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Local origin of the pseudogap in the attractive Hubbard model
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We provide a fresh perspective on the pseudogap physics for attractive fermions as described by the
three-dimensional Hubbard model. The pseudogap in the single-particle spectral function, which occurs for
temperatures above the critical temperature Tc of the superfluid transition, is often interpreted in terms of pre-
formed uncondensed pairs. Here we show that the occurrence of pseudogap physics can be consistently understood
as due to local excitations which lead to a splitting of the quasiparticle peak for sufficiently large interaction.
This effect becomes prominent at intermediate and high temperatures when the quantum-mechanical hopping is
incoherent. We demonstrate the absence of the conjectured pairing temperature below which pseudogap physics
is expected to occur. Our results are based on approximating the physics of the three-dimensional Hubbard model
by dynamical mean-field theory calculations and a momentum independent self-energy. Our predictions can be
tested with ultracold atoms in optical lattices with currently available temperatures and spectroscopic techniques.
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I. INTRODUCTION

The analysis of peaks in the single-particle spectral func-
tion, measured, for instance, by photoemission experiments in
solids or radio frequency (rf) spectroscopy for ultracold atoms,
provides important information about correlation effects in
interacting quantum many-body systems. In the limit of weak
interactions the spectral function displays peaks close to the
energies of the free fermion energy-momentum distribution
and as such directly represents single-particle properties.
At finite temperature and energies away from the Fermi
surface, peaks are broadened and the width is indicative of
interaction effects, which open up decay channels. If sponta-
neous symmetry breaking occurs below a certain temperature,
such as in a superconductor below Tc, the single-particle
excitations become gapped out and shifted by an amount �,
the superconducting gap.

A more peculiar behavior is that of excitations being
gapped out (or suppressed) even though no obvious symmetry
breaking and thermodynamic ordering transition occurs. This
is often referred to as pseudogap (PG) physics. The spectral
gap can look very similar to a gap due to symmetry breaking
at finite temperature. Therefore, it can be difficult to clarify
the origin of PG physics and to distinguish whether it is due to
some hidden order or a different effect. A very prominent
example of such physics is provided by the experimental
observations in the hole doped copper-oxide high-temperature
superconductors [1,2], where a relatively large part of the phase
diagram is occupied by such a PG behavior. This phenomenon
has attracted an enormous amount of attention, however there
is currently no consensus about the physical origin of the
this PG for the cuprates, and different scenarios have been
invoked as an explanation. These include hidden order [3], spin
fluctuations [4], phase fluctuations and preformed pairs [5,6],
and the interplay with charge fluctuations [7].

Here we focus on a conceptually simpler situation where
PG physics has also been reported, and that is for systems
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of fermions with locally attractive interactions. In situations
without nesting the dominant instability at low temperature is
superconductivity and, correspondingly, pairing processes are
expected to be most relevant. In particular, the crossover from
weak-coupling Bardeen, Cooper, and Schrieffer [8] (BCS)
theory of superconductivity to strong-coupling Bose-Einstein
condensation (BEC) of pairs has been studied extensively and
is a classical problem in condensed-matter physics [9–12]. In
the last decade it has attracted renewed interest due to experi-
mental realizations with ultracold fermions. Superfluidity has
been reported in such systems [13–16], also in the case where
the fermions are confined to an optical lattice [17]. Moreover,
based on rf spectroscopy, PG signatures have been reported
for two- [18] and three-dimensional systems without optical
lattices [19–21].

Three nonexclusive concepts are usually invoked to discuss
the origin of PG physics for attractive fermions.

(i) Preformed pairs: For intermediate coupling strength,
pair formation without condensation is expected to occur at
a certain temperature Tp which is larger than the superfluid
(SF) phase transition temperature Tc. These preformed pairs
can lead to PG formation as a certain binding energy is
required to break the pair and resolve a single fermion
excitation [12,20,22]. This idea leads to a popular scenario
for PG physics and is illustrated in a schematic phase diagram
in Fig. 1.

(ii) Pairing fluctuations above Tc and their effect on single-
particle properties via a many-body self-energy can lead to PG
physics [22].

(iii) Phase fluctuations: In a situation where fermions
are paired one can imagine that a finite magnitude of the
order parameter establishes locally, however no macroscopic
coherent SF phase develops due to strong phase fluctuation [5].
In this situation the presence of the ordering tendency related
to a gap can then lead to PG signatures in the spectral
functions [23]. This behavior, which coincides with a small
SF stiffness, is expected to be particularly pronounced in
two-dimensional systems.

Within one and the same calculation it is very difficult
to obtain nonperturbative results and to include all relevant
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FIG. 1. (Color online) Schematic phase diagram for the pre-
formed pair scenario in the T -U plane with critical temperature Tc,
pairing temperature Tp, Fermi-liquid (FL) regime, and PG physics
below Tp (after Randeria [20]).

fluctuation effects. The purpose of this work is to contribute to
a better understanding of the importance of particular effects
in the lattice situation based on nonperturbative calculations.
It is important to distinguish different setups when comparing
the occurrence of PG physics for attractive fermions. First of
all, dimensionality plays an important role in determining the
strength of fluctuations, and in particular the two-dimensional
situation has more pronounced fluctuation effects. Moreover,
results can differ in calculations for a model defined in the
continuum and one on a lattice, such as the Hubbard model.
A well-known example is the Tc curve which drops with the
coupling strength on the lattice as 1/U , whereas it approaches
a constant in the continuum. Here we will analyze the attractive
Hubbard model in three spatial dimensions. We will use the
dynamical mean-field theory (DMFT) approximation [24] to
compute the self-energies and spectral function in the normal
and SF phase. This approximation is nonperturbative in the
interaction strength and therefore can describe very well
the occurrence of preformed pairs. However, it does not
include the effect of phase fluctuations (iii) and also does
not include the effect of small momentum pairing fluctuations.
The PG physics observed in our work can therefore not be
related to such effects. Phase fluctuations above Tc are usually
argued to be of minor importance for spectral properties in
three dimensions.

