KR is equal to 1/Siikk(p), where Sijkl(p) is the compliance
tensor, the inverse of Cijkl(p), and again it does not depend on
p explicitly. The shear moduli are calculated from Eq. (6) using
strains uij , which are isochoric (volume-conserving) exactly,
or in the second order of uij at least, so that �V = 0 in Eq. (6)
and the elastic energy is proportional to the shear modulus in
question times u2, without any additional terms proportional
to pu2.

Hexagonal close-packed (hcp) crystal lattice has lattice
vectors

a1 = a

⎡
⎣1

0
0

⎤
⎦, a2 = a

⎡
⎣−1/2√

3/2
0

⎤
⎦, a3 = c

⎡
⎣0

0
1

⎤
⎦, (10)

where a and c are two pressure-dependent lattice constants.
The atom positions in the undeformed hcp lattice are

(0,0,0),
(

2
3 , 1

3 , 1
2

)
(11)

in crystal coordinates. When a uniform strain uij is applied to
the medium, any point xi changes to x ′

i = (δij + uij )xj , i.e.,
the atoms form a deformed crystal lattice with new lattice
vectors

a′
i = (δij + uij )aj . (12)

Special care must be taken when applying strain to a lattice
with more than one atom per unit cell. The expression (12)
determines only the change of three lattice vectors under strain,
but tells nothing about the positions of the atoms within the
unit cell. Such positions are not determined by macroscopic
elasticity theory and must be allowed to relax in total energy
calculations. If they change linearly in uij under strain, this
affects the calculated elastic constants. In other words, to
obtain correct results, we must minimize the total energy with
respect to all atomic positions for each applied finite strain.
The hcp lattice has two atoms per unit cell, and their positions
are fixed by symmetry for the undeformed lattice, however, for
certain strains (like the orthorhombic strain, see below), they
indeed change linearly in uij .

In Voigt notation,

(11,22,33,23,31,12) → (1,2,3,4,5,6), (13)

the stiffness tensor of a hexagonal crystal is specified by five
independent elastic constants C11, C12, C13, C33, and C44:

Cij =

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

⎤
⎥⎥⎥⎥⎥⎦

.

(14)

C. Calculation of elastic constants

If we have any method of calculating the energy of the
crystal for a given volume V , c/a ratio, and strain uij , like DFT
or SE, we can calculate the five elastic constants numerically
by applying the several independent strains in Eq. (6). An
efficient way to do this for the hcp lattice has been proposed
by Steinle-Neumann et al. [9]. As explained above, bulk and
shear moduli are calculated separately.

First, we calculate the total energy E(V ) as a function
of volume (in practice, the molar volume Vmol = V NA/N is
used, where N is the number of atoms, and NA is Avogadro’s
number). For each volume, the energy minimum with respect
to the ratio c/a is found, and E(V ) is defined as the energy of
this minimum. The ideal c/a ratio (corresponding to the close-
packing of hard spheres) is

√
8/3 ≈ 1.633, and for helium the

c/a ratio is rather close to the ideal value [2]. The equation of
state (EOS) p(V ) and the Reuss bulk modulus KR are found
as

p = −dE

dV
, KR = −V

dp

dV
= d2E

dV 2
. (15)

In practice, the energy E(V ) is approximated (via least square
fit) by the Rose-Vinet equation of state [22], which allows
for an accurate numerical differentiation. For GGA, we were
unable to find a single Rose-Vinet fit, which would be accurate
in both GPa and TPa pressure ranges, therefore we had to use
two different parametrizations.

By using a diagonal stress σij = −(p + �p)δij , which is an
infinitesimal change of pressure, we can show that the Reuss
bulk modulus is

KR = Q

CS

, (16)
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where

Q ≡ C33(C11 + C12) − 2C2
13, (17)

CS ≡ C11 + C12 + 2C33 − 4C13. (18)

The corresponding strain [found from Eq. (4)] is

uij = −�p

Q

⎡
⎣C33 − C13 0 0

0 C33 − C13 0
0 0 C11 + C12 − 2C13

⎤
⎦.

(19)

Equation (16) is the first equation we use for determining five
elastic constants. From Eq. (19), we can find the logarithmic
derivative of c/a with respect to volume

R ≡ −d ln(c/a)

d ln V
= 1

CS

(C33 + C13 − C11 − C12). (20)

This is the second equation we need. An analytic parametriza-
tion of c/a(Vmol) is used for numerical differentiation as usual.

