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We devise a quantum register based on superconducting flux qubits that circumvents the impediments posed
by the presence of fixed interactions. We describe a coupling scheme wherein two physical qubits are coupled
to a third which acts as a coupler via their longitudinal degree of freedom (i.e., σz). This approach provides
a solution to several issues such as residual interactions between physical qubits, deteriorations of the rotating
wave approximation (RWA), and correlated errors, thereby expanding the opportunities for capitalizing on the
large coupling strengths achievable with these systems.
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Josephson-junction-based qubits are promising candidates
in the quest for a scalable quantum information processing
hardware, owing to the prospect of integrating these circuits
into large-scale systems [1]. Other advantages include the
large attainable coupling strengths [2,3] and the versatility of
controlling and reading out the quantum state of these devices.
A generic issue in solid-state devices is the potential adverse
effect of fixed interactions between qubits [4]. The resulting
residual σzσz interactions (e.g., Ref. [5]) lower the fidelity of
single- and two-qubit gates as the resonant frequency of each
physical qubit depends on the state of its neighbors and cause
a constant accumulation of spurious phase along the targeted
unitary evolution. The justification of the RWA is another
concern, as is the emergence of various types of correlated
errors due to the combined effect of qubit decoherence and
fixed couplings. The latter aspect finds its most well-known
manifestation with the Purcell effect in cavity/circuit QED
[6–8].

Here, we aim at developing a quantum register free of such
restrictions. We consider a layout based on a two-dimensional
(2D) array of physical qubits on a square lattice, which is
the basis for the implementation of the surface code [9].
We previously presented a comprehensive review of circuit
QED architectures wherein microwave resonators mediate the
interaction between physical qubits, thereby allowing us to
dispose the latter farther apart from one another and, in so
doing, mitigate cross-talk [10]. This Rapid Communication
is focused on densely arranged quantum registers, which is
decidedly relevant from a practical point of view considering
the high overhead inherent to quantum error correction.

Several proposals discuss how to implement tunable inter-
actions at the level of two qubits, based on direct or mediated
interactions [11–20]. However, a careful analysis of the
limitations that arise at large scale and a systematic approach
to counteracting them are still lacking. Here, we consider a
different strategy wherein each pair of nearest-neighboring
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physical qubits are longitudinally coupled to a coupler via its
longitudinal degree of freedom.

This type of Hamiltonian involving only interactions
between the longitudinal degree of freedom of the qubits is
reminiscent of that encountered in nuclear magnetic resonance
(NMR) quantum information processing [21,22]. However,
it should be noted that the σzσz interactions found in NMR
systems correspond to an approximation of the Heisenberg
interaction between nuclear spins via J coupling in the limit
where the coupling is small compared with the Zeeman
splitting. In the case of three-junction flux qubits with a
gradiometric design, a pure σzσz interaction can be obtained
without any restriction on the coupling strength by defining
an inductive coupling between the currents flowing in the
loops defined by splitting the smaller junction (α-junction)
of each qubit in a SQUID geometry (so-called α-loop) as
depicted in Fig. 1(a) [23–25]. Another noteworthy asset of
this device is its large anharmonicity compared with most
other Josephson-junction-based artificial atoms, such that
the two-level approximation is well justified. Whether the
improving trend of coherence properties of transmons and
Xmons [26–29] may apply to flux qubits is currently under
investigation [30–32].