There is a substantial literature of previous work on
BCS-BEC crossover and PG physics for attractive fermions,
which however does not provide a clear and complete picture
about PG physics. A popular approach is the diagrammatic
T -matrix approximation [22,25,26], which captures well the
effect of pairing fluctuations (ii). It was applied to the two-
dimensional Hubbard model [27,28] and PG features have
been found in the non-self-consistent version [22], also in
the continuum in two [29] and three dimensions [30–32].
Self-consistent T-matrix calculations for the three-dimensional
continuum model have found no PG in the spectrum [33,34].
However, in the two-dimensional case recently PG behavior
was found [35]. There are also nonperturbative calculations,
such as DMFT and quantum Monte Carlo (QMC), which
found a PG features in the continuum model [36–38] and
for the Hubbard model at different filling factors [39–45].
The latter results were found to be in good agreement with a
diagrammatic technique [46]. It is worth noting that QMC

FIG. 2. (Color online) Phase diagram at half filling. We distin-
guish four different regimes: the superfluid phase (SF); a non-Fermi-
liquid regime (NFL), which is separated into a region with PG in
ρ(ω) and a region without PG (no PG); and a Fermi-liquid regime
(FL) below the temperature TFL.

techniques usually need to perform analytic continuation
of imaginary axis data which can lead to uncertainties in
results for spectral functions. DMFT studies, including cellular
versions, for the attractive Hubbard model have been carried
out in the normal phase [47–50], and in the broken symmetry
phase [43,44,51–55].

Our major results are the following.
(1) For large enough coupling strength we find PG physics

at temperatures T > Tc. At half filling the PG remains for all
temperatures above Tc and therefore a pairing temperature Tp

(Fig. 1) is not decisive to invoke the PG in the spectral function
(see Fig. 2). For different fillings the spectral function is shifted
due to the flattening of the Fermi function, such that the main
suppression of spectral weight does not occur at ω = 0.

(2) The occurrence of PG physics at high temperatures can
be understood via local excitations on lattice sites visible for
strong enough interactions.

(3) PG physics in the spectral function is related to non-
Fermi-liquid (NFL) properties of the self-energy (see Fig. 3,
detailed definition below).

(4) We demonstrate in detail how the PG transforms
smoothly into the superconducting gap, when the temperature
is lowered through Tc (see Fig. 6).
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FIG. 3. (Color online) Schematic plot for real and imaginary
parts of the self-energy �(ω) in the FL (left) and NFL (right) regime.
We also show the corresponding spectral function ρ(kF,ω) which
shows PG behavior in the NFL regime. The dashed diagonal line, ω,
helps to identify the solutions of the equation ω = Re�(ω), and those
positions roughly coincide with the PG peaks.
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The paper is organized as follows: In Sec. II we briefly de-
scribe our model and method. Section III discusses conceptual
background about the occurrence of PG physics in relation
to the self-energy. In Secs. IV and V we show results for
spectra and self-energies at and away from half filling before
concluding in Sec. VI. In the Appendices we compare the
DMFT-NRG calculations to iterated perturbation theory and
to T -matrix calculations.

II. MODEL DEFINITION AND DMFT CALCULATIONS

Our study is based on the three-dimensional attractive
Hubbard model [12,56–60], which in the grand canonical
formalism reads

H =
∑
i,j,σ

(tij c
†
i,σ cj,σ + H.c.) − μ

∑
iσ

niσ − U
∑

i

ni,↑ni,↓,

(1)

with the chemical potential μ, the interaction strength U > 0,
and the hopping parameters tij . c

†
i,σ creates a fermion at site

i with spin σ , and ni,σ = c
†
i,σ ci,σ . We take only a nearest-

neighbor hopping (−t), so that the noninteracting energy-
dispersion relation in the three-dimensional cubic system is
given as, k = (kx,ky,kz),

εk = −2t[cos(kx) + cos(ky) + cos(kz)]. (2)

The dispersion satisfies ε−k = εk. The corresponding density
of states (DOS) is denoted by ρ0(ε). In the calculations we
will use the hopping t and the bandwidth W = 12t as energy
scales.

The main method used to study the Hamiltonian (1) is the
dynamical mean-field theory (DMFT) [24]. Within DMFT,
we have to self-consistently solve a quantum impurity model
describing a single lattice site in the environment of all other
lattice sites. In order to calculate the self-energy for this quan-
tum impurity model, we mainly use the numerical renormal-
ization group (NRG) [61], which is able to calculate accurately
expectation values, Green’s functions, and self-energies at zero
and finite temperatures [62,63] also in the superconducting
case [54,55]. Dynamical correlation functions are calculated
within the NRG by broadening of a large number of discrete
excitations in the Lehman representation, and as such do not
require analytic continuation. For our calculations, we choose
a log-normal broadening function [61,64] with unusually
narrow and temperature-independent width, b = 0.3. One of
the main reasons for this is to avoid a large transfer of spectral
weight to high energies which can be particularly important
at higher temperatures. Using this narrow broadening leads to
artificial oscillations in the spectra, which originate from the
discretization of the bath in the NRG calculation. In order to
produce physical spectra, we finally smooth these oscillations
by averaging over �ω = 0.01W . This averaging is justified for
the present purpose, because we do not expect very fine and
sharp structures in our spectra on this energy scale to determine
the physics of the PG. Furthermore, we carefully compared our
NRG calculated spectra with iterated perturbation theory (see
the Appendices). The latter technique does not require us to
broaden discrete excitations and provides therefore a useful
test in a suitable parameter regime.

III. FEATURES OF THE SPECTRAL FUNCTIONS
AND SELF-ENERGY

Before presenting the results of our calculations it is useful
to discuss some basic features of the Green’s functions and
self-energy, which will help us to better understand under
which conditions PG physics occurs. In the literature PG
physics is considered quite generally either for the integrated
spectral function ρ(ω) = 1

N

∑
k ρk(ω), which is equivalent to

the local spectrum ρii(ω), or for k-resolved spectra ρk(ω) close
to the Fermi surface. We will consider both quantities in this
paper. We note that a PG in one of these does not necessarily
imply one in the other quantity.