From now on we are going to use only exactly isochoric
(volume-conserving) strains as explained above. In order to
calculate CS , Ref. [9] used an isochoric c/a-changing strain,
however, it is not necessary, as we can use an equivalent
formula,

CS = 9

2V

(
c

a

)2
∂2E(V,c/a)

∂(c/a)2
, (21)

taken at the equilibrium c/a. We use the energies E(V,c/a)
calculated previously when we looked for the equilibrium
c/a for each volume and approximate it by a fourth-order
polynomial of c/a. Equation (18) with CS from Eq. (21) is the
third equation for the five elastic moduli. We now have three
equations for three variables, C11 + C12 (in this combination
only), C13, and C33. They can be solved to obtain

C11 + C12 = 2KR + CS

9
(2R − 1)2, (22)

C13 = KR + CS

9
(2R − 1)(R + 1), (23)

C33 = KR + 2CS

9
(R + 1)2. (24)

We need two more isochoric strains to find C44 and C66 ≡
(C11 − C12)/2. C44 is found from the monoclinic strain

uij =
⎡
⎣0 0 t

0 t2

1−t2 0
t 0 0

⎤
⎦, (25)

with ε = 2C44t
2 + O(t4). Alternatively, C44 for the hcp lattice

can be obtained from the calculated E2g Raman frequency
using the formula [23]

C44 = m

4
√

3

c

a2
ν2

E2g
, (26)

as we did previously in Ref. [17]. The resulting values for C44,
obtained using these two approaches agree within 1%. For C66,

we use the orthorhombic strain

uij =
⎡
⎣t 0 0

0 −t 0
0 0 t2

1−t2

⎤
⎦, (27)

which gives ε = 2C66t
2 + O(t4) = (C11 − C12)t2 + O(t4).

Note that for this strain the atomic positions change under
strain. The position of atom 2, which is (2/3,1/3,1/2) for
the undeformed lattice, becomes ((1 + λ)/2,λ,1/2), with the
parameter λ depending linearly on t as λ = 1/3 − gt + O(t2).
It means that we have to relax the parameter λ for each finite
strain t in order to calculate the correct elastic energy. In our
calculations of C44 and C66, we have used five t points t =
0, ± 0.005, ± 0.010 (for very high pressures smaller values
of t were used) and interpolated the energy E(t) with a
fourth-order polynomial in order to find the coefficient before
t2. The results obtained this way are virtually independent on
the particular values of t used. Such approach is vital for C66,
while for C44 the E(t) dependence is almost exactly quadratic
in t in a wide range of t . With C44 and C66 calculated, we can
finally determine all five elastic constants of the hcp lattice. The
quantities C44, C66, and CS/6 are three different shear moduli
for three independent pure shear (isochoric) deformations.
They are all equal for an isotropic solid.

D. Anisotropy parameters

The three acoustic sound velocities (one compressional and
two shear ones) of the hexagonal lattice are [6,24]

ρv2
P = A + B

2
, (28)

ρv2
S1 = C11 − C12

2
sin2 θ + C44 cos2 θ, (29)

ρv2
S2 = A − B

2
, (30)

where

A ≡ C11 sin2 θ + C33 cos2 θ + C44, (31)

B2 ≡ [(C11 − C44) sin2 θ + (C44 − C33) cos2 θ ]2

+ (C13 + C44)2 sin2(2θ ), (32)

and θ is the angle between the wave vector q and z.
The elastic anisotropy of a hexagonal crystal can be

described by the anisotropy parameters of these three acoustic
waves [9]:

�P = C33

C11
, (33)

�S1 = C11 + C33 − 2C13

4C44
= CS + 2C66

8C44
, (34)

�S2 = 2C44

C11 − C12
= C44

C66
. (35)

For an isotropic medium, this quantities are equal to one. Note
that for a cubic crystal, �P is equal to unity, and �S1 is the
single anisotropy parameter (C11 − C12)/(2C44) of the cubic
crystal. �S2 is ambiguous, as there is no condition C66 =
(C11 − C12)/2 for the cubic symmetry, but instead C44 = C66.
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E. Aggregate properties: Voigt and Reuss approaches

Aggregate description replaces an actual crystal with an
effective isotropic elastic medium, described by an average
bulk modulus K and an average shear modulus G, with

