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Zero-energy peak and triplet correlations in nanoscale
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Using a self-consistent Bogoliubov—de Gennes approach, we theoretically study the proximity-induced density
of states (DOS) in clean SFF spin valves with noncollinear exchange fields. Our results clearly demonstrate a
direct correlation between the presence of a zero-energy peak (ZEP) in the DOS spectrum and the persistence
of spin-1 triplet pair correlations. By systematically varying the geometrical and material parameters governing
the spin valve, we point out experimentally optimal system configurations where the ZEPs are most pronounced,
and which can be effectively probed via scanning tunneling microscopy. We complement these findings in the
ballistic regime by employing the Usadel formalism in the full proximity limit to investigate their diffusive SFF'
counterparts. We determine the optimal normalized ferromagnetic layer thicknesses which result in the largest
ZEPs. Our results can serve as guidelines in designing samples for future experiments.
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I. INTRODUCTION

The interplay of ferromagnetism and superconductivity in
hybrid superconductor (§)/ferromagnet (F) structures consti-
tutes a controllable system in which to study fundamental
physics, including prominently that of competing multiple
broken symmetries [1,2]. The proximity of a conventional
s-wave S with nonaligned ferromagnetic layers, or a textured
F, induces both spin-singlet and odd-frequency [3] (or,
equivalently, odd-time [4]) spin-triplet correlations with O
and +1 spin projections along a spin quantization axis.
These triplet pairs stem from broken time reversal and
translation [1,2] symmetries. This kind of spin-triplet pairing,
originally suggested as a possible pairing mechanism in *He
[3], has reportedly been observed in intermetallic compounds
such as SrpRuOy4 [5,6]. S F heterostructures are particularly
simple feasible experimental systems which allow for direct
studies of the intrinsic behavior of differing superconducting
pairings. Unlike the opposite-spin correlations, spin-1 pairing
correlations are rather insensitive to the pair-breaking effects of
ferromagnetic exchange splitting and, hence, to the thickness
of the magnetic layers, temperature, and magnetic scattering
impurities. The amplitudes of the opposite-spin correlations
pervading the adjacent F undergo damped oscillations as a
function of the position, which reveals itself in O-7 transitions
of the supercurrent [1,7-10]. In the past decade, several
proposals have been put forth for achieving attainable and prac-
tical platforms that isolate and utilize proximity-induced [3,4]
superconducting triplet correlations in S F hybrids [1,2].

The signatures of the proximity-induced electronic density
of states (DOS) in the F layers of these hybrid structures can
reveal the existence and type of superconducting correlations
in the region [9-13]. One promising prospect for unambigu-
ously detecting triplet correlations experimentally involves
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tunneling spectroscopy experiments which can probe the local
single-particle spectra encompassing the proximity-induced
DOS [11,12,14-29]. Nonetheless, competing effects can make
analysis of the results of such a “direct” probe of spin-triplet
superconducting correlations problematic. The DOS in SNS
junctions and SF'S heterostructures, where the magnetization
pattern of the F layer can be either uniform or textured
(including domain wall and nonuniform textures, such as the
spiral magnetic structure of holmium), has been extensively
studied [11,12,20-22,30,31]. It was found that the DOS in a
normal metal sandwiched between two s-wave superconduct-
ing banks shows a minigap which closes by simply tuning
the superconducting phase differences up to the value of &
[11,12,21,22]. In contrast, the DOS can exhibit anomalous
behavior in inhomogeneous magnetic layers. Namely, upon
modulating the superconducting phase difference [11,12,23],
apeak arises at zero energy, at the center of what was a minigap.
It was also shown that the zero-energy peak (ZEP) in the DOS
for a simple textured SFS junction can be maximized at a
bias [11,12,23]. The minigap-to-peak behavior of the DOS
at zero energy is an important signature of the emergence of
triplet correlations [11,12,32]. Recently it was theoretically
proposed that the minigap-to-peak phenomenon be leveraged
for functionality in device platforms such as SQUIDs, to
enhance their performance and as ultrasensitive switching
devices, including a singlet-triplet superconducting quantum
magnetometer [23].

An important spectroscopic tool for investigating proximity
effects on an atomic scale with sub-meV energy resolution is
the scanning tunneling microscope (STM). As shown in Fig. 1,
an SFF spin-valve structure can be probed experimentally
by positioning a nonmagnetic STM tip at the edge of the
sample to measure the tunneling current (/) and voltage (V)
characteristics. This technique yields a direct probe of the
available electronic states with energy eV near the tip. There-
fore, the differential conductance d1(V)/dV over the energy
range of interest is proportional to the local DOS. Numerous
experiments have reported signatures of the energy spectra
in this manner [14,15,17-19,24-26,28]. When ferromagnetic
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FIG. 1. (Color online) Schematic of the SFF spin-valve structure.
Ferromagnetic layers have uniform exchange fields located in the
vz plane. The exchange field of each layer is defined by ﬁl,z =
ho(0, sin B 2, cos Bi.2), in which B, , are the angles of the exchange
fields with respect to the z direction. The ferromagnets (F, F,) and
superconductor (S) are stacked in the x direction with thickness d,
dp2, and dg, respectively. The STM tip is located at the edge of the
SFF spin valve.