Let us first note that in the limit of high temperature
T � W,U correlation lengths become small and the physics
is dominated by local processes [65]. This is seen, for instance,
when we consider the bare single-particle propagator in
imaginary time:

G0
ij (τ ) = − 1

N

∑
k

eikr ij e−ξkτ eβξknF(ξk), (3)

where ξk = εk − μ and τ ∈ [0,β). In the limit of high tempera-
ture, β = 1/T → 0 and nF(ξk) → 1/2. Then G0

ij (τ ) in Eq. (3)
becomes essentially local, ∼δij , and spatial components with
i �= j vanish exponentially with length scale λ ∼ at

T
[66].

Quantum-mechanical hopping is largely incoherent in this
situation. This also means that DMFT based on a local
self-consistent approximation can become very accurate in
this high-temperature limit. For instance, high-temperature ex-
pansions for the three-dimensional Hubbard model agree well
with DMFT calculations for thermodynamical quantities, and
this remains the case down to temperatures of the order T 	
W/8 [65,67]. One should, however, note that the self-energy
of the three-dimensional Hubbard model does not become
completely k independent even in the limit T → ∞ [68].

What are the implications from this for the spectral function
and the self-energy? The excitations in the limit where
local physics dominates are determined by the local part
of the Hamiltonian, Hloc = −μ

∑
iσ niσ − U

∑
i ni,↑ni,↓. At

half filling the chemical potential is fixed to μ = −U/2,
and depending on the occupation n = 0,1,2 we have the
energies Eα = 0,U/2,0, respectively. Excitations in the spec-
tral function have finite matrix elements for states where
the particle number differs by one. Hence, in the spectral
function excitation at energies �E = ±U/2 can be expected.
The corresponding self-energy for the atomic problem reads
�ii(ω) = U 2

4(ω+i�) , where � → 0. This implies δ-function
peaks at ±U/2 in the spectral function. In Sec. IV we will see
that DMFT results at high temperature and large U are indeed
of a similar form, Im�ii(ω) = − U 2�

4(ω2+�2) . Away from half
filling the situation is more complicated, but similar features
remain visible. If the peak in the self-energy is strong enough,
we find in the spectral function increased weight at ω = ±U/2
and a suppression of spectral weight at the Fermi energy. These
are the signatures of the PG in the integrated spectral function.
For strong interactions this effect remains observable down to
intermediate temperatures. In other words, the PG in ρ(ω) is
related to the existence of Hubbard bands which are visible in
the spectral function at all temperatures.
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We now discuss the appearance of a gap and PG in the
momentum resolved spectral function ρk(ω). In the normal
phase the Matsubara Green’s function reads

Gk(iωn) = 1

iωn − ξk − �(iωn)
, (4)

where we have assumed a momentum independent self-energy
as appropriate for DMFT calculations. The spectral function is
obtained from analytic continuation, iωn → ω + iη, η → 0,
to yield

ρk(ω) = − 1

π

�I (ω)

[ω − ξk − �R(ω)]2 + �I (ω)2
. (5)

We have separated real (R) and imaginary (I) parts of the
self-energy.

In the SF state we can include an explicit symmetry-
breaking term, �0

sc, �0
sc → 0 for spontaneous symmetry

breaking, and the noninteracting Green’s-function matrix
G0

k(iωn) has the form

G0
k(iωn)−1 =

(
iωn − ξk �0

sc
�0

sc iωn + ξk

)
. (6)

For the interacting system we introduce the matrix self-energy
�k(iωn) such that the inverse of the full Green’s-function
matrix Gk(iωn) is given by the Dyson equation:

Gk(iωn)−1 = G0
k(iωn)−1 − �k(iωn). (7)

The diagonal component of the k-dependent Green’s function
reads

Gk(ω) = ζ2,k(iωn)

ζ1,k(iωn)ζ2,k(iωn) − �12(iωn)�21(iωn)
, (8)

with ζ1,k(iωn) = ω − ξk − �11(iωn), ζ2,k(iωn) = iωn + ξk −
�22(iωn). The off-diagonal self-energy �12(ω), in particular
its real part, plays the role of a dynamic gap function,
Re�12(ω) ∼ �. Therefore, low-energy spectral excitations
which correspond to ω = z[ξk − �R(0)] in the normal phase
are shifted by the gap � to ±Ek ∼ ±z

√
[ξk − �R(0)]2 + �2,

where z−1 = 1 − ∂ω�
R

11(0) is the renormalization factor. Usu-
ally we associate the gap with a binding energy of pairs and
hence we can interpret this energy shift as an energy required
to break a pair and see a single-particle excitation.

We now discuss the occurrence of a PG for momenta close
to the Fermi surface in the situation where no off-diagonal
self-energy is present. Thus consider k = kF (interacting Fermi
surface) such that ξkF − �R(0) = 0 [69]. Then we can write

ρkF (ω) = − 1

π

�I (ω)

[ω − �
R

(ω)]2 + �I (ω)2
, (9)

where �
R

(ω) = �R(ω) − �R(0). Provided that �I (ω) does
not vary rapidly, we expect ρkF (ω) to be peaked when the

implicit equation ω = �
R

(ω) is satisfied. According to our
definitions there is always a solution to this equation for ω = 0.
In a weakly interacting system at low temperature |�I (ω)|
usually has a local minimum at ω = 0:

Im�(ω) = −a(T ) − bω2, (10)

where a(T ) → 0 for T → 0 and a,b > 0. By the Kramers-

Kronig relation ∂ω�
R

(0) < 0 [see Fig. 3 (left)]. Then the

only solution of ω = �
R

(ω) is the one at ω = 0. This is the
Fermi-liquid peak in the spectral function at ω = 0 with width

∼z|�I (0)| and weight z, where z−1 = 1 − ∂ω�
R

(0). We define
the low-energy behavior in Eq. (10) as the Fermi-liquid (FL)
regime.