Cijkl = (
K − 2

3G
)
δij δkl + G(δikδjl + δilδjk). (36)

It is a good approximation for polycrystalline solids and
mixtures. The compressional and shear sound velocities are

vP =
(

K + 4
3G

ρ

) 1
2

, vS =
(

G

ρ

) 1
2

. (37)

This is often written as v2
P = v2

B + 4
3v2

S with vB = (K/ρ)
1
2

being the bulk (hydrodynamic) sound velocity. It has no direct
physical meaning for a crystal, however, it corresponds to
the sound velocity of the liquid phase, as can be seen at the
liquid-solid transition in Ref. [4]. The Poisson’s ratio is defined
as

σ ≡ 1

2

3K − 2G

3K + G
= 1

2

3v2
B − 2v2

S

3v2
B + v2

S

= 1

2

v2
P − 2v2

S

v2
P − v2

S

. (38)

In order to find the values of K and G consider a polycrys-
talline solid consisting of grains of all possible orientation,
and use Voigt and Reuss estimates of its elastic moduli. In the
Voigt approach, a uniform strain field uij (of either uniform
compression or a shear type) is applied to the mixture, and K

and G are found from the averaged elastic energy density. For
a polycrystal, this means averaging the elastic energy over all
possible orientations of the crystal relative to the strain field
uij . The Reuss approach uses uniform stress instead. The bulk
moduli defined in this way are equal to KV and KR defined
above. For a hexagonal lattice, the bulk and shear moduli are
[19]

KV = 1
9 (2C11 + C33 + 2C12 + 4C13), KR = Q

CS

, (39)

GV = 1
30 (CS + 12C44 + 12C66), (40)

GR = 5

2

QC44C66

3KV C44C66 + Q(C44 + C66)
. (41)

Finally, we use the Voigt-Reuss-Hill average scheme to obtain
K and G:

K = KV + KR

2
, G = GV + GR

2
. (42)

F. Zero-point vibrations

In our calculations, we have treated zero-point vibrations
within the framework of the Debye model. As discussed above,
this approach is by no means exact, especially at low pressures,
but it gives us a good estimate of the effect of ZPV on the elastic
properties. Using K and vS obtained in the absence of ZPV,
we calculate the Debye temperature

TD = �

kB

[
Vmol

18π2NA

(
1

v3
P

+ 2

v3
S

)]−1/3

, (43)

zero-point energy

Ezp = 9

8
NkBTD, (44)

and the corresponding contributions to pressure and the bulk
modulus:

�p = −dEzp

dV
= −9

8
NAkB

dTD

dVmol
, (45)

�K = −Vmol
d�p

dVmol
= 9

8
VmolNAkB

d2TD

dV 2
mol

. (46)

We find the volume derivatives of TD analytically, using the
Rose-Vinet expression for K and a simple parametrization for
vS . Below, we always compare results with and without ZPV
in order to measure the importance of quantum effects on each
physical quantity. 4He isotope was assumed for all our ZPV
calculations.

III. RESULTS AND DISCUSSION

A. Equation of state, metallization, and the c/a ratio

The calculated equations of state (EOS) p(Vmol) of the
hcp helium are presented in Fig. 1 and compared with the
experimental data [4]. The four curves correspond to our four
approaches: SE and GGA, with and without ZPV. EOS can
be viewed as an auxiliary quantity in our calculations, as it is
used to calculate the Reuss bulk modulus. It is also used to
change variables from Vmol to p, which is done to obtain the
p-dependent quantities presented in all figures of the present
paper. For this, we always used the respective EOS for each
of the four approaches, e.g., a GGA + ZPV EOS was used for
GGA + ZPV elastic moduli, but SE (No ZPV) EOS was used
for SE (No ZPV) elastic moduli.

The semiempirical potentials underestimate the pressure p

for a given Vmol, but zero-point vibrations improve the agree-
ment with the experiment significantly. GGA overestimates
the pressure, and the inclusion of ZPV makes things worse.

FIG. 1. (Color online) Equation of state of hcp helium. (Inset)
High-pressure region. The vertical line indicates the GGA metalliza-
tion point.
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The effect of ZPV is more pronounced in the SE approach, as
the SE pressure for a given Vmol is smaller compared to GGA.