elements are present, the superconducting proximity-induced
DOS reveals a number of peculiarities due to the additional
spin degree of freedom that arises from the magnetic layers.
However, the experimental signatures of the odd-frequency
spin-triplet correlations can be washed out by more dominant
singlet correlations. When the exchange splitting . of the
magnetic layers is large (~¢F, i.e., close to the half-metallic
limit), the magnetic coherent length &7, which describes the
propagation length of opposite-spin pairs in the ferromagnets,
is extremely small. These types of proximity-induced cor-
relations can thus only be experimentally observed in weak
magnetic alloys i < er (such as Cu,Ni,) or thin F layers
so that dp/&F is sufficiently large to allow the opposite-spin
superconducting correlations to propagate in the ferromag-
net without being completely suppressed [14,16,27]. Since
spin-1 triplet pairs are not destroyed by the ferromagnetic
exchange field in strong magnets, there should exist certain
system parameters, e.g., F' widths and exchange fields, that
result in regions whereby equal-spin pairs are the only pair
correlations present. This scenario was explored in an S/Ho
bilayer [29], where phase-periodic conductance oscillations
were observed in Ho wires connected to an ordinary s-wave
S. This behavior was qualitatively explained in terms of the
long-range penetration of proximity-induced spin-1 triplet
pairings due to the helical structure of the magnetization [33].
In practice, however, simpler structures involving S F hybrids
with uniform exchange fields are often preferable from both an
experimental and a theoretical perspective [14,16,17,24-29].
Therefore, the primary aim of this work is the determination of
experimentally optimal parameters for probing odd-frequency
spin-1 triplet correlations with DOS signatures in nanoscale
SFF spin valves.

Nearly all of the past theoretical works on SFF structures
have considered the diffusive case [34—38], where impurities
strongly scatter the quasiparticles. The clean regime has been
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studied, using a self-consistent solution of the Bogoliubov—
de Gennes (BdG) [39] equations, in Ref. [40]. That work,
however, focused largely on the transition temperature os-
cillations. The results for these oscillations were found [41]
to agree with experiment and to be consistent with other
experimentally established [42-49] results. In the present
work, we use the same general methods used there to study
a simple SFF structure with noncollinear exchange fields
in the ballistic regime, but we focus on a very different
quantity, which is readily accessible experimentally, namely,
the local DOS and its detailed low-energy structure. We
strongly emphasize the relation between the ZEP and the triplet
pairing amplitudes. In particular, given the assertion [41] that
variations in the transition temperature in these valve structures
are quantitatively related to the average triplet pair amplitudes
in the outer F' layer, we search for (and, as will be seen,
find) correlations between the ZEP and these averages. This
BdG study is complemented with a briefer investigation of the
corresponding diffusive case. By considering both regimes,
we are able to provide some general guidelines for future
experiments.

The structure we study is schematically depicted in Fig. 1,
where the STM tip is positioned in the outermost F layer,
near the vacuum boundary. In the ballistic regime, we employ
the full microscopic BAG equations within a self-consistent
framework. From the solutions, we calculate the local DOS
over a broad range of experimentally relevant parameters and
study its behavior at low energies. For the diffusive regime,
we make use of the quasiclassical Usadel [50] approach to
study the diffusive SFF counterparts in the full proximity limit.
Our systematic investigations thus provide a comprehensive
guide into such spin valves. Utilizing experimentally realistic
parameters, we determine favorable thicknesses for the F
layers to induce maximal ZEPs, which occur when the
population of triplet correlations in the outer layer dominates
the singlets.

The paper is organized as follows. In Sec. II we outline
the theoretical approaches used. In Sec. III, we present our
results in two subsections, pertaining to the ballistic and
diffusive regimes. In the ballistic case, we study the local
DOS for differing exchange field misalignments, exchange
field intensities, and interface scattering strengths. We also
investigate the singlet and triplet pairing correlations for
similar parameters to determine how ZEPs in the DOS
correlate with the triplet correlations. In the diffusive case,
we present two-dimensional maps of the ZEP at different
exchange field misalignments and the S F interface opacity.
Finally, we summarize with concluding remarks in Sec. I'V.

II. METHODS AND THEORETICAL TECHNIQUES

In this section, we first discuss the theoretical framework
used to study clean samples. We then outline the Usadel tech-
nique in the full proximity regime, which properly describes
dirty samples.

A. Microscopic approach: Bogoliubov—de Gennes equation

For the ballistic regime, we use the microscopic BdG
equations to study SFF spin-valve nanostructures. We solve
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these equations in a fully self-consistent [40,51] manner.
A schematic of the spin-valve configuration is depicted in
Fig. 1. The general spin-dependent BdG equations for the
quasiparticle energies, €,, and quasiparticle amplitudes, u,,
and v,,,, is written

Hy—h. —h,+ih, 0 A
—h, —ih,  Hy+h, A 0
0 A* —(Ho—hy)  —hy —ih,
A* 0 —hy +ihy,  —(Ho+h,)
unT un¢
Un) _ u,w
vnT - En Un'r ’ (])
Uny Uny

where the pair potential, A(x), is calculated self-consistently
as explained below. This quasi-one-dimensional system is
described by the single-particle Hamiltonian Ho(x) as

1
Ho(x) = %(—af +l+k)—Er+U®, ()

where Ep is the Fermi energy, and U(x) is the spin-
independent interface scattering potential, which we take to be
of the form U(x) = H[(S(X — dp[) + S(X — dF] — dFQ)]. The
in-plane wave-vector components, k, and k., arise from the
translational invariance in the y and z directions. The system
is finite in the x direction, with the widths of each F and S
layer shown in the schematic. Our method permits arbitrary
orientations and magnitudes of the magnetic exchange fields,
h; (i = 1,2), in each of the F regions. Specifically, we fix the
exchange field in F, to be aligned in the z direction, while in
F}, its orientation is described by the angle gy,

- {Elzho(o,sinﬁl,cosﬁl) in Fp, 3)

h =
h2 = /’102, in Fz,

where we consider the experimentally appropriate situation of
an in-plane Stoner-type exchange field interaction.