Static Hamiltonian. In the aforementioned configuration,
the Hamiltonian of a unit cell is

Hcell =−
∑

i=1,2,c

�i

2
σ z

i + J1c

2
σ z

1 σ z
c + J2c

2
σ z

2 σ z
c , (1)

where �i is the resonant frequency of each qubit and Jic

is the coupling strength between each physical qubit and
the coupler. Henceforth, we will parameterize the coupling
strengths as J1c = J (1 + ρ) and J2c = J (1 − ρ), where ρ is a
parameter characterizing the asymmetry between the coupling
strengths Jic linking the physical qubits to the coupler. A
noteworthy advantage of this system is that its Hamiltonian is
already diagonal, which is the key to overcoming most of the
aforementioned limitations. The resonant frequency ωi of each
physical qubit is independent of the state of the other owing to
the absence of residual σzσz interaction between them, while
ωi is renormalized by the interaction with the coupler [see
Fig. 1(b)]. Provided that the coupler lies in its ground state,
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FIG. 1. (Color online) (a) Schematic representation of three gra-
diometric flux qubits all coupled via their longitudinal degree of
freedom [ZZZ configuration]. This type of interaction can be achieved
in a configuration wherein all qubits are inductively coupled by means
of their α-loop. (b) Associated energy level diagram of the bare qubits
(J = 0, center), with symmetric couplings (ρ = 0, left), and arbitrary
couplings (right).

ωi is given by (�i − Jic)/�. Interestingly, this Hamiltonian
is parity conserving as the coupling terms trivially commute
with the parity operator ([H,�3q] = 0 where �3q = σ z

1 σ z
2 σ z

c ).
This ensures that transitions between states of the same parity
are forbidden under the transverse microwave drive of the
physical qubits or the coupler by virtue of the parity selection
rule, which stands as an advantage as it alleviates the difficulty
of justifying the RWA by eliminating unwanted terms which
may occur at higher order.

Controlled-phase gate. The dependence of the resonant
frequency of the coupler on the state of the physical qubits
[see Fig. 1(b)] can serve as a basis for a mechanism of
conditional phase accumulation, allowing us to implement a
controlled-phase (Cϕ) gate in a single step. Assuming that
we apply a transverse microwave drive to the coupler, the
corresponding time-dependent Hamiltonian is thus given by

Hcell(t) = Hcell + 	c(t) cos(ωct + φc)σx
c , (2)

where Hcell is given by Eq. (1), and 	c, ωc, and φc are the
amplitude, the frequency, and the phase of the microwave
drive, respectively. In order to switch to the rotating frame of
the two physical qubits and the coupler, we apply the time-
dependent unitary transformation

U =
∏

i=1,2,c

exp

[
i

(ωit + φref
i )

2
σ z

i

]
, (3)

where ω1 = (�1 − J1c)/�, ω2 = (�2 − J2c)/�, and φref
i are

the reference phases of the rotating frame of each qubit.
Without loss of generality, we set φc = φref

c = 0. We thus
obtain the time-dependent Hamiltonian below:

H′
cell(t) =

∑
i=1,2,c

δi

2
σ z

i + J1c

2
σ z

1 σ z
c + J2c

2
σ z

2 σ z
c

+ 	c(t)

2
[(1 + e i 2ωct )σ+

c + (1 + e−i 2ωct )σ−
c ], (4)

where δi = (�ωi − �i) are the detunings.
The validity of the RWA is ensured as it is in the case

of an isolated qubit (i.e., the Bloch-Siegert oscillations can
be ignored if 	c � 2 �ωc). Within the RWA, the effective
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FIG. 2. (Color online) (a) Idealized evolution of the coupler in
the Bloch sphere representation depending on the state of the physical
qubits during a coupler drive pulse (2π pulse) at the frequency
(�c + 2J )/h. We assume that 	 � (1 − |ρ|) (2J ). (b) Schematic
representation of an array of qubits on a 2D square lattice wherein
each physical qubit is coupled via its longitudinal degree of freedom
to its nearest neighbors through the intermediary of the longitudinal
degree of freedom of a coupler.

Hamiltonian is found to be

HRWA
cell =

∑
i=1,2,c

δi

2
σ z

i + J1c

2
σ z

1 σ z
c + J2c

2
σ z

2 σ z
c + 	c(t)

2
σx

c .