The inset of Fig. 1 shows the high-pressure EOS (GGA
with and without ZPV) for pressures up to the metallization
point and above. The metallization takes place at Vmol = 0.228
cm3/mol in our GGA calculations [3] (p = 17.48 TPa from
our GGA + ZPV EOS, or p = 17.08 TPa without ZPV).
This point is shown as the vertical line in the inset of
Fig. 1. Our metallization volume and pressure are in good
agreement with previous GGA results [12,25]. Note, however,
that GGA seriously overestimates the metallization volume
(by about 20% for He according to the diffusion Monte
Carlo and GW studies [12,25]), thus underestimating the
metallization pressure. Moreover, it has been recently shown
[12] that vibrational degrees of freedom further increase the
metallization pressure, but these effect cannot be reproduced in
the harmonic approximation. Reference [12] gives the value
p = 32.9 TPa. Such questions are beyond the scope of the
present paper. We use only GGA with ZPV in the harmonic
Debye approximation, which results in an underestimated
metallization pressure of 17.48 TPa.

Our calculated c/a ratios have been presented previously in
Refs. [2,3]. SE and GGA give somewhat different c/a(Vmol)
curves, but both methods give lattice distortions δ ≡ c/a −√

8/3 of the order of 10−3 at pressures up to 150 GPa. δ

is negative for p > 13 GPa in both approaches. For the TPa
pressures, the magnitude of the negative δ obtained with GGA
grows, and it reaches a sharp minimum δ ≈ −0.05 at the
metallization point Vmol = 0.228 cm3/mol (Ref. [3]).

B. Elastic moduli and the elastic anisotropy

The five elastic moduli for the pressures up to 150 GPa are
presented in Fig. 2. Again, we compare our four theoretical
approaches with the experimental data of Zha et al. [4].
Note that all our calculations were done for T = 0, while
the experimental elastic moduli were measured at room
temperature T = 300 K, which can be one of the reasons for
the theory-experiment discrepancies. Both SE and GGA are in
reasonable agreement with the experiment, although neither
method gives a perfect quantitative match. GGA seems to be
the more consistent of the two. Our GGA results without ZPV
are close to the GGA and LAG results obtained in Ref. [8]. The
DFT-GGA errors mainly stem from the inaccuracy of the GGA
functional itself, we have checked that the parameters of the
FP-LMTO calculations (number of k points, tail energies, etc.)
have minimal effect on the results. It is unlikely that the errors
of the SE approach (at least for the pressures p � 50 GPa) are
caused solely by the neglect of the four-body and higher-order
n-body forces. The most likely reason for the SE-experiment
differences (apart from the temperature effect) is that the elastic
moduli are sensitive to the particular parametrization [15] of
the pair and triple forces. The effect of ZPV, while noticeable,
does not affect the elastic moduli in any drastic way.

In Fig. 3, the calculated elastic moduli (GGA + ZPV) are
presented for the terapascal pressure range. The two additional
shear moduli C66 and CS/6 are also shown. Significant features
are seen at the GGA metallization point p = 17.48 TPa.
They are most likely finite discontinuities (steps), however,
the critical behavior at the metallization transition is beyond

FIG. 2. (Color online) Five elastic constants of hcp helium vs
pressure.

the scope of the present paper and would be difficult to
investigate accurately with the methods we employ. Of the

FIG. 3. (Color online) Elastic moduli (GGA + ZPV only) of hcp
helium under terapascal pressures. Symbols are the calculated data
points. The vertical line indicates the GGA metallization point. C66 ≡
(C11 − C12)/2 and CS/6 are also presented.
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three elemental shear moduli only CS/6 has a large jump
(≈ −5%) at the metallization point, while the behavior of
C44 and C66 is relatively smooth. Remember that CS is the
measure of stiffness of the crystal with respect to the isochoric
change of the c/a ratio, so it is not unexpected that the
behavior of CS is irregular at the point where c/a has a sharp
minimum [3]. Note that CS(p) also behaves rather nonlinearly
in the metallic phase. These irregularities in CS affect the five
elastic constants, most notably C13 and C33, via Eqs. (22)–
(24). The hcp lattice is dynamically stable for the whole
pressure range considered, i.e., the conditions [8] C44 > 0,
C11 > |C12|, C11C33 > (C13)2 and C33(C11 + C12) > 2C2

13 are
fulfilled, which ensures that the single-crystal sound velocities
(28)–(30) are real.