A PG is obtained with different behavior [70,71]. If |�I (ω)|
possesses a local maximum at ω = 0,

Im�(ω) = −a(T ) + bω2, (11)

then ∂ω�
R

(0) > 0. If the slope is large enough we will then

encounter additional solutions of ω = �
R

(ω) as can be easily
seen graphically [see Fig. 3 (right)]. Whether this is the
case depends on the interaction strength, filling fraction, and
temperature. Since |�I (ω)| is decreasing, we obtain a local
minimum at ω = 0 in the spectral function and broadened
peaks at finite energies. This means that the original peak
at ω = 0 is split and hence we obtain a PG. Notice that a
local maximum of |�I (ω)| does not necessarily lead to a PG,
if the self-energy is not large enough. In the following we
call the low-energy behavior of Eq. (11) non-Fermi-liquid
(NFL) behavior. As we have discussed above |�I (ω)| is
typically maximal at ω = 0 at high temperature when the
physics becomes dominated by local interactions. It is also
directly visible in the phase-space factor appearing in the
second-order perturbation theory in U (see the Appendices).
Therefore, at high temperature we expect NFL behavior, and
at low temperature we usually have FL behavior. We define
the crossover scale as TFL, i.e., where the behavior of �I (ω)
changes from Eq. (11) to Eq. (10). In this picture PG behavior
in ρkF (ω) occurs therefore as long as (i) U is large enough
(∼W ) and (ii) T > TFL(U ). In particular, the PG is always
present above Tc if Tc > TFL(U ).

IV. PG PHYSICS AT HALF FILLING

In this section we analyze results from the DMFT calcula-
tions for spectral functions and self-energies and focus on the
situation at half filling. An overview of the different regimes
as a function of U and T is shown in Fig. 2.

The phase diagram includes the SF phase and the regimes
where the self-energy shows FL and NFL behavior as defined
in Eqs. (10) and (11), respectively. By performing calculations
suppressing the SF phase below Tc, we find that the boundary
between FL and NFL regimes (not shown) is connected
to the bipolaron transition at T = 0, which is equivalent
to the Mott transition for repulsive interactions. The NFL
regime in the phase diagram is separated into a region for
stronger interactions, where we observe a PG in the integrated
spectral function, and a region without PG (no PG) for weaker
couplings.

In the upper panels of Fig. 4 we show the interacting local
DOS ρ(ω). At weak coupling and intermediate temperatures,
ρ(ω) very much resembles the noninteraction DOS, ρ0(ω),
and the small self-energy does not have a pronounced effect.
Although |Im�| is peaked at the Fermi energy for U = 0.4W

at high temperatures, there is no PG structure in the DOS.
In contrast, for larger interactions, U/W = 0.6 and 1, we
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FIG. 4. (Color online) Integrated DOS, ρ11(ω), and imaginary
part of the self-energy, �11(ω), for different interaction strengths
and temperatures.

find at high temperatures a PG structure of two peaks at
±U/2 and a suppression of the density of states at ω = 0.
The behavior is more pronounced for larger interactions. In
both cases the magnitude of the PG is clearly related to U .
This structure is induced by the NFL peak in the |Im�| (lower
panels). As discussed in Sec. III this result can be understood
in terms of the local excitations dominating the physics at high
temperature. At weak and intermediate interaction strengths
the system crosses over to a FL regime before Tc is reached
when decreasing the temperature. For U/W = 0.4 and 0.6,
|Im�(ω)| exhibits a dip at the Fermi energy at low enough
temperature, T/W < 0.1, which is accompanied with a peak
structure in the DOS. Such a change in the behavior of
self-energy and DOS cannot be observed for strong coupling,
where the PG structure exists for all temperatures above Tc.
At very low temperatures, the system is in the SF phase
in all cases, which is characterized by a gap in the DOS,
which coincides with a dip in Im�(ω). So even though the
two cases, U/W = 0.6 and 1, in Fig. 4 look similar at high
temperature (PG) and very low temperature (SF gap), they
display a striking difference for intermediate temperatures.
For the larger coupling strength the SF transition occurs from

FIG. 5. (Color online) The local pair density 〈n↑n↓〉 for different
temperatures and interaction strengths. The black arrow marks the
transition from non-Fermi-liquid to Fermi-liquid behavior. The red
arrow marks the transition into the SF phase.

a PG state (see also Fig. 6); in contrast, for U/W = 0.6, the
SF instability happens in the FL regime.

Further insights can be obtained by studying the behavior
of the double occupancy or local pair density, 〈n↑n↓〉, which
is shown in Fig. 5 for different temperatures and interaction
strengths.

Independent of the interaction strength, in the high-
temperature limit, T � W,U , the pair densities approach the
noninteracting values n2

σ , where nσ is the density for one spin
component, at half filling 〈n↑n↓〉 = 0.25. In the atomic limit,
t = 0, the double occupancy can be easily calculated. At half
filling, all atomic states are occupied with equal probability,
so that the double occupancy reads

〈n↑n↓〉 = 1

2 + 2 exp[−U/(2T )]
. (12)

At high temperature, T/W > 0.5, this formula agrees very
well with the results in Fig. 5, demonstrating again that the
physics at high temperature is dominated by local processes.

Decreasing the temperature, 〈n↑n↓〉 increases due to the
attractive interaction. This effect is stronger for stronger
interaction. For interaction strengths U/W < 0.8, we find
a maximum before the system enters the SF phase at Tc.
This maximum appears to be correlated with the crossover
temperature TFL (black arrows) between FL and NFL behavior
in the self-energy. The vanishing of the maximum in the
pair density for interaction strengths U/W > 0.8 agrees with
the vanishing of the FL regime phase in the phase diagram.
For U/W < 0.8, the pair density decreases when lowering
the temperature below TFL, but then increases again when
entering the SF phase (arrow at Tc). For strong interactions
(U/W > 0.8) on the other hand, the pair density increases with
decreasing temperature until Tc is reached and then decreases.
This agrees with the known fact that the superfluidity is driven
by interaction energy gain for weak coupling, as opposed to
kinetic-energy gain for strongly coupled systems [53].