(5)

Let us assume that we apply a 2π pulse to the coupler at
the frequency (�c + 2J )/h in the limit where the strength of
the microwave drive is sufficiently small compared with the
effective detuning (1 − |ρ|) (2J ) between the state |11〉 and
either the state |10〉 (ρ � 0) or |01〉 (ρ � 0). If the physical
qubits are in the state |11〉, the coupler will perform a full
rotation on the Bloch sphere and accumulate a global phase π ,
otherwise it will remain in the ground state provided that the
effective detuning is large compared with the Rabi frequency,
as schematically depicted in Fig. 2(a). This mechanism of
conditional phase accumulation has the merit of directly
generating a Cϕ gate, without the need for additional single-
qubit operations and without requiring a precise adjustment
of the phase of the microwave drive applied to the coupler.
This approach extends a class of mechanisms of conditional
phase accumulation via an avoided crossing with a state outside
of the computational subspace [12,33–35] to artificial atoms
with a large anharmonicity. This scheme can also be compared
with the controlled-NOT gate proposed by Barenco et al. [36],
the difference being that our approach does not utilize direct
σzσz interactions between physical qubits, thus ensuring its
scalability.

We perform numerical calculations to determine the fidelity
of the Cϕ gate based on a Lie algebraic method [37] and the
exact time-dependent Hamiltonian [see Eq. (4)]. We consider
the initial state |ψ0〉 = 1/2 (|01020c〉 + |01120c〉 + |11020c〉 +
|11120c〉). We examine the case where the microwave pulse ap-
plied to the coupler has a Gaussian envelope whose half-width
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FIG. 3. (Color online) Top: overall infidelity (1 − F) of the Cϕ gate against the microwave pulse duration σ for different values of (a)
the average coupling strength J (�c/h = 6 GHz, ρ = 0, and J/h ranges from 1.5 to 2.5 GHz in steps of 0.1 GHz) and (b) the asymmetry
parameter ρ (�c/h = 6 GHz, J/h = 2.5 GHz, and ρ ranges from 0 to 0.8 in steps of 0.1). Bottom: infidelity (1 − Fc) with which the coupler
is brought back in its ground state against the average coupling strength J for different values of (c) the pulse length σ (�c/h = 6 GHz, ρ = 0,
and σ ranges from 0.4 to 2.2 ns in steps of 0.2 ns) and (d) the asymmetry parameter ρ (�c/h = 6 GHz and σ = 2 ns). For comparison, we plot
the fidelity associated with a Rabi flop for an isolated qubit with the same resonant frequency (�c + 2J )/h, and a Gaussian pulse with the
same length [dashed curves in (c)].

σ characterizes the speed of the two-qubit operation [38]. We
determine the overall fidelity F of the entire process [i.e.,
F = |〈ψf|ψt〉|2 where |ψf〉 is the final state of the three-qubit
system after the pulse and |ψt〉 = 1/2 (|01020c〉 + |01120c〉 +
|11020c〉 − |11120c〉) is the targeted state]. We establish values
that are compatible with the implementation of the surface
code for rather short microwave pulses (namely with σ of the
order of a few nanoseconds). The fidelity F is an increasing
function of the pulse length σ [see Figs. 3(a) and 3(b)] and
the average coupling strength J [see Fig. 3(a)], in accordance
with the lower ratio of the amplitude of the microwave drive
to the effective detuning. We also find that the fidelity F is a
decreasing function of the asymmetry parameter ρ for a given
set of parameters σ and J [see Fig. 3(b)], which we attribute to
the corresponding reduced effective detuning (1 − |ρ|)(2J ).

