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Antiferromagnet-mediated spin transfer between a metal and a ferromagnet
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We develop a theory for spin transported by coherent Néel dynamics through an antiferromagnetic insulator
coupled to a ferromagnetic insulator on one side and a current-carrying normal metal with strong spin-orbit
coupling on the other. The ferromagnet is considered within the monodomain limit and we assume its coupling
to the local antiferromagnet Néel order at the ferromagnet|antiferromagnet interface through exchange coupling.
Coupling between the charge current and the local Néel order at the other interface is described using spin
Hall phenomenology. Spin transport through the antiferromagnet, assumed to possess an easy-axis magnetic
anisotropy, is solved within the adiabatic approximation and the effect of spin current flowing into the ferromagnet
on its resonance linewidth is evaluated. Onsager reciprocity is used to evaluate the inverse spin Hall voltage
generated across the metal by a dynamic ferromagnet as a function the antiferromagnet thickness.
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Spintronics of antiferromagnets (AFs), where AFs take on
the role of the central active component, is identified as one
of the most important emerging topics in the field of magnetism
today [1]. Robustness to magnetic perturbations due to their
total magnetic compensation, as well as characteristic dynam-
ical scale in the THz range may render AFs advantageous
over ferromagnets (Fs) for spintronics device applications. In
addition, recent works on AFs have shown that the important
phenomena responsible for the success of F-based spintronics
also have AF counterparts, giving added impetus for AF-
based spintronics research. Indeed, giant magnetoresistance
and current-induced torques [2], anisotropic magnetoresis-
tance [3], and spin superfluidity [4], as well as current-induced
domain wall motion [5] and coupled dynamics between
conduction electrons and background magnetic texture [6],
are all shown to be possible in AFs as well.

An important aspect of AF-based spintronics is the use
of AFs as a medium to transport spin angular momentum.
Spin transfer through AFs has been the focus of several
recent experimental endeavors. Both Hahn et al. [7] and Wang
et al. [8] demonstrated spin transport through an AF insulator,
NiO, using an YIG|NiO|Pt heterostructure (YIG standing for
the insulating ferrimagnet yttrium iron garnet). Inverse spin
Hall signal showed robust spin pumping from YIG into Pt even
in the presence of the intervening NiO, suggesting efficient
spin transport through the AF. More recently, Moriyama
et al. used spin-torque ferromagnetic resonance (ST-FMR)
to demonstrate the propagation of spin excitations through a
metallic AF, IrMn, using a Pt|IrMn|CoFeB trilayer [9] as well
as NiO using a Pt|NiO|FeNi trilayer [10]. Spin current injected
from the Pt was shown to change the FMR linewidth, also
suggesting the transfer of spin angular momentum through
the central AF. Given the rising interest in AF spintronics and
the recent experimental focus, a theoretical account of spin
transport through an experimentally relevant normal metal
(N)|AF|F trilayer is highly desirable.

In this Rapid Communication we develop a general phe-
nomenology for spin transport through an AF by collective
Néel order parameter dynamics, focusing on an N|AF|F
trilayer relevant for both the spin-pumping/inverse spin Hall as

well as the ST-FMR experiments mentioned above (see Fig. 1).
Spin Hall phenomenology, applicable to a wide range of
different AF|N interfaces obeying certain structural/crystalline
symmetries, is utilized to model the spin transfer at the AF|N
interface, while the exchange coupling is assumed at the AF|F
interface. As one of the main achievements of this work we
develop a simple “circuit” model, a pictorial visualization
of spin flow, that allows one to keep track of spin transfer
through various parts of the heterostructure (see bottom half
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FIG. 1. (Color online) Normal-metal (N)|antiferromagnet (AF)|
ferromagnet (F) trilayer considered in this work. N sustains a dc
charge current j and F is described by a time-dependent macrospin
S(t). Spin transfer 〈J s

ex〉 occurs via the exchange coupling J at the
AF|F interface, while spin transfer across the AF|N interface has a
spin transfer torque contribution 〈J s

stt〉 (proportional to the effective
interfacial spin Hall angle ϑ) and a spin pumping contribution 〈J s

sp〉
(proportional to the interfacial spin-mixing conductance α↑↓). The
AF Gilbert damping, parametrized by α′, leads to the loss of spin
current 〈J s