With these insights we can comment on how our results
compare to the preformed pair scenario in Fig. 1. It is
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FIG. 6. (Color online) ρ(ω) and �(ω) close to the SF phase
transition. We use the same legend for the self-energies as for the
Green’s functions. The transition temperatures are Tc/W = 0.032
for U/W = 0.6 and Tc/W = 0.035 for U/W = 1.0.

interesting to note that for very high temperatures the PG
behavior in Fig. 4 does not change significantly anymore. In
other words the PG persists and no Tp for its appearance can
be identified. This is the case even for temperatures where the
pair density has decreased to values close to the noninteracting
result. Furthermore we found PG behavior for the two cases
U/W = 0.6 and 1 at high temperature, but for intermediate
temperatures (T/W ∼ 0.05) the case U/W = 0.6 shows FL
behavior. In both cases we observe a strongly enhanced local
pair density for such temperatures, which can be interpreted
as a preformed pair state, however the manifestation in the
spectral function is different. Both of these observations are
in clear contrast to the preformed pair scenario, where the
existence of the PG behavior is linked to the presence of an
enhanced pair density [20,22].

In Fig. 6, we take a closer look at dynamic response
functions close to the SF transition temperature Tc.

The plots in the upper part of the figure show ρ(ω) for
U/W = 0.6 and 1, which correspond to a transition into the
SF phase from the FL and NFL regime, respectively. The
lower part of the figure displays the corresponding diagonal
and off-diagonal self-energies (real and imaginary parts). For

the weaker-coupling case, U/W = 0.6, at T > Tc there is the
usual FL dip in Im�11(ω) and the corresponding peak in ρ(ω).
When the temperature is lowered through Tc the off-diagonal
self-energy becomes finite and a dip in ρ(ω) is induced. Very
close below the transition temperature, the main effects for this
come from Re�12(ω). Lowering the temperature further, the
amplitude of the diagonal part of the self-energies decreases
without showing new features. As discussed in Sec. III the
gapping out of excitation is dominated by contributions from
Re�12(ω).

In the case of stronger interaction, U/W = 1, superfluidity
sets in the NFL regime with a PG at the Fermi energy.
When lowering the temperature through Tc, the off-diagonal
self-energy becomes finite, but at first the diagonal part of
the self-energy remains nearly unchanged (the orange line,
T/Tc = 1, overlaps with the dark green line, T/Tc = 1.1). On
further reducing the temperature the off-diagonal self-energy
increases substantially and Im�11(ω) is strongly reduced
developing a FL dip at the Fermi energy. The gap in ρ(ω)
changes smoothly from the PG with broad peaks separated by
U to the sharper structures (coherence peaks) in the SF phase.
It is interesting to note that the gap, if defined as the distance
between the maxima, is larger above Tc in the PG regime than
in the SF phase. One should also note that for low temperatures
the gap becomes much more pronounced with a suppression
of spectral weight at ω = 0 and as such is approaching a full
gap in the limit T → 0.

A remarkable observation is that the qualitative behavior of
the off-diagonal part of the self-energy can change within the
SF phase. Generally, |Re�12(ω)| approaches the mean-field
result U 〈ci,↑ci,↓〉 for |ω| → ∞ [55]. At weaker coupling
(U/W = 0.6) and low temperature it is minimal for small
ω. Decreasing the temperature, the anomalous expectation
value increases and this is reflected in the results for �12(ω).
The ω dependence can be understood at weak coupling from
the effective interaction for inducing superfluidity, which
possesses a repulsive component which is peaked for small
ω [72]. However, when entering the SF phase from the PG
regime at stronger coupling (U/W = 1), |Re�12(ω)| first
develops a strong maximum at ω = 0. When the temperature is
lowered further this behavior continually reverts to the one of
the weak-coupling situation. The form of the spectral function
changes at Tc and there is a shift from the gap feature being
induced by �11(ω) (above Tc) to �12(ω) (below Tc). The
observed strong changes are related to this shift and a more
thorough understanding requires further investigation.

We now turn our attention to features in the momentum
resolved spectral function ρk(ω). A good overview of the
behavior for different interactions and temperatures can be
obtained in the intensity plots in Fig. 7.

We show ρk(ω) for three interaction strengths [U/W = 0.4
(upper panels), 0.6 (middle panels), and 1 (lower panels)]
for three different temperatures [T/W = 0.2 (left), 0.08
(middle), and 0.01 (right)]. We also show the Fermi level
(dashed line) and the noninteracting dispersion (full red
line) as an orientation. At weak coupling, U/W = 0.4, the
spectral function only displays a weak modification from the
noninteracting result with certain broadening of the peaks and
a minor shift of spectral weight. At low temperature the system
is SF and excitations at kF are gapped out. Notice that the width
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FIG. 7. (Color online) Momentum resolved spectral function for U/W = 0.4 (upper panel), U/W = 0.6 (middle panels), and U/W = 1
(lower panels). The temperatures are T/W = 0.2,0.08,0.01 from left to right. The red line corresponds to the noninteracting system; the green
line corresponds to the Fermi energy.

of the Bogoliubov peaks at the gap edge is overestimated by
our broadening procedure [55].

For U/W = 0.6, we find similar features for ρk(ω) as
what has been found for the integrated spectral function,
ρ(ω), as far as the PG is concerned. At high temperatures
we see a broadened dispersion similar to but shifted from the
noninteracting one. Spectral weight is suppressed at the Fermi
energy such that PG features are realized at high temperatures.
Curiously, this PG closes at intermediated temperatures ∼TFL

where the behavior of the self-energy changes. Below Tc the
spectrum is gapped again. Notice that band renormalization
features appear somewhat weaker than at high temperatures.

For U/W = 1 the NFL regime extends from high temper-
atures down to Tc. The self-energy undergoes only very slight
changes when decreasing the temperature in the NFL regime.
Accordingly, the momentum resolved spectral functions for
T/W = 0.2 and 0.08 (lower left panel and lower middle
panel) are nearly the same. We observe a large PG around
the Fermi energy; the spectral weight at the Fermi energy
is very small. When entering the SF phase, gap features are
visible and the dispersion changes in the vicinity of ω = 0.
For this interaction strength, we observe a clear deviation
between the noninteracting band structure and the interacting
spectral function. In the SF phase we find a mirror or
“shadow” band appearing as reflected from ω = 0. These
bands can be understood due to a particle-hole doubling in the
Nambu representation. This is an effect also observed in the
antiferromagnetically ordered phase with zone doubling [73].