We determine the fidelity Fc characterizing the closeness
of the state of the coupler to its ground state at the end of the
pulse [i.e., Fc = |〈ψc|0c〉|2 where |ψc〉 is the state of the
coupler subsequent to the pulse]. We observe two different
regimes depending on whether or not the relation between
the strength of the microwave drive and the effective detuning
(1 − |ρ|) (2J ) invalidates the selective excitation of the
coupler [see Fig. 2(a)]. In the low-J limit, the values of the
infidelity (1 − Fc) are rather high and show a strong deviation

from the case of an isolated qubit [see dashed curves in
Fig. 3(c) for comparison]. This disparity signifies that the
risk of generating residual entanglement between the physical
qubits and the coupler is greatly enhanced and that the system
should not be operated in this regime. However, in the large-J
limit we find that for a given pulse length σ , the infidelity
(1 − Fc) exhibits a rather flat dependence as a function of J :
The plateau corresponding thereto displays a small negative
slope for increasing values of J , consistent with the increased
accuracy of the RWA as the ratio 	c/(�c + 2J ) decreases.

The unwanted entanglement between the physical qubits
and the coupler manifests itself through the discrepancy
between the fidelity Fc for a coupler included among a
unit cell, and an isolated qubit with equivalent parameters
[see the solid and dashed curves in Fig. 3(c), respectively].
Accordingly, this entangling gate comes with some leakage of
information out of the computational subspace; however, the
loss of information can be made arbitrary low by adjusting
the length of the applied microwave pulse, as reflected in the
dependence of the infidelity (1 − Fc) on σ [see Fig. 3(c)].

Correlated errors. The main benefit of this scheme relies
on the fact that the static Hamiltonian is already diagonal [see
Eq. (1)], meaning that the eigenstates are the bare states. This
implies that fixed interactions under the effect of either qubit
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relaxation or dephasing do not introduce correlated errors,
which is advantageous from the standpoint of error correction.

The holistic picture. We address the issue of the applica-
bility of the RWA for both single- and two-qubit operations
within the frame of a large-scale quantum register, as depicted
in Fig. 2(b). Besides the parity selection rule, which still
applies for such a lattice, the fully diagonal static Hamiltonian
simplifies the task.

We categorize the qubits depending on whether they
are physical qubits (i ∈ p) or couplers (i ∈ c). The time-
dependent Hamiltonian of an entire 2D array, including the
transverse microwave drive applied to the physical qubits
(single-qubit operations) and the couplers (two-qubit opera-
tions), is given by

Harray(t) =−
∑

i∈{p,c}

�i

2
σ z

i +
∑
〈i,j〉

Jij

2
σ z

i σ z
j

+
∑

i∈{p,c}
	i(t) cos(ωit + φi)σ

x
i , (6)

where 〈i,j 〉 denotes the summation over all pairs of nearest
neighbors, and 	i , ωi , and φi are, respectively, the amplitude,
the frequency, and the phase of the microwave drive applied
to each qubit. In order to switch to the rotating frame of all
the qubits belonging to the array, we apply the time-dependent
unitary transformation

U =
∏

i∈{p,c}
exp

[
i

(ωit + φref
i )

2
σ z

i

]
where

ωi = �i/� −
∑
j∈c
〈i,j〉

Jij /� if i ∈ p,

ωi = �i/� +
∑
j∈p
〈i,j〉

Jij /� if i ∈ c, (7)

and φref
i are the reference phases of the rotating frame of

each qubit. The resulting time-dependent Hamiltonian of the
quantum register reads

H′
array(t) =

∑
i∈p

δi

2
σ z

i +
∑
j∈c

δj

2
σ z

j +
∑
〈i,j〉

Jij

2
σ z

i σ z
j

+
∑

i∈{p,c}

	i(t)