The spin-splitting effects of the exchange field coupled with
the pairing interaction in the S regions result in a nontrivial
spatial dependence of the pair potential A(x). In general, it
is necessary to calculate the pair potential in a self-consistent
manner by an appropriate sum over states,

AG) = %Z[”m(")”:i(x) + n ) (x)v,4 (x)] tanh <2€—;>

“

where g(x) is the attractive interaction that exists solely
inside the superconducting region and the sum is restricted to
those quantum states with positive energies below an energy
cutoff, wp.

We now discuss the appropriate quantities that characterize
the induced triplet correlations. We define [4,52] the following
triplet pair amplitude functions in terms of the field operators
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in the Heisenberg picture,

Jo(x,t) = LY (.0 (x,0)) + (¥, (x,0) ¥4 (x,0))], (5a)
Ji(e 1) = LY (.04 (x,0)) — (¥ (.0 (x,0))], (5b)

where ¢ is the relative time. With the quantization axis aligned
along the z direction, the time-dependent triplet amplitudes,
fo(x,t)and fi(x,t), can be written in terms of the quasiparticle
amplitudes [4,52],

1
2
1
2

folx,t) = % ;m”(x) — £ NG, (©6)
filx,t) = % ;(fn”(x) + O (), (7

where we define fn”"/(x) = Uno (X)V);,(x), and the time factor
£, (t) is written

.. €n
£ (t) = cos(e,t) — i sin(e,t) tanh <ﬁ> (8)

Experimentally accessible information regarding the quasi-
particle spectra is contained in the local density of one-particle
excitations in the system. This includes the zero-energy
signatures in the DOS, which present a possible experimental
avenue in which to detect the emergence of equal-spin triplet
correlations within the outer ferromagnet. The total DOS,
N(x,e), is the sum Ny(x,€) + N (x,€), involving the spin-
resolved local DOS, N, , which is written

No(x.6) ==Y {[ug )] f'(e — &) + [0 (0] /(e + )}

C))

where o denotes the spin (=1, ), and f’'(¢) = df/de is the
derivative of the Fermi function.

B. Quasiclassical approach: Usadel equation

When the system contains a strong impurity concentration,
then for sufficiently small energy scales, the superconducting
correlations are governed by the Usadel equation. Following
Ref. [12], the Usadel equation [50] compactly reads

DI[3,G(r,e)[d,G(r,e)]]
+ ileps + diag[h(r) - o,(h(r) - 0)71,G(r,€)] =0, (10)

in which p3 and 0 = (6%,0%,0%) are 4 x 4 and 2 x 2 Pauli
matrices, respectively, and D represents the diffusive constant
of the magnetic region. The quasiclassical approach employed
in this section supports ferromagnets with arbitrary exchange
field directions; h(r) = (h*(r),h”(r),h*(r)). In Eq. (10), G
represents the total Green’s function, which is made of ad-
vanced (A), retarded (R), and Keldysh (K) blocks. Therefore,
the total Green’s function can be expressed by

R K
G(r.e) = (% (G;A> GR(r,e)=<_gf* _fg*>
(11)

In the presence of ferromagnetism, the components of an
advanced block, G4(r), of the total Green’s function G can be
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written as

Jf(r,e)z(}lﬁT J}U) g(r,e)z(i“T ggﬁ). (12)

In this paper, however, we assume stationary conditions for our
systems under consideration, and hence the three blocks com-
prising the total Green’s function are related to each other in the
following way: GA(r,e) = —[p3GR(r,€)p3]' and GX (r,e) =
tanh(Be)[GR(r,e) — GA(r,€)], where B = kgT /2.

The S F interface controls the proximity effect. Therefore,
appropriate boundary conditions should be considered to
properly model the system. In our work, we consider the
Kupriyanov-Lukichev boundary conditions at the S F inter-
face [53], which controls the induced proximity correlations
using a parameter ¢ as the barrier resistance:

tG(r,e)0G(r,e) = [Gpcs(0,€),G(r,e)]. (13)

The solution for a bulk even-frequency s-wave S, chs’
reads [33]

AR _ [ 1coshd(e)
CUpes(@-€) = <icry sinh 9 ()

where ¥ (€) = arctanh(|A|/€).
The system local DOS, N (r,€), can be expressed by the
equation

io” sinh ¥ (€)
—1cosh ﬁ(e))’ 14

N(r,e) = %Re[Tr{G(r,e)}], (15)

in which N is the density of states of normal phase.

III. RESULTS AND DISCUSSION

In this section, we describe our results. We start with those
for a ballistic SFF structure and then present the predictions
of Usadel formalism for diffusive samples.