G〉 in the AF bulk. The central AF can be thought of as an
effective interface that couples j and S with an effective spin Hall
angle ϑ∗.
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of Fig. 1). From the circuit model, we see that spin is both
injected into (i.e., 〈J s

stt〉) and ejected (i.e., 〈J s
sp〉) out of

the AF at the AF|N interface due to spin Hall/spin-torque
effects and spin pumping, respectively. The collective Néel
dynamics leads to Gilbert damping and to the loss of spin
current (i.e., 〈J s

G〉) within the AF bulk, and the exchange
coupling at the AF|F interface leads to spin transfer (i.e.,
〈J s

ex〉) across the interface. We first study how spin transport
through the AF modifies the linewidth at FMR, akin to the
ST-FMR [9,10]. The FMR linewidth is quantified in terms of
the effective spin Hall angle and spin-mixing conductance
at the AF|N interface, the exchange coupling at the AF|F
interface, as well as AF Gilbert damping. We show that
linewidths, measured for different electrical currents in N and
AF thicknesses, can be used to extract the effective spin Hall
angle and spin-mixing conductance at the N|AF interface,
as well as the bulk Gilbert damping. By invoking Onsager
reciprocity, we also make connections with the inverse spin
Hall experiments [7,8] and compute the inverse spin Hall
voltage generated across N arising as a result of a dynamic F
macrospin.

As shown in Fig. 1, an insulating AF is attached on one
side to a monodomain F and on the other to a N with strong
spin-orbit coupling. The N and F sustain dc charge current
density j and a time-dependent macrospin S(t), respectively.
We consider a bipartite AF, which can be characterized by
two hydrodynamic variables, n(x,t) and m(x,t), parametrizing
the staggered (Néel) and smooth (magnetic) components of
the spins, respectively [11]. We assume easy-axis magnetic
anisotropy along the z axis in the AF, as well as full
translational and rotational symmetries in the yz planes so
that our treatment essentially reduces to a one-dimensional
problem that depends only on the coordinate x. The free energy
F for the AF and its coupling to the F reads

F =
∫ L

0
dx

{
A

2
[∂xn(x)]2 + m(x)2

2χ
− κ

2
nz(x)2

}
−J S · n(L),

(1)

where A and χ are the Néel order stiffness and spin suscepti-
bility, respectively, κ is the uniaxial anisotropy parameter, and
J is the exchange coupling between AF and F. Throughout
this work we assume all energy scales to be small with respect
to the bulk AF exchange scale such that the internal Néel
order can be well approximated to be collinear. The assumed
uniaxial symmetry should also lead to circular Néel dynamics
about the z axis. The above coupling between the local Néel
order and the macrospin at the AF|F interface constitutes one
particular scenario for the AF-F coupling, which may also take
a different form, e.g., ∝ S · m. In this work, inspired by the
exchange-bias phenomenology, we assume exchange coupling
between the local Néel vector and the macrospin, which can
arise from, for instance, an interface with uncompensated
AF spins. Irrespective of the details of the AF-F coupling,
the most salient features for spin transport through the AF
emphasized later in this work, namely the fact that spin
transported by coherent Néel dynamics decays exponentially
over the healing length while the incoherent thermal magnon
transport is expected to decay over the spin diffusion length

(generally distinct from the healing length), should remain
intact.

The Landau-Lifshitz-Gilbert dynamics in the bulk AF
corresponding to Eq. (1) can be written as

s(ṅ + αn × ṁ) = χ−1m × n, (2)

s(ṁ + αm × ṁ + α′n × ṅ) = n × (
A∂2

x n + κnzez

)
, (3)

where α and α′ are (independent) Gilbert damping param-
eters and s is the roughly saturated spin density (per unit
length) [12]. It can be shown that for τ 	 �/Eex (τ being the
time scale for AF dynamics and Eex the AF exchange coupling
energy), the α term in Eq. (2) becomes unimportant, allowing
one to solve for m, which, when substituted into Eq. (3),
gives

χs2n × n̈ + sα′n × ṅ ≈ An × ∂2
x n + κn × nzez. (4)

The expression for the spin current in the AF bulk can be read
off from Eq. (3) (dropping the Gilbert damping and anisotropy
terms) and the resulting continuity equation [i.e., sṁ =
−∂x(−An × ∂xn)], so that J s