2
[(e i (φref

i −φi ) + e i (2ωi t+(φref
i +φi )))σ+

i

+ H.c.], (8)

where H.c. stands for the Hermitian conjugate of the preceding
term. The justification of the RWA for single-qubit operations
on physical qubits is considerably facilitated by the absence
of higher order terms which may entangle them with their
surrounding couplers. Accordingly, the RWA does not involve
any condition on the detuning between nearest-neighboring
qubits in the array [10]; we do not have to envisage the risk to
generate spurious entanglement between physical qubits and
couplers via cross-resonance [18] or parametric conversion
terms [16]. The RWA merely requires that the Bloch-Siegert
oscillations are properly averaged out (i.e., 	i � 2 �ωi), and
the same applies to entanglement generation by controlling

the coherent dynamics of the couplers as already indicated
in the context of a single unit cell. As mentioned above, the
mechanism of conditional phase accumulation underlying the
two-qubit operations does not require controlling the phase
of the microwave drive applied to the couplers. Therefore, for
brevity we set φi = φref

i = 0 for the couplers. Within the RWA,
the effective Hamiltonian of the entire lattice is given by

HRWA
array =

∑
i∈p

δi

2
σ z

i +
∑
j∈c

δj

2
σ z

j +
∑
〈i,j〉

Jij

2
σ z

i σ z
j

+
∑
i∈p

	i(t)

2
(cos(δφi)σ

x
i − sin(δφi)σ

y

i )

︸ ︷︷ ︸
Single-qubit operations

+
∑
j∈c

	j (t)

2
σx

j

︸ ︷︷ ︸
Two-qubit
operations

, (9)

where δi = (�ωi − �i) are the detunings and δφi =
(φi − φref

i ).
The above effective Hamiltonian is the main result of this

work, and despite its simplicity, this coupling scheme solves
all the issues discussed so far. All the residual σzσz interactions
between physical qubits are naturally zero without the neces-
sity of fine-tuning the parameters. The conditions underlying
the relevance of the RWA are identical to what they would
be for isolated qubits driven resonantly and operated at their
symmetry point, thus enabling very fast single- and two-qubit
gates. We dub this approach WYAIWYG: What you apply is
what you get. We can also infer that the interplay between qubit
decoherence and fixed interactions will not induce correlated
errors, following the same line of reasoning presented above.

Discussion. Superconducting flux qubits offer a unique
testbed for implementing this type of coupling inasmuch as
they can support large and pure longitudinal interactions, as
opposed to coupled spin systems occurring in NMR-based
quantum computation. Coupling physical qubits via their
longitudinal degree of freedom enhances their sensitivity to
dephasing, which undermines the advantage of operating them
at their symmetry point. However, this extra dependence to
environmental fluctuations can be counteracted by error sup-
pression [39], while preserving the aforementioned benefits of
this scheme at large scale. The combination of all-microwave
control and the flexible conditions of applicability of the RWA
confer on this coupling scheme a relative robustness against
cross-talk, which strengthens its relevance in the context of
the large-scale integration of such a compact layout. In spite
of the shorter coherence times exhibited by flux qubits to date
compared with transmon-based devices, the rather fast single-
and two-qubit manipulations allow us to meet the accuracy
threshold required for fault-tolerant quantum computation
based on the surface code.
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C. J. P. M. Harmans, and J. E. Mooij, Selective darkening of
degenerate transitions for implementing quantum controlled-
NOT gates, New J. Phys. 14, 073038 (2012).

[21] N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance
quantum computation, Science 275, 350 (1997).

[22] D. G. Cory, A. F. Fahmy, and T. F. Havel, Ensemble quantum
computing by NMR spectroscopy, Proc. Natl. Acad. Sci. USA
94, 1634 (1997).

[23] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der
Wal, and S. Lloyd, Josephson persistent-current qubit, Science
285, 1036 (1999).

[24] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S.
Levitov, S. Lloyd, and J. J. Mazo, Superconducting persistent-
current qubit, Phys. Rev. B 60, 15398 (1999).

[25] F. G. Paauw, A. Fedorov, C. J. P. M. Harmans, and J. E. Mooij,
Tuning the gap of a superconducting flux qubit, Phys. Rev. Lett.
102, 090501 (2009).

[26] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani,
A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I.
Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf,
Observation of high coherence in Josephson junction qubits
measured in a three-dimensional circuit QED architecture, Phys.
Rev. Lett. 107, 240501 (2011).

[27] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J.
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