In Fig. 8 we show particular cuts for ρkF (ω) as a function
of ω. Here we can see the PG features even more clearly.

Similar to the integrated spectrum, ρ(ω), the PG is absent
for the weak-coupling case, U/W = 0.4, but present at high
temperature for stronger interactions, U/W = 0.6 and 1. For
U/W = 0.6 the PG disappears in the FL regime, whereas
it remains for U/W = 1. We also show the real part of
the diagonal self-energy. As discussed in Sec. III, the peak
splitting in ρkF (ω) can be induced from nontrivial solutions
of ω = Re�11(ω), and we have included a dashed line to
see this graphically. As can be clearly seen, this condition is
not satisfied in the weak-coupling case. In contrast, at strong
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U/W = 0.4, 0.6, and 1 for different temperatures.
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coupling, U/W = 1, the intersection points characterize the
peak positions well. The spectral function changes in the SF
phase (lowest temperatures), where the coherence peaks at the
gap edge become visible.

V. PG PHYSICS AWAY FROM HALF FILLING

So far we have focused on the situation at half filling where
the discussion is somewhat simplified due to the particle-hole
symmetry. In this section we show results for different filling
factors (n < 1) to see how the PG behavior is affected. This
is important for comparison with experiments with ultracold
atoms, where due to the trapping potential no homogeneous
filling fraction can be expected.

In Fig. 9 results for ρ(ω) and Im�(ω) analogous to the ones
in Fig. 4 for the half-filled case are displayed for n = 0.5 over a
wide temperature range. The lowest temperature corresponds
to a gapped SF state. Looking at the self-energies in the lower
panel, we can clearly see that the classification into FL and
NFL regions is still applicable and |Im�(ω)| can either show
a double peak with dip in the vicinity of ω = 0 (FL) or a
strong single peak (NFL). It is useful here to distinguish
temperatures T/W � 0.2, where features are close to ω = 0,

FIG. 9. (Color online) The DOS and imaginary part of the self-
energy for U/W = 0.6 and 1 for different temperatures. The filling
of the system is fixed to n = 0.5.

and higher temperatures, where the NFL peak in |Im�(ω)|
moves systematically to higher energies. In contrast to the
half-filled situation the case U/W = 0.6 does not show a
clear PG in ρ(ω). However, for U/W = 1 the PG is clearly
visible. For lower temperatures the minimum in ρ(ω) is close to
ω = 0 and for higher temperatures it moves to higher energies
together with the NFL peak in |Im�(ω)|. Notice, however, that
the minimum in ρ(ω) and the peak in |Im�(ω)| do not coincide
as they do for n = 1. The shift of the PG with temperature
can be understood by recalling that at high temperature the
Fermi distribution becomes flatter such that higher energies
contribute to the particle number, n = ∫

dωρ(ω)nF(ω). To
satisfy this relation at higher temperature the spectrum has
to be shifted.

The PG structure in ρ(ω) at elevated temperature can still
be understood from the local picture. For n < 1, we can write
μ = −U/2 − �μ (U > 0) assuming �μ > 0, and the atomic
energies are Eα = 0,U/2 + �μ,2�μ. The partition function
reads

Z = 1 + 2e−β(U/2+�μ) + e−β2�μ. (13)

There are now excitations at ω+ = U/2 + �μ and ω− =
−U/2 + �μ with generally asymmetric weights:

w+ = 1

Z
[1 + e−β(U/2+�μ)], (14)

and

w− = 1

Z
[e−β2�μ + e−β(U/2+�μ)], (15)

respectively.
Without showing explicit results we note that the pair

density 〈n↑n↓〉 displays a similar temperature dependence for
n = 0.5 to what was shown in Fig. 5, increasing from n2

σ at
large T to larger values (maximal n/2). Therefore, similarly to
the half-filled case PG behavior can coincide with an enhanced
pair density for large interactions and Tc � T . However, we
also find cases, e.g., U/W = 0.6, T/W = 0.05, with enhanced
pair density (〈n↑n↓〉 ≈ 0.17) and no PG behavior, in contrast
to the expected relation in the preformed pair scenario.

In order to get an insight to overall trends, we compare
several different fillings in Fig. 10. We show ρ(ω) and Im�(ω)
for U/W = 0.6 and 1 for low temperature, T/W = 0.05, in
the normal phase. For U/W = 0.6 ρ(ω) exhibits a FL dip
in Im�(ω). It is clearly visible, even for n = 0.1, that the
self-energy does not change its structure when reducing the
filling further. The frequency dependence in this FL regime
is relatively symmetric with respect to ω = 0. The DOS, on
the other hand, changes with n. While for n = 0.5 a clear
peak close to the Fermi energy is visible in the DOS at low
temperature, such a peak is hardly noticeable for n = 0.2,
and it has disappeared for n = 0.1. The amplitude of the self-
energy has become too weak to change the spectrum and we
essentially see a shifted noninteracting DOS.

For U/W = 1, we find a NFL peak in Im�(ω) for all fillings
in Fig. 10. We observe similar effects as for weaker interactions
when reducing the filling as far as the strength of the self-
energy is concerned. However, we find a clear PG structure in
the DOS. While the PG structure at low temperature is pinned
to ω = 0, at high temperature the whole spectrum including
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FIG. 10. (Color online) The DOS and imaginary part of the self-
energy for U/W = 0.6 and 1 for different fillings. The temperature of
the system is T/W = 0.05. All data shown correspond to the normal
phase.

the PG is shifted to high frequencies (see Fig. 9). Note that
at high temperature due to the flattening of nF(ω) the Fermi
energy (ω = 0) does not play such an important role as it does
for low temperatures.

In summary, when analyzing ρ(ω) and Im�(ω) we can find
similar features to the ones of the half-filled situation and a
PG appears for suitable parameters. However, depending on
filling, temperature, and interaction strength, the occurrence of
the PG may be limited. At high temperatures it can be shifted

away from ω = 0, although it is still clearly visible in the spec-
trum. Moreover, the impact of the local Hubbard interaction
becomes weaker for a system with a smaller filling factor.