AF(x) = −An(x) × ∂xn(x).
The AF spins are excited by the current and the dynamic

macrospin. The effects of these external perturbations are
localized at the interfaces and thus enter the AF dynamics
as boundary conditions. At the AF|N interface, the torque
exerted on the local Néel vector by the charge current
defines the spin current entering the AF at the interface, i.e.,
J s

AF(x = 0). Based on structural symmetries at the interface,
spin Hall phenomenology allows us to write down a general
expression for the torques that apply to a variety of F-
and AF-based heterostructures with different microscopic
details. In the presence of full translational and rotational
symmetries in the yz plane and with the breaking of reflection
symmetry along the x axis, the torque contains spin transfer
torque and spin-pumping contributions, leading to spin current
(integrated over the interface area) flowing into AF given
by [13]

J s
AF(x = 0) = [ϑn × (ex × j ) × n − �α↑↓n × ṅ]|x=0

≡ J s
stt − J s

sp, (5)

where the first term is the so-called spin Hall-like (dissipative)
contribution and the second term describes spin pumping. The
coefficient ϑ is proportional to the (tangent of the) effective
spin Hall angle at the AF|N interface [13]; although ϑ can,
in general, depend on the orientation of n, we will treat it as
a constant here. We will also disregard any anisotropies of
α↑↓ with respect to the orientations of n and ṅ, assuming that
the exchange energy scale at the interface dominates over the
energy scale of spin-orbit interactions. Here, the coefficient
α↑↓ is proportional to the real part of the (generally complex)
spin-mixing conductance g↑↓ for the AF|N interface [13]. In
addition to the two dissipative terms shown in Eq. (5), there are
also their nondissipative counterparts [one given by ϑ ′(ex ×
j ) × n and the other proportional to the imaginary part of
g↑↓]. We drop the latter, as they have no effect on the FMR
linewidth to linear order in the coefficients ϑ, ϑ ′, real and
imaginary parts of g↑↓, as well as α′.
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The exchange coupling at the AF|F interface, the last term
in Eq. (1), leads to a torque on the Néel vector exerted by
the adjacent macrospin, thus giving rise to the following spin
current flowing out of the AF,

J s
AF(x = L) = ∂F

∂ S
× S = J S × n|x=L ≡ J s

ex. (6)

The dynamic Néel texture n(x,t) can be obtained using the
low-frequency (adiabatic) approximation, valid in the regime
� � �0, where � and �0 are the FMR and the AF resonance
frequencies, respectively. Within this approximation, the AF
Néel texture is first solved for an arbitrary static S, the result
denoted by n(0)(x,S). Since S(t) varies sufficiently slowly in
time compared to the characteristic AF time scale, the Néel
texture in the adiabatic limit will arrange itself into the static
configuration corresponding to S(t) at every moment in time
and is given by n(x,t) ≈ n(0)[x,S(t)] ≡ n(0)(x,t). The above
calculation does not account for spin current losses due to
the AF dynamics (i.e., spin pumping at the AF|N interface
and Gilbert damping in the AF bulk). Taking these losses
into account up to linear-order corrections to the adiabatic
result, the spin current 〈J s

ex〉 entering F, time averaged over a
cycle of FMR precession (the angle brackets 〈· · · 〉 hereafter
representing time average over a cycle of FMR precession),
is given by 〈J s

ex〉 = 〈J s
stt〉 − 〈J s

sp〉 − 〈J s
G〉 (cf. Fig. 1), where

the spin-transfer torque contribution is given by inserting the
adiabatic result for the Néel texture into Eq. (6),

〈
J s

stt

〉 = J 〈S(t) × n(0)(L,t)〉, (7)

and the loss terms read

〈
J s

sp

〉 = �α↑↓〈n(0)(0,t) × ṅ(0)(0,t)〉,
〈
J s

G

〉 = sα′
∫ L

0
dx 〈n(0)(x,t) × ṅ(0)(x,t)〉.

(8)

The first term in Eq. (8) describes (time-averaged) spin current
lost due to spin pumping at the AF|N interface and the second
term corresponds to Gilbert damping in the AF bulk. We
remind the reader that we are assuming circular Néel dynamics
about the z axis.