All our calculations were done for the relaxed c/a ratio,
and the effect of the volume dependence of c/a has been taken
into account through the parameter R. In order to test the
importance of the c/a distortion for the elastic moduli, we have
also performed calculations with R = 0, like in Ref. [8]. Our
results (not shown) indicate that the difference is barely visible
for pressures up to 150 GPa, however, it becomes significant
(about 5%) for the TPa pressure range, and it noticeably affects
the features near the metallization point. We took great care
in choosing the parametrization of the function c/a(Vmol) that
reproduces the sharp minimum in c/a well.

The elastic anisotropies �P , �S1, and �S2 are presented
in Fig. 4. The compressional anisotropy �P is close to the
isotropic value of 1 in the experiment, however, both GGA
and SE predict a noticeable anisotropy �P > 1. GGA gives a
virtually pressure independent value �P ≈ 1.14, while the
semiempirical �P grows from ≈1.1 at low pressures to
≈1.25 at 100 GPa. �S1 is about 1.2–1.3 in the experiment,
both GGA and SE overestimate it significantly, giving values
of the order of 1.6–1.7. The third parameter, �S2, is always
less than one in both theory and experiment. SE and GGA,
however, give values closer to 1 than the experiment, thus
underestimating the anisotropy.

To summarize, GGA gives �P ≈ 1.14, �S1 ≈ 1.7, �S2 ≈
0.93 and the pressure dependencies of these parameters are
rather small. The SE approach, while agrees well with GGA for
low pressures, predicts a much stronger pressure dependence
of �P and �S1,2 and a different sign for d�S1/dp. Reference
[8] states that the three anisotropy parameters are nearly
pressure-independent. While our GGA data fully confirm this
result, our SE data behave quite differently. In the absence
of reliable experimental data on the pressure dependencies,
it is hard to say which behavior is more correct (see the
discussion below, however). Both methods overestimate �P

and �S1 significantly, and also overestimate �S2 (which
underestimates the anisotropy), thus neither approach agrees
particularly well with the experiment. In particular, the relative
errors in �P , �S1, and �S2 (computed relative to the
experiment) are significantly larger than the errors in Cij . The
reasons for such discrepancy are unknown. Since both GGA
and SE agree with each other better than with the experiment,
one can speculate that the difference in temperature between
0 and 300 K might play at least some role. The large
elastic anisotropy of He, while somewhat unexpected, is not
in any way incompatible with the high symmetry of the
hcp crystal and the nearly spherical shape of the atoms.

FIG. 4. (Color online) Elastic anisotropy parameters of hcp
helium vs pressure.

Highly-symmetric crystals have isotropic or nearly isotropic
rank-2 tensor properties, such as conductivity, thermal expan-
sion, or dielectric permittivity. The stiffness, however, is a
rank-4 tensor property, and it is well-known that even cubic
crystals are not elastically isotropic. The large values of �S1

are not very surprising, since this parameter is similar to the
single anisotropy parameter (C11 − C12)/(2C44) of the cubic
crystal.

The three anisotropy parameters at TPa pressures are
presented in Fig. 5, upper panel. In the insulator phase,
anisotropy decreases with pressure, with three parameters
becoming close to unity just before the metallization transition.
This is an intuitively plausible behavior of the atomic crystal
becoming more isotropic under pressure. However, �P , �S1,
and �S2 demonstrate strong features at the metallization point
(especially �S1, which involves CS), with the anisotropies
of the two shear modes changing sign at the metallization
transition, and �P staying close to one and showing non-
linear behavior in the metallic phase. One can understand
the anisotropy parameters in terms of the elastic moduli
presented in Fig. 3. For instance, let us analyze �S1. For
an isotropic solid, C44 = C66 = CS/6. For helium at low
pressures, however, CS/6 has almost twice the value of C44,
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FIG. 5. (Color online) Elastic anisotropy parameters (top) and
Cauchy violations (bottom) of hcp helium under terapascal pressures.
Symbols are the calculated data points. The vertical line indicates the
GGA metallization point.

giving a large �S1. At higher pressures, CS/6 is of the same
order as C44 and C66, and eventually becomes smaller than
them in the metallic phase, which corresponds to �S1 < 1.