Momentum resolved spectra for n = 0.5 and various
values of T and U are displayed in Fig. 11. Generally, the
features are similar to the half-filled case. For weak coupling
(U/W = 0.4) we find a shifted and broadened spectrum which
shows a SF gap at low temperature. For intermediate coupling
(U/W = 0.6) interaction effects are more visible in the
spectrum, resulting in stronger band renormalization effects
and shifts of spectral weight. However, in contrast to n = 1
no clear PG becomes visible in ρk(ω). For U/W = 1, we see
strong interaction effects and PG features at all temperatures
above Tc. We also clearly observe an asymmetry in the
intensity, which is substantially lower for the ω < 0 part of the
spectrum.

Particular cuts along ω for momenta which satisfy ξkF +
Re�(0) = 0 are shown in Fig. 12. At weak coupling (U/W =
0.4) the FL peak is gapped out when the temperature is
lowered below Tc. For intermediate coupling (U/W = 0.6)
above Tc we find that the FL peak is shifted away from ω = 0
to higher energies. Also the coherence peaks below Tc show
some asymmetry due to self-energy effects. A clear PG is only
visible for larger interactions, U/W = 1. The lower panel
shows again the real part of the self-energy. In contrast to
the situation at half filling, the peaks in ρkF (ω) are not well
explained by the intersection, ω = Re�(ω). In this situation
the variation of Im�(ω) is too strong, invalidating the simple
arguments of Sec. III. Nevertheless a NFL peak form of the
self-energy is clearly important for the PG behavior.

FIG. 11. (Color online) Momentum resolved spectral function ρk(ω) for n = 0.5 from top to bottom—U/W = 0.4, 0.6, and 1—and from
left to right—T/W = 0.2, 0.08, and 0.01. The red line corresponds to the noninteracting dispersion εk; the dashed green line corresponds to
the Fermi energy.
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VI. DISCUSSION AND CONCLUSIONS

We have analyzed the occurrence of PG features in the
integrated and k-resolved spectral function of the three-
dimensional attractive Hubbard model for different filling
factors. Properties of the spectral functions have been traced
back to the characteristic behavior of the self-energy. We find
PG behavior as long as the interaction U is large enough (∼W )
and the self-energy shows NFL behavior, i.e., T > TFL(U ).
Our results show marked deviation from the popular preformed
pair scenario, where PG behavior is directly linked with the
formation of pairs at a temperature Tp: (i) We find that PG
behavior persists up to large temperatures and is not bounded
by some temperature scale Tp, and (ii) we find cases with
a substantially enhanced pair density where no PG behavior
occurs. The first effect is related to the fact that we are working
with a lattice model, such that local excitations are always well
defined and related to μ and U . This might be different in the
continuum where it is conceivable that the preformed pair
scenario of Fig. 1 is applicable. On the other hand we expect
the PG to be present at large temperatures as a nonperturbative
local lattice effect also in the two-dimensional lattice model.
Certainly, other effects like strong phase fluctuations and
small momentum pairing fluctuations, not contained in our
calculations, can lead to a substantial extension of the regimes
where PG behavior occurs.

A word of caution is in order when discussing the large
temperatures addressed in this paper. Here we dealt with a
strict one-band model where the kinetic energy is limited by
the bandwidth. In most real systems very high temperature
would activate higher bands, and in solid-state systems it can
lead to the melting of the crystal structure; such effects are
obviously not allowed in our setup.

Experiments with ultracold atoms in optical lattices provide
an excellent platform to test our predictions. Interactions can
be tuned in a wide range by Feshbach resonances, the lattices
can be loaded with different filling factors, and a temperature
range T/W = 0.1–0.2 is routinely accessible. Integrated and
momentum resolved spectra can be measured such that a
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direct comparison with our predictions is possible. Thus, we
hope that our work will stimulate further efforts in this field
which contribute to a better understanding of the intriguing
PG physics.
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APPENDIX A: T-MATRIX APPROXIMATION

A popular approximation for the self-energy is the so-
called T -matrix approximation, which corresponds essentially
to summing the scattering processes in the particle-particle
channel. One has [27,33]

�(1) = T U
∑
m,q

eiωmηG(q,iωm), (A1)

or equivalently

�(1) = U
∑

q

∫
dω ρ(q,ω)nF(ω), (A2)

and

�T
k (iωn) = T

∑
m,q

eiωnη�(q,iωm)G(q − k,iωm − iωn),

(A3)
with η → 0. Here we defined

�(q,iωm) = U 2K(q,iωm)

1 − UK(q,iωm)
, (A4)

with the particle-particle propagator:

K(q,iωm) = −T
∑
n,q

G(q − k,iωm − iωn)G(k,iωn). (A5)

The self-energy is �k(iωn) = �
(1)
k (iωn) + �T

k (iωn).
In the local approximation, the expression simplifies. We

find the following result after analytic continuation:

�(1) = U

∫
dω ρG(ω)nF(ω), (A6)

and

�T(ω) =
∫

dω1

∫
dω2

ρ�(ω1)ρG(ω2)

ω+ − ω1 + ω2
[nB(ω1) + nF(ω2)].

(A7)
We have

K(iωm) = −T
∑

n

G(iωm − iωn)G(iωn), (A8)
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and ρ� = − 1
π

Im�(ω+). Introducing spectral functions we can
also write

K(ω+) =
∫

dω1

∫
dω2

ρG(ω1)ρG(ω2)

ω+ − ω1 − ω2
[nF(ω1) − nF(−ω2)],

(A9)
and

�(iωm) = U 2K(iωm)

1 − UK(iωm)
. (A10)

The T -matrix calculations can be done non-self-consistently
(Tnsc) and self-consistently (Tsc).

APPENDIX B: COMPARISON OF NRG-DMFT WITH IPT
AND T MATRIX

We start with a comparison of the DMFT results obtained
using NRG calculations for the effective impurity model
with DMFT calculations using second-order perturbation
theory, usually termed iterated perturbation theory (IPT). IPT
gives qualitatively reliable results in the half-filled Hubbard
model [24]. Since IPT does not require a prescription of
broadening discrete excitations, this comparison helps to
validate the finite temperature broadening procedure described
in Sec. II. We focus on results at half filling in this section. In
Fig. 13 we show a comparison of the imaginary part of the self-
energy, Im�(ω), and the integrated spectral function, ρ(ω), for
U/W = 0.6 (left) and 1 (right) and different temperatures.