An analytical result for the FMR linewidth can be obtained
if we consider small deviations of S(t) away from the z

axis (parallel to the static FMR field and the AF easy axis);
we take j = jyey + jzez and assume | j | to be weak such
that a linear-response treatment is sufficient. In this case,
the Néel unit vector n should not deviate far from the z

axis and we may evaluate the above results with respect
to small transverse fluctuations, i.e., S(t) ≈ S[sx(t),sy(t),1]
and n(x,t) ≈ [nx(x,t),ny(x,t),1] with |sx(t)|,|sy(t)| � 1 and
|nx(x,t)|,|ny(x,t)| � 1. Within this treatment, the trans-
verse components in the adiabatic limit n(0)

⊥ = (n(0)
x ,n(0)

y )T

obey A∂2
x n(0)

⊥ = κn(0)
⊥ [cf. Eq. (4)], and n(0)(x,t) takes the

form

n(0) ≈ ez + f (x)[ez × S(t)] × ez + g(x)ez × S(t) + h(x)ex,

(9)

where the functions f (x) and g(x) (to linear order in the
current) are given by

f (x) = 1

S

cosh x
λ

cosh L
λ

+ 1
η

sinh L
λ

, (10)

g(x) = 1

S

sinh L−x
λ

+ 1
η

cosh L−x
λ(

cosh L
λ

+ 1
η

sinh L
λ

)2

ϑjy√
Aκ

, (11)

and h(x) ∝ ϑjz is not explicitly shown here since this term will
not contribute to the linewidth within the current theoretical
treatment. Here η ≡ JS/

√
Aκ , and λ ≡ √

A/κ is the AF
healing length. From Eqs. (9), (10), and (11) we see that the
above linearized result remains valid for all η > 0. For J < 0,
the result contains a singularity at |η| = tanh(L/λ) signaling
an instability of the state with small Néel order fluctuations
about the z axis thus limiting the regime of validity of our
linearized results to |η| < tanh(L/λ).

The spin current J s
ex entering F modifies the F dynamics as

�Ṡ = b × S − �αF

S
S × Ṡ + J s

ex, (12)

where αF is the intrinsic Gilbert damping parameter in F and
b = −b0ez is the static FMR field (in units of energy). Inserting
Eq. (9) into Eqs. (7) and (8) and performing the time average
over the last two terms in Eq. (12), the full FMR linewidth
can be read off directly by summing the coefficients appearing
in front of 〈S × Ṡ〉. The total Gilbert damping parameter is
then given by α′

F = αF + δα
(i)
F + δα

(b)
F ≡ αF + δαF , where

the extrinsic contribution δαF has the interfacial contribution
δα

(i)
F and the AF bulk contribution δα

(b)
F :

δα
(i)
F = 1

S

ϑjy

b′
0

+ α↑↓
(
cosh L

λ
+ 1

η
sinh L

λ

)2 , (13)

δα
(b)
F = α̃

S

L
λ

+ 1
2 sinh 2L

λ(
cosh L

λ
+ 1

η
sinh L

λ

)2 , (14)

where α̃ = sα′λ/2� and b′
0/� is the full FMR frequency

(which includes corrections to b0 arising from the spin current
J s

ex entering the F). The former originates from spin injection
and spin pumping at the AF|N interface, while the latter from
Gilbert damping in the AF bulk. Equations (13) and (14)
constitute the main result of this work.

As seen from Eqs. (13) and (14), the healing length λ sets the
distance over which spin propagation decays inside the AF. The
healing length is determined from the slope of the linewidth
vs jy curves for various thicknesses L and by extracting the
decay length. It is important to note that the current theory only
considers spin transport mediated by coherent Néel dynamics,
and does not take account of spin transported by incoherent
thermal magnons. The latter contribution is suppressed at
sufficiently low temperatures (algebraically with the ratio
T/TN , where TN is the Néel ordering temperature of the AF,
when T is larger than the magnon gap, and exponentially
at lower temperatures). The magnon-mediated transport is,
furthermore, expected to decay over the spin diffusion length
λsd, being thus strongly suppressed for λsd � L.