A. Ballistic regime

In this subsection we present the self-consistent results
for the ballistic regime. The numerical method used here
to iteratively solve Egs. (1) and (4) in a self-consistent way
has been extensively described elsewhere [40,51], and details
need not be repeated here. In the calculations, the temperature
T is held constant at T = 0.057,, where T, is the transition
temperature of a pure bulk S sample. All length scales are
normalized by the Fermi wave vector, so that the coordinate
x is written X = krx, and the F; and F, widths (chosen
in the experimentally relevant range of nanometers to tens
of nanometers) are written Dp; = kpdp;, for i = 1,2. The
ferromagnet, F,, and superconductor thicknesses are set to
fixed values, corresponding to Dy, = 400 and Dg = 600, re-
spectively. We also assume a coherence length corresponding
to kr& = 100. One of our main objectives in this paper is
to study the triplet correlations, which are odd in time [4]. To
accomplish this, we employ the expressions in Egs. (6) and (7),
which describe the spatial and temporal behavior of the triplet
amplitudes. At ¢ = O the triplet correlations vanish because of
the Pauli exclusion principle. At finite 7, the triplet correlations
generated near the S/ F interface tend to increase in amplitude
and spread throughout the structure. We normalize the time ¢
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according to T = wpt, and we set it to a representative [40]
value of T = 4. We can then study the behavior of the triplet
amplitudes fy and f; throughout the junction. To explore
the proximity-induced signatures in the single-particle states,
which is the main purpose of this work, we then present a
systematic investigation of the experimentally relevant local
DOS. All DOS results presented are local values taken at a
fixed position near the edge of the sample in the F, region. We
characterize interface scattering, when present, by § functions
of strength H, which we write in terms of the dimensionless
parameter Hg = H/vp. Finally, we use natural units, e.g.,
h = kg = 1, throughout.

1. Triplet and singlet pair correlations

Here we present results for both the triplet and the singlet
correlations, calculated using Eqgs. (6) and (7). For the cases
shown below, the absolute value of the singlet and triplet
complex quantities are averaged over the region of interest,
which in this case is the experimentally probed F, region.
An important reason for focusing on those spatially averaged
(over the outer magnet) quantities, rather than the spatial
profiles discussed in Ref. [40], is that it was experimentally
shown [41] that these triplet averages perfectly anticorrelate
with the transition temperatures, i.e., the spin-valve effect.
We also normalize all pair correlations to the value of the
bulk singlet pair amplitude. We begin by showing, in Fig. 2,
the spatially averaged absolute value of the complex triplet
amplitudes | fo ave| (With spin projection m = 0) and | fi avg|
(with spin projection m = =£1), along with the singlet | f3 4|
(note that f3(x) = A(x)/g(x)), as functions of Dpg;. Each
row of panels corresponds to a different exchange field value:
from top to bottom rows, we have h/er = 0.5, 0.1, and 0.05.
Examining the opposite spin correlations, fy and f3, damped
oscillatory behavior with Dp is evident: this is related to the
spatial oscillation of the Cooper pair amplitudes (characterized
by the wave-vector difference between spin-up and spin-down
particles) due to their acquiring a center-of-mass momentum
when entering the magnet [54]. Therefore, the wavelength of
these oscillations varies inversely with the exchange field in
F, (this is why the Dp; range for the weaker exchange fields
is extended). Quantum interference effects generate peaks in
fo and f3 that occur approximately when dr;/&r = nm [ie.,
Dpy =nn(h/e #)~']. In the ballistic regime, the length scale
that characterizes the damped oscillations is &7 = vr/(2h),
where vy is the Fermi velocity. The equal-spin amplitudes
f1 are seen to behave oppositely, with a phase offset of
approximately /2. Their magnitude declines more rapidly
with Dy, compared to the behaviors of fy and f5. This is
consistent with f; triplet generation being optimal for highly
asymmetric ferromagnetic layer widths [33]. It is notable that
the periodic occurrence of peaks in f; when varying Dp)
evolves into a single maximum as # is reduced further.

One of the strengths of the microscopic BdG formalism
is having the ability to properly include the full microscopic
range of length and energy scales inherent to the problem. This
includes the exchange energy /, which in our BdG framework
can span the limits from a nonmagnetic normal metal (h/ep =
0) to a half-metallic F (h/ep = 1). It is particularly useful to
consider the behavior of the singlet and triplet correlations over
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FIG. 2. (Color online) Absolute value of the normalized triplet
and singlet pair correlations, averaged over the F, region, as a function
of Dr;. Exchange field strengths are (from top to bottom) /1 /e = 0.5,
0.1, and 0.05. The relative exchange field orientations are orthogonal,
with 8; = /2 and B, = 0.