Overall the agreement is good with minor deviations in the
tails. There is a particularly visible difference for U/W = 1,
where the IPT result for Im�(ω) shows a somewhat stronger
peak. This leads to a more pronounced PG in ρ(ω). We
conclude that the DMFT-NRG results at high temperatures
have the qualitative correct form and the PG remains there.

We also provide a comparison of the DMFT-NRG re-
sults with T -matrix calculations. In particular, we use
Eq. (A6) and following, and include self-consistent (Tsc)
and non-self-consistent (Tnsc) results. Note that the T -matrix

FIG. 13. (Color online) Comparison of DMFT-NRG (full lines)
and IPT (dashed lines) results for U/W = 0.6 (left) and 1 (right) for
Im�(ω) and ρ(ω).

FIG. 14. (Color online) Comparison of DMFT-NRG result with
self-consistent (Tsc) and non-self-consistent (Tnsc) T-matrix calcu-
lations for Im�(ω) and ρ(ω) for U/W = 0.4 and T/W = 0.1.

calculations are only sensible as long as 1 − UReK(ω) does
not become zero, which is particularly important for the
non-self-consistent case. At weak coupling (U/W = 0.2,
not shown) one can find reasonable agreement of T -matrix
calculations with the DMFT-NRG and all calculations give
no PG behavior. However, in this situation also second-order
perturbation theory gives satisfactory agreement.

As seen in Fig. 14 for U/W = 0.4 and T/W = 0.1, Tsc
and DMFT still show reasonable agreement, whereas Tnsc
calculations can lead to a strong overestimate for Im�(ω).
This can lead to a PG feature in ρ(ω), even though calculations
with the DMFT-NRG give no PG behavior.

For intermediate coupling, U/W = 0.6, and T/W = 0.2,
we show a further comparison in Fig. 15.

In this case both T -matrix calculations give unreliable re-
sults. The self-energy of the self-consistent version is too small
and ρ(ω) shows no PG. The non-self-consistent calculation
shows a PG but its magnitude is largely overestimated. For
larger interactions, for instance, U/W = 1, the deviations get
worse. We therefore conclude that T -matrix calculations—
both self-consistent and non-self-consistent—within the local
approximation do not give reliable results for the PG physics
of the three-dimensional Hubbard model at half filling.

APPENDIX C: SECOND-ORDER SELF-ENERGY AND
PHASE-SPACE FACTOR

The result for the second-order retarded self-energy
reads [74]

�r (ω,k) = U 2
∫

dε
F r (ε,k)

ω + iη − ε
. (C1)

FIG. 15. (Color online) Comparison of DMFT-NRG result with
self-consistent (Tsc) and non-self-consistent (Tnsc) T-matrix calcu-
lations for Im�(ω) and ρ(ω) for U/W = 0.6 and T/W = 0.2.
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The imaginary part of the retarded self-energy is then given by

Im�r
k(ω) = −πU 2F r (ω,k), (C2)

where F r (ε,k) = f1(ε,k) + f2(ε,k), with the phase-space
factors

f1(ε,k) =
∑

k1,k2,k3

δ
(
ξk2 + ξk3 − ξk1 − ε

)

× δ(k + k1,k2 + k3)nk1

(
1 − nk2

)(
1 − nk3

)
(C3)

and,

f2(ε,k) =
∑

k1,k2,k3

δ
(
ξk2 + ξk3 − ξk1 − ε

)

× δ(k + k1,k2 + k3)
(
1 − nk1

)
nk2nk3 . (C4)

The expressions can be simplified in the limit of large
dimensions. The momentum integrations can be replaced by
integrals over the density of states, momentum conservation is
implicit so we can omit the corresponding δ function, and the
k dependence disappears:

f1(ε) =
∫

dε1

∫
dε2

∫
dε3 ρ0(ε1)ρ0(ε2)ρ0(ε3)

× δ(ε2 + ε3 − ε1 − ε − μ)

× nF(ε1 − μ)nF(−ε2 + μ)nF(−ε3 + μ). (C5)

We can do the integration over the δ function:

f1(ε) =
∫

dε2

∫
dε3 ρ0(ε2 + ε3 − ε − μ)

× ρ0(ε2)ρ0(ε3)nF(ε2 + ε3 − ε − μ)

× nF(−ε2 + μ)nF(−ε3 + μ), (C6)

and similarly for f2(ε). In the particle-hole symmetric case we
have

f2(ε) = f1(−ε), (C7)

It is then sufficient to evaluate f1(ε) and we can write

F r (ε,k) = F r (ε) = f1(ε) + f1(−ε). (C8)

This can be evaluated as a double integral for a given
temperature and ρ0(ε). Assuming that ρ0(ε) is only finite in
an interval (−D,D) we can analyze the double integration as
being determined by a certain region in the ε3-ε2 plane. At
T = 0 a geometric analysis of the integration region shows
f1(ε) ∼ ε2, which gives the typical Fermi-liquid behavior,
Eq. (10), at low temperature. In the opposite limit, T → ∞, a
similar analysis shows that F r (ε) is maximal at ε = 0 and it
decays for small ε as −ε2, which yields the NFL form Eq. (11).
One can estimate the crossover temperature TFL by studying
when the coefficient of the ε2 changes sign. Depending on
the density of states and the approximations made one finds a
result of the order of a fraction of the bandwidth, consistent
with the result in Fig. 2 for small U .

[1] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
[2] A. A. Kordyuk, Low Temp. Phys. 41, 319 (2015).
[3] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys.

Rev. B 63, 094503 (2001).
[4] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
[5] V. Emery and S. Kivelson, Nature (London) 374, 434 (1995).
[6] V. Mishra, U. Chatterjee, J. C. Campuzano, and M. R. Norman,

Nat. Phys. 10, 357 (2014).
[7] K. Efetov, H. Meier, and C. Pépin, Nature Physics 9, 442 (2013).
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