Strictly speaking, it is wrong to say that the anisotropy
parameters are nearly pressure-independent. Indeed, the
pressure-induced changes in Fig. 5 are rather dramatic even
if we consider the insulating phase only. The pressure inde-
pendence found in Fig. 4, and in Ref. [8], is simply the result
of the pressure scale of 150 GPa being very small compared
to the metallization pressure ∼17 TPa, which is presumably
the only natural pressure scale in solid helium (if the quantum
effects are disregarded). From this logic, we can infer that
GGA is more trustworthy than SE in determining the pressure
dependence of �P and �S1,2, since it gives reasonable results
in the TPa range of pressures, while the SE method breaks
down at p ∼ 100 GPa, which can act as a spurious pressure
scale. This argument is far from infallible, however, as GGA
is known to be unreliable for pressures p � 50 GPa due to the
poor description of the van der Walls forces.

The Cauchy violations 3C12−C11−4p and C13−C44−2p

are presented in Fig. 6. They can be thought of as a measure
of noncentral forces in a solid. Experimental 3C12−C11−4p

is reproduced well by SE and not so well by GGA, but the
situation is reversed for C13−C44−2p. The Cauchy violations
at terapascal pressures are shown in Fig. 5, lower panel. Their
behavior is mostly linear with mild kinks at the metallization
point.

C. Aggregate properties

The Voigt-Reuss-Hill-averaged bulk and shear moduli are
presented in Fig. 7. For the bulk modulus K , both methods

FIG. 6. (Color online) Cauchy violations of hcp helium vs
pressure.

agree very well with the experiment and the difference
between GGA and SE is small. For the shear modulus G,
however, there is a significant difference between GGA and
SE. Figure 8 shows the three sound velocities vP , vB , and
vS . Both GGA and SE agree with the experiment pretty well,
with vS (which is proportional to

√
G) displaying the largest

SE-GGA difference. We also plot
√

C44/ρ (calculated with
GGA + ZPV) as the golden dash-dot-dot curve in the lower
panel of Fig. 8. It has a meaning of vS calculated by using the
modulus C44 instead of the averaged shear modulus G, like we
did previously in Ref. [17]. For an isotropic solid, G = C44.
For helium, using C44 instead of G underestimates vS by a
few percent and worsens the agreement between GGA and the
experiment. In other words, by calculating vS from the proper
Voigt-Reuss-Hill G in the present work we actually improve
the GGA-experiment agreement compared to Ref. [17].

The bulk and shear moduli and sound velocities at TPa
pressures are presented in Fig. 9. All these quantities show
features at the metallization point, with kinks in G and,
respectively, vS , being the most pronounced.

The Debye temperature TD is presented in Fig. 7, lower
panel. Just like with shear modulus G, there is a significant
difference between SE and GGA, with experimental data
points lying in the middle. The Debye temperature for the
TPa pressures is plotted in Fig. 10, upper panel. It shows a
noticeable feature at the metallization point.

D. Poisson’s ratio

Figure 11 shows the Poisson’s ratio σ as a function of
pressure. The GGA + ZPV results [7], obtained using C44

instead of G, as explained above, are also plotted as the golden
dash-dot-dot curve. In addition to the experimental data of
Zha et al. [4], we also plot the low-p, low-T data of Nieto
et al. [26]. Since the Poisson’s ratio (38) is proportional to the
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FIG. 7. (Color online) Aggregate properties of hcp helium vs
pressure: bulk modulus K (top), shear modulus G (middle), and
Debye temperature (bottom). K and G are obtained using the
Voigt-Reuss-Hill averaging.

difference 3K − 2G, it is a rather method-sensitive quantity.
Just like for the elastic anisotropy parameters above, SE gives
a much stronger pressure dependence of σ compared to GGA,
and for the reasons outlined above for �P and �S1,2 we find
GGA results more trustworthy in this aspect. On the other
hand, the experimental pressure dependence of σ seems to be
closer to the SE one. Neither method agrees perfectly with the
T = 300 K experimental data of Zha et al. [4], however, both
our methods agree quantitatively with the p ≈ 0,T ≈ 0 result
of Nieto et al. [26] (σ = 0.38, the purple dot in Fig. 11) as
long as ZPV is included.