this broad range of strengths of /1 /er. Thus, in Fig. 3, we show
the same quantities as in Fig. 2, plotted now as a function i /e .
Again, we have orthogonal relative exchange field orientations,
with 81 = /2 and 8, = 0. Each three-panel row corresponds
to a different F; width: Dp; = 15,10, and 5 (from top to
bottom). The central column reveals that the averaged equal
spin amplitudes | fi avg| displays regularly occurring prominent
peaks, the number of which varies with the length of the F
region. For the exchange fields and F; widths considered in
Fig. 2, the triplet f| was generally weaker than either the singlet
f3 or the triplet fy. For the system parameters used in Fig. 3,
however, we find that for narrow widths Dy and sufficiently
large exchange fields, the equal-spin triplet component fj can
dominate the other pair correlations. In particular, for strong
ferromagnets with /1/er = 0.8, and thin F layers with Dp; =
5, Figs. 3(g) and 3(i) illustrate that the f, and f3 amplitudes
consisting of opposite-spin pairs, are negligible due to the
pair-breaking effects of the strong magnet. On the other hand,
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FIG. 3. (Color online) Spatially averaged (in F;) normalized
triplet and singlet pair correlations as a function of z1/¢ . As in Fig. 2,
the magnitude of each quantity is taken and averaged over the F,
region. Each row of panels corresponds to a different F; width, with
Dp; = 15 (top row), Dpy = 10 (middle row), and Dp; = 5 (bottom
row). The relative exchange field orientations are orthogonal, with
B =m/2and B, =0.

the equal-spin pairs shown in Fig. 3(h) are seen to survive in
this limit. This has important consequences for isolating and
measuring this triplet component in experiments.

Having seen how the magnitude of the exchange field A
affects the singlet and triplet correlations, we next investigate
the effects of changing its direction. Therefore, in Fig. 4
we examine the behavior of the averaged singlet and triplet
amplitudes when changing the magnetic orientation angle, §;.
We again consider a broad range of exchange field strengths, as
shown in the figure legend. One of the more obvious features
is that the maximum of | fi .| typically does not occur for
orthogonal relative exchange fields [38] for smaller 8; < 90°,
especially for stronger magnets. This is in agreement with
previous [35,38,40,41,55-57] experimental and theoretical
results. Due to the nonmonotonicity of | fi ave| With i [see
Fig. 3(e)], the h/ep = 0.35 case shown in Fig. 4(b) is larger
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FIG. 4. (Color online) Plots of the averaged singlet and triplet
components as a function of the magnetic orientation g;. Here Dy, =
10, and results for several magnetic strengths are shown, ranging from
weak to half-metallic.

for all B, than for the weaker i /er = 0.1 case. The singlet f3
and triplet fo amplitudes are highest for antiparallel config-
urations (8; = 180°), where the opposite exchange fields are
effectively weakened, with reduced spin-splitting effects on
the opposite-spin Cooper pairs. This is a well-known result.
The results also show that the relative magnetic orientation
angles leading to the minima of these two quantities are
anticorrelated with the angles at which the f; correlations
are maximal. As shown in Figs. 4(a) and 4(c), | fo,ave| and
| f3,ave| decay much more abruptly as the value of /4 in the
magnets approaches the half-metallic limit: this is consistent
with the discussion above. Therefore, SFF structures involving
strong ferromagnets (h ~ er), with B, at or near orthogonal
orientations, can host larger generated triplet pair correlations
whereby | f1| > {| fol,| f3|}, thus allowing for direct probing of
the spin-triplet superconducting correlations in experiments.
More detailed information regarding the triplet amplitudes,
can be obtained from the spatial profiles of the local triplet
correlations within the F; region. In Fig. 5, we present the real
parts of the normalized fy(x) and f(x) triplet components in
terms of the dimensionless coordinate X. Results are plotted
at four values of D as indicated in the legend. The exchange
field in the ferromagnets has a magnitude corresponding to
h/er = 0.5, and the directions are mutually orthogonal, with
B1 =90° and B, = 0. For the time scale considered here,
the imaginary part of fy is typically much smaller than
its real part. As for fj, its imaginary part is usually not
negligible, but it exhibits trends that are similar to those for
the real part. Examining the top panel, it is evident that fj
exhibits the trademark damped oscillatory spatial dependence
arising from the difference in the spin-up and spin-down wave
vectors of the Cooper pairs. The oscillatory wavelength is thus
governed by the quantity 2wkp&r = 2 (h/ep)~", which for
our parameters corresponds to 4x. The modulating fy has
the same wavelength for each Dy, although each curve can
differ in phase. The averaged f, amplitudes are consistent with
this local behavior: Fig. 2(a) demonstrates that when Dp; & 5
and Dp; ~ 10, there is an enhancement of the f; component,
while for Dp; =~ 3, it is substantially reduced. The equal-spin
f1 amplitudes are shown in the bottom panel in Fig. 5. Near
the interface at X = 0, the f; correlations are created, and
then they subsequently increase in magnitude until deeper
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FIG. 5. (Color online) Local spatial profiles of the real parts of
the triplet components f, and f; in the F, region for a few F widths,
Dp;. The exchange field in the ferromagnets corresponds to i/ep =
0.5, and the relative exchange field orientations are orthogonal, with
B =m/2and B, = 0.

within the ferromagnet, where they clearly exhibit a gradual
long-ranged decay. The trends observed here are opposite
to those in the top panel, where, for instance, the Dp; = 3
case leads to maximal f) triplet generation, in agreement with
Fig. 2(b).