Once the AF healing length is known, the parameters ϑ ,
α↑↓, and α̃ can be extracted by measuring the FMR linewidth
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FIG. 2. The interfacial contribution δα
(i)
F (dashed lines), the bulk

contribution δα
(b)
F (dotted lines), and the total contribution δαF (solid

lines) to the extrinsic FMR linewidth (S set to unity) are plotted as a
function of the (normalized) system size L/λ. We fix the following
parameters: η = 1, ϑjy/b

′
0 = 0.01, and α↑↓ = 0.01. Two regimes are

considered for the AF Gilbert damping α̃: (a) the strong damping
regime α̃ = 0.2 and (b) the weak damping regime α̃ = 0.01 (see text
for more details).

for various jy and L. While the effective spin Hall angle ϑ

can be obtained from the slope of a linewidth vs jy curve, the
Gilbert damping parameter α̃ can be extracted in the regime
L 	 λ, in which the linewidth depends only on α̃ (see Fig. 2),

δαF

L
λ
→∞→ α̃

S

(
η

1 + η

)2

≡ δα∞
F . (15)

For L � λ we expand δαF to linear order in L/λ,

δαF ≈ 1

S

(
ϑjy

b′
0

+ α↑↓
)

+ 2

S

[
α̃ − 1

η

(
ϑjy

b′
0

+ α↑↓
)]

L

λ

≡ c0 + c1
L

λ
, (16)

from which we see that α↑↓ can be extracted at zero current
(i.e., jy = 0) and measuring the linewidth for L � λ.

The extrinsic linewidth exhibits qualitatively different
behavior depending on the relative magnitudes of the bulk and
the interfacial contributions (see Fig. 2). For strong Gilbert
damping (c1 > 0) the bulk damping in the AF dominates over
the interface effects and the linewidth grows initially as L

increases, saturating eventually as L/λ → ∞ [see Fig. 2(a)].
In the limit of weak Gilbert damping [see Fig. 2(b)], i.e., c1 < 0

(and δα∞
F < c0), δαF exponentially decays as L increases.

In Ref. [8] the FMR linewidth was measured for various AF
thicknesses in the absence of the electrical current. The gradual
increase in the linewidth obtained there as a function of the
thickness is more consistent with our strong Gilbert damping
regime [cf. Fig. 2(a)].

Our results can be used to make a connection with the
reciprocal experiments [7,8], in which spin transfer through
the AF is quantified by measuring the inverse spin Hall
voltage VISHE generated across N by a dynamic F (see Fig. 1).
From spin Hall phenomenology and Onsager reciprocity, the
electromotive force generated in N is given by ε = ϑ(n ×
ṅ) × ex |x=0 [13]. Utilizing the adiabatic result n(0)(x,t) [i.e.,
Eq. (9)] with j = 0, the (time-averaged) motive force becomes
〈ε〉 = −(ϑ∗θ2b′

0/�)ey , where θ ≈ (s2
x + s2

y )1/2 is the cone
angle, ϑ∗ = ϑ/{VF [cosh(L/λ) + sinh(L/λ)/η]2}, and VF is
the volume of F. This leads to an inverse spin Hall voltage

VISHE =− ϑθ2b′
0


�VF

(
cosh L

λ
+ 1

η
sinh L

λ

)2 , (17)

where 
 is the length of N in the y direction. We can arrive
at the same result by treating the central AF as an effective
junction between the N and F subsystems (see Fig. 1). Namely,
from Eq. (13), the macroscopic coupling between current j
and the macrospin dynamics in F is given through the torque
τ = ϑ∗θ2jyez + (term ∝ jz) acting on the latter, where ϑ∗
is the overall torque coefficient for the effective junction.
By Onsager reciprocity, this torque gives rise to the inverse
spin Hall voltage Eq. (17). Within the current theory, Eq. (17)
indicates that the decay length for VISHE as the AF thickness
increases is set by λ.

We note in conclusion that the current work considers spin
transfer purely mediated by the coherent Néel dynamics, which
is related to the superfluid mechanism [4] of spin transport.
As the relevant experiments are performed at room tempera-
ture [7,8,10], reconsidering AF spin transport by accounting
for the incoherent thermal magnons and studying their effect
on the FMR linewidth would be valuable, and will contribute to
the general understanding of the “two-fluid” (condensate and
thermal cloud with mutual interactions between them) nature
of spin transport via collective excitations in an AF.
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