Although different theoretical and experimental methods
give somewhat different values of σ , they all agree upon
one fact: dσ/dp < 0, i.e., σ decreases monotonously when
pressure increases, fully confirming the surprising result of Zha
et al. In particular, while the role of ZPV for σ is somewhat
larger than for other quantities studied in the present paper,
and σ shows an isotopic effect [26], the negative pressure
dependence of σ is definitely not a quantum effect, as the
“No ZPV” curves show the same sign and order of magnitude
of dσ/dp. This behavior of σ is highly unusual, although
solid hydrogen [6,7] also has negative dσ/dp at least for low

FIG. 8. (Color online) Aggregate sound velocities of hcp helium
vs pressure.

pressures. All heavier rare-gas solids (RGSs) [7] have positive
dσ/dp. The difference in behavior between He and heavier
RGSs is, we repeat, not a quantum effect, i.e., it is not caused
by the small mass of He atoms. Presumably, the crucial factor
here is the difference of the outermost electron shells in He
(1s2 shell) and heavier RGSs (ns2np6). The situation is similar

FIG. 9. (Color online) Aggregate properties of hcp helium in the
TPa-pressure range: sound velocities (top), bulk, and shear moduli
(bottom). Symbols are the calculated data points. The vertical line
indicates the GGA metallization point.
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FIG. 10. (Color online) Debye temperature (upper panel) and
Poisson’s ratio (bottom) of hcp helium in the terapascal-pressure
range. Symbols are the calculated data points. The vertical line
indicates the GGA metallization point.

for c/a − √
8/3, which have different sign for He and other

RGS’s in GGA [3]. In the language of SE potential, both
types of behavior of σ can be accounted for by using pair and
triple forces of exactly the same functional form [15], but with
different values of parameters.

The Poisson’s ratio at terapascal pressures is plotted in
Fig. 10, lower panel. σ decreases monotonously up to highest
pressures apart from a large feature at the metallization point.
There is no minimum in σ (disregarding the step at the
metallization point) and definitely no σ → 0.5 high-pressure

FIG. 11. (Color online) Poisson’s ratio of hcp helium vs pressure.

asymptotic that many materials have. At the highest pressures
considered σ is of the order of 0.29.

A question often asked is whether helium becomes a
classical crystal under high pressure, or in other words,
whether the relative effect of ZPV on various physical quan-
tities decreases with pressure. This question is surprisingly
nontrivial, as it depends on the complicated interplay of the
kinetic and potential energy of the He atoms. A recent diffusion
Monte Carlo analysis [11] has shown that the kinetic to
potential energy ratio |Ekin/Epot| (which can be viewed as the
measure of quantumness) does indeed decrease monotonously
with pressure, however, this decrease becomes very slow for
pressures p � 85 GPa. We have reached similar conclusions
in the present work, which is best seen for Poisson’s ratio
(Fig. 11). σ is dimensionless, and the difference between
classical and quantum σ slowly decreases with pressure. In
particular, this difference is of the order of 0.01 in the 150-GPa
pressure range, but in the TPa range (not shown) it reaches the
value of about 0.0035.

IV. CONCLUSION

We have calculated five elastic constants of hcp helium
under pressure, and various derived quantities measured
by Zha et al. [4]: anisotropy parameters, sound velocities,
Poisson’s ratio, etc. We have analyzed these quantities both in
the pressure range up to 150 GPa, where experimental data are
available and semiempirical potentials are applicable; and in
the TPa pressure range (GGA only), where the metallization
transition takes place. Both methods (GGA and SE) are
in general agreement with the experiment. Most calculated
quantities display noticeable features at the metallization point.
Zero-point vibrations do not affect the elastic properties of
helium in any dramatic way for the pressures considered in the
present paper (disregarding the quantum crystal region at very
low pressures).

Our calculations predict a significant elastic anisotropy
for hcp helium (�P ≈ 1.14, �S1 ≈ 1.7, �S2 ≈ 0.93 at low
pressures). Both GGA and SE overestimate the anisotropy
parameters compared to the experiment, which might be a tem-
perature effect (experiments were carried out at T = 300 K).
The three anisotropy parameters become more isotropic (close
to one) under TPa pressures, with the anisotropy of the shear
modes S1 and S2 changing sign at the metallization point. Our
calculated Poisson’s ratio (PR) is in excellent agreement with
the T = 0, p = 0 result of Ref. [26] (σ = 0.38). Our calcu-
lations agree with the experimentally observed [4] decrease
of the PR with pressure. Under TPa pressures, PR reaches
values ∼ 0.31 at the metallization point (p ≈ 17.5 TPa) and
∼ 0.29 at p = 30 TPa. We have shown that the negative sign
of the pressure dependence of PR is not a quantum effect by
performing calculations without zero-point vibrations, which
yield similar results.
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