2. Local density of states

After the discussion of the salient features of the singlet and
triplet pair correlations in the outer F layer, we now turn to the
main topic of the paper: the local DOS measured in F,. This
is the experimentally relevant quantity that can reveal the sig-
natures of these correlations. The damped oscillatory behavior
of the pair correlations can lead to spectroscopic signatures in
the form of DOS inversions [28] and multiple oscillations [24].
In the quasiclassical approximation [35,38,55,56], a ZEP can
emerge from the long-range triplet correlations [33,58] in SFF
systems. However, this approximation is not appropriate for
experimental conditions involving strong magnets and clean
interfaces. It would be beneficial experimentally to character-
ize the ZEP relation to the singlet and triplet correlations and
see how the ZEP may be a useful fingerprint in identifying the
existence of the long-range triplet component. To properly
do this over the broad range of parameters found under
experimental conditions, a microscopic self-consistent theory
that can accommodate the wide-ranging length and energy
scales is needed. In this subsection, we therefore present
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D=5

DOS

DOS

DOS

FIG. 6. (Color online) Normalized (see text) local DOS. The
multiple curves in each panel are for different values of 4 /er. Each
panel corresponds to a different value of Dy, (as labeled). Ferromag-
nets have exchange fields with orthogonal relative directions.

an extensive microscopic study of the ZEP as a function of
parameters such as F-layer thicknesses, exchange energy, and
interface transparency. These results are then correlated with
the self-consistent singlet and triplet pair correlations in the
previous subsection. In what follows, the DOS is normalized
by the DOS at the Fermi level Ar and plotted vs the normalized
energy /Ao, where A is the bulk value of the pure S material
gap at zero temperature. Our emphasis is on energies within
the subgap region ¢ < Ay, where the ZEP phenomenon arises.
Since the DOS is a local quantity that depends on position [see
Eq. (9)], in our calculations we assume the location to be near
the edge of the sample just below the STM tip as shown in
Fig. 1.

To correlate the triplet amplitudes in Fig. 3 with the ZEP, we
begin by studying in Fig. 6 the sensitivity of the DOS to a broad
range of exchange field strengths /. Each panel corresponds

PHYSICAL REVIEW B 92, 014508 (2015)

to a different F; width, Dp;. As in all other figures, the S
thickness is fixed to six correlation lengths. The range of &
considered in each panel varies since the largest ZEP depends
on the relative values of # and Dp,. The top panel (Dg; = 5)
clearly shows the progression of the ZEP with &: Beginning
with the smallest exchange field, #/er = 0.1, a moderate
peak is observed, which increases to its maximum height and
a narrower width when %&/er = 0.2. Further increases in A
continuously diminish the ZEP, broadening its width, until
eventually it is effectively washed away. This nonmonotonic
behavior is consistent with the ZEP being related to the
presence of the f) triplet amplitude near the edge of the F. This
can be seen by re-examining the triplet amplitudes in Fig. 3(h),
where the exchange field leading to the highest ZEP occurs
when | f1 ave| is largest, at i /e ~ 0.2. The same consistency
is found between Figs. 2(e) and 2(b) and the middle and lower
panels in Fig. 3, respectively. For both the Dr; = 10,15 cases,
the average value of | f;| is largest near i /e = 0.1. However,
the secondary peak structure in Fig. 2 is not clearly reflected
in the DOS.

Next we study the DOS counterpart to Fig. 2. The
normalized DOS and the corresponding ZEP are shown in
Fig. 7 for a broad range of widths Dp;. The parameter values
here are similar to those used in Fig. 2, where each panel
corresponds to a different exchange field. In Fig. 2(a), with
h/er = 0.05, the most prominent ZEP occurs for Dy, = 25,
coinciding with the F; width that yields a local maximum for
the m = 0 triplet amplitude f, [see Fig. 2(g)]. By comparison,
the f, component shown in Fig. 2(h) is smaller, and lacks
the multiple peak structure found for f,, at this weaker
exchange field. Therefore, the largest ZEP in the case of weak
exchange fields does not necessarily occur when the triplet
f1 is maximal; as Fig. 2(h) demonstrates, | f] av¢| peaks at
Dpy = 10 before rapidly declining. For these weaker fields, it
follows from Fig. 2 that the magnitude of f, exceeds that of
f1. It would appear, then, that it is the larger triplet component
which determines the ZEP structure. This is consistent with the
known result [41] that the toral value of the triplet component
is correlated with 7,. The next case, in Fig. 2(b), corresponds
also to a moderately weak magnet with 4/er = 0.1, or double
the exchange field considered in Fig. 2(a). Since the frequency
of the oscillations involving the opposite-spin f, amplitudes
[see Fig. 2(d)] also doubles, the maximum ZEP, at Dg; = 12,
occurs at about half the F; width found for the maximum ZEP
in Fig. 2(a). The equal-spin triplet correlations f; are shown in
Fig. 2(e) to exhibit a single-peak structure, but their magnitude
is larger than at weaker fields. This is because typically
stronger magnets in this situation lead to an enhancement
of the f; amplitudes. Finally, we consider (bottom panel) a
relatively strong F with h/ep = 0.5. For this case, there are
additional subgap peaks flanking the main ZEP. The larger ZEP
arises at smaller widths (Dyy = 7.5 and 8.5) than for weaker
exchange fields, due to an increase in the frequency of the
oscillations as a function of Dy for the f; and f; components
as shown in Figs. 2(a) and 2(b). Thus, the ZEP tends to exhibit
a structure that dampens and widens for strong magnets, while
the opposite is true for weaker ones and is correlated with the
stronger of the m = 0 and m = +£1 triplet components present.

Having established the behavior of the ZEP for differing
h/ep, we now fix the magnitude of the exchange fields

014508-7



ALIDOUST, HALTERMAN, AND VALLS

3.0 T
2.5
2.0

1.5

DOS

1.0 —

0.5

10
15
20
25
30
35

0.0
-1.5

-1.0

05 00 05 1.0 15

2.5 '

DOS

S/IAO

10
12
14
16

1.0
e/,

05 00 05 10 15

DOS

5.5
6.5
7.5
85
9.5
10.5
11.5

0.6

00 05 10 1.5
e/A,

FIG. 7. (Color online) Normalized local DOS as a function of
the normalized energy. The curves in each panel are for different
values of the width Df,. Each panel corresponds to a different /& :
h/er = 0.05,0.1,0.5, and we consider orthogonal relative exchange
fields.

in each magnet and investigate the effects of varying their
relative orientation. Figure 8 illustrates the normalized DOS
for the specific case Dp; = 10 and h/er = 0.1. According to
Fig. 4(b), the equal-spin triplet component f; is greatest when
B1 ~ 90°. Thus we would expect the ZEP also to be maximal
at this angle. Figure 8 shows that this is indeed the case. There
the normalized DOS is shown for the range 0° < 8; < 180°
in increments of 30°. Clearly the orthogonal relative exchange
field (81 = 90°) configuration results in the most prominent
ZEP. When B, deviates from this angle towards the P (8; = 0°)
or AP (B8; = 180°) alignments, both the triplet amplitude f;
and the ZEP decrease until ; = 0° or 180°, whereby f; = 0,
and the ZEP has vanished.

There is a very slight but visible particle-hole asymmetry
in the DOS spectrum in Figs. 7 and 8, which can be traced to
the assumed parabolic band shape. It is more noticeable when
strong internal fields are present.
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FIG. 8. (Color online) Variation of the normalized local DOS
with the in-plane exchange field angle B;. The exchange field is
fixed along z in F,. Also, Dy = 10 and h/er = 0.1.

Finally, in Fig. 9 we examine the effects of interface
scattering on the self-consistent energy spectra. We assume
that each interface has the same § function potential barrier
with dimensionless scattering strength Hg. We consider a
broad range of Hp, from transparent interfaces, with Hg = 0,
to very high interfacial scattering, with Hg = 1.6. By allowing
Hp to vary, we effectively control the proximity effects: a
small Hp results in stronger proximity coupling between the
F and the S regions, while a large Hp results in the isolation
of each segment and weak proximity effects. This is evident
in the DOS, as shown in Fig. 9, which has its largest ZEP
when Hp = 0. The width and height of the ZEP are strongly
influenced by the presence of interface scattering. Increasing
Hp results in the ZEP’s widening while gradually decreasing
in height. Eventually, when the scattering strength reaches

DOS

FIG. 9. (Color online) Evolution of the ZEP with scattering
strength Hp: The normalized local DOS is shown as a function of
the dimensionless energy. Each curve depicts results for a different
scattering strength Hp (see text). System parameters correspond to
Dpy = 10 and h/er = 0.1. Exchange fields in the ferromagnets are
mutually orthogonal with ; = 90° and 8, = 0°.
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FIG. 10. (Color online) Zero-energy peak in the DOS spectrum of diffusive SFF spin valves as a function of the normalized F-layer
thicknesses dr; /& and dp,/&r. Each column corresponds to a different S F' transparency, with ¢ = 1, 2.5, 5 (from left to right). The top row
of panels shows the evolution of the ZEP for the misalignment angle 8; = m/2, while the bottom row of panels are for 8; = /6. For both
cases, the internal field of the F, layer is along the z direction, 8, = 0. The ZEPs are computed at x = dr; + dr, (at the topmost F/vacuum

interface).

Hpg =~ 0.7, the peak begins to split. Further increments in Hp
cause the peaks to separate, and eventually proximity effects
are so weakened that the DOS becomes that of an isolated bulk
F. The two secondary subgap peaks that lie symmetrically
about the ZEP are seen to also decline in a monotonic fashion
as Hp becomes larger.

B. Diffusive regime

In this section, we consider a diffusive SFF junction in
the full proximity limit. We employ the Usadel approach
described in Sec. II to investigate the local DOS. As remarked
earlier, the quasiclassical method is limited to energies close
to the Fermi level. Hence, our discussion here is limited to
relatively weak ferromagnets. As in the ballistic regime, we
consider heterostructures where the magnetic layers are made
of identical materials so that the ferromagnetic coherence
lengths are the same, £, = &5, = &F, and we consider the low-
temperature regime where 7 = 0.057,. Prior to calculating
the DOS, we normalize the Usadel equation by &g, which in
the diffusive regime is written £ = /D /h. Using this nor-
malization scheme, the explicit dependency on the exchange
field is removed and the Usadel equation now involves terms
containing the ratio dr/&r. This approach can lead to easier
pinpointing of regions in parameter space where the ZEP is
most prominent, and it also permits a broad range of this ratio
to be studied. We assume that the magnetic orientation angle
is fixed at 8, = 0, or equivalently 2 = (0,0,4;).

We numerically solve the Usadel equation, Eq. (10),
together with the mentioned boundary conditions. To find the
total Green’s function, we substitute the solution into Eq. (10)
and obtain the DOS. To determine the optimal geometry in
which the ZEPs are most pronounced, we present in Fig. 10 the
ZEP at the topmost edge of the SFF structure, corresponding

to the location x = dg; + dpp. The two-dimensional color
mapping depicts the strength of the DOS at zero energy (the
ZEP) as a function of the normalized F thicknesses, dr;/&F
and dp,/&F. In the top row, the internal field of the F layers
has a misalignment angle of 8; = n/2, while for the bottom
row B; = /6. The left, middle, and right columns are for
different opacities at the S F interface: ¢ = 1.0, 2.5, and
5.0, respectively. By increasing ¢, the overall strength of the
proximity effects is effectively weakened: it is evident that
transparent S F' contacts yield stronger ZEPs, which persist
in thicker F layers. It is also apparent that the orthogonal
case B; = m/2 has more extensive regions in the parameter
space spanned by the F thicknesses with enhanced ZEPs,
compared to the §; = /6 case. An important aspect of the
ZEP that all cases investigated in Fig. 10 share is that it is
strongest when dp; < dp,. This finding is fully consistent
with low-proximity bilayer SFF hybrids [33,55]. Therefore,
for the parameters considered here, the ZEPs are strongest
for { = 1, OSEF S dFl 5 %_F, and 155]: S dpz S 35«‘;:17 The
ratio of the F thickness to the length scale &£ is an important
dimensionless quantity that appears in the normalized Usadel
equations, and consequently thinner dr; and dp, allow for
stronger internal fields when studying the DOS.

Finally, we study the sensitivity of the ZEPs to both the
orientation angle 8, and the interface transparency parameter
¢. We thus show in Fig. 11 the ZEP as a function of 8; over
a wide range of ¢, as shown in the legend. The geometric
parameters correspond to dp; = 0.856r and dp; = 3.5&p,
which reside within the range of system widths studied in
Fig. 10 resulting in the largest ZEPs. In calculating the ZEP,
we again consider the DOS at the edge of the sample (see
also Fig. 1). It is shown that the interface transparency can
significantly alter the behavior of the ZEP as the relative
exchange field angle sweeps from the P (8, = 0°) to the
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1.25

Zero Energy Peak (ZEP)

FIG. 11. (Color online) Zero-energy peak of the DOS spectrum
in diffusive SFF spin valves as a function of the exchange field
orientation f; for several values of ¢, which controls the opacity
of the S F interface. We set 8, = 0 and rotate the exchange field
direction of F from the parallel (8, = 0) to the antiparallel (8; = 7)
orientation. We have chosen representative values of dp; = 0.8&p
and dp; = 3.5&F, in accordance with the system parameters used in
Fig. 10.

AP (B, = 180°) orientations. For example, when ¢ = 1.0,
the maximal ZEP is offset from the orthogonal configuration,
occurring at 8, ~ 0.6z. With increasing barrier strength, this
peak shifts towards larger B,, until the relative exchange
fields are nearly antiparallel. There is also a simultaneous
reduction in amplitude, due to the F" and S regions becoming
decoupled as the proximity effects diminish. Interestingly, as
¢ increases, there is a splitting of the main peak: weaker
secondary peaks emerge. Eventually however, for sufficiently
large ¢, the opacity of the interface causes the low-energy DOS
to be insensitive to 8, and the ZEP flattens out. The ZEPs are
also observed to disappear when the relative exchange fields
are collinear, corresponding to the situation where the triplet
amplitudes vanish in both the diffusive and the ballistic regimes
(see also Fig. 4).

PHYSICAL REVIEW B 92, 014508 (2015)

IV. SUMMARY AND CONCLUSIONS

In summary, we have employed a microscopic self-
consistent wave-function approach to study the low-energy
proximity-induced local DOS in SFF spin valves with non-
collinear exchange fields in the clean limit. Our emphasis has
been on the results of STM methods that probe the outer F
layer. To identify the physical source of the corresponding
ZEPs that occurs for such data in these systems, we also
calculated the absolute value of the triplet pair correlations,
averaged over the outer F layer. We have done so for a
broad range of experimentally relevant parameters, including
the exchange field strength and orientation, as well as the
thicknesses of the ferromagnets. Our results demonstrate a
direct link between the spin-1 triplet correlations and the
appearance of ZEPs in the local DOS spectra and point to
system parameters and configurations which would support
larger equal-spin triplet superconducting correlations. These
correlations could then be probed indirectly via single-particle
signatures that are measurable using local spectroscopy tech-
niques. Our results are consistent with [41] findings relating
the average strength of triplet correlations to the angular
dependence of the transition temperature. Our findings suggest
that the ZEPs arising from the spin-1 triplet amplitudes can be
effectively isolated in SFF systems with strong ferromagntets,
with the outer one being very thin. This asymmetric geometry
not only produces greater equal-spin triplet generation, but
also can filter out the rapidly decaying opposite-spin pairs
deep within the sample. Our findings on STM techniques can
be combined with conductance spectroscopy [37] studies in
SFF devices. We also considered the same valve structure
in the diffusive regime utilizing a Green function method
within the full proximity limit. Our investigations yielded
a broad range of F-layer thicknesses and relative exchange
field orientations that lead to observable signatures in the low-
energy DOS, thus also providing useful guidelines for future
experiments.
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