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Resonant enhancement of macroscopic quantum tunneling in Josephson junctions:
Influence of coherent two-level systems
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We report a theoretical study of the macroscopic quantum tunneling (MQT) in small Josephson junctions
containing randomly distributed two-level systems. We focus on a Josephson phase escape for switching from
the superconducting (the zero-voltage) state to a resistive one. Above the crossover temperature Tcr the thermal
fluctuations of the Josephson phase induce such a switching, and as T < Tcr the regime of the MQT occurs.
In the absence of two-level systems (TLSs) a magnetic field applied parallel to the junction plane results in
a smooth reduction of Tcr (�), where � is an applied magnetic flux. As the TLSs are present in Josephson
junctions we obtain a resonant enhancement of the MQT. This phenomenon manifests itself by a narrow peak
in the dependence of Tcr (�) occurring in the intermediate range of �, i.e., 0 < � < φ0 (φ0 is the magnetic flux
quantum). We explain this effect quantitatively by a strong resonant suppression of the potential barrier for the
Josephson phase escape that is due to the coherent quantum Rabi oscillations in two-level systems present in the
junction.
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I. INTRODUCTION

Currently there is a great interest in experimental and
theoretical studies of macroscopic quantum phenomena in
diverse Josephson systems [1–9]. It is well known that at
low temperatures switching from the superconducting (the
zero-voltage) state to a resistive one occurs in the form
of macroscopic quantum tunneling (MQT) of a Josephson
phase [1,3,4,6–9]. At high temperatures the so-called Joseph-
son phase escape phenomenon is determined by thermal
fluctuations.

In a simplest case of a single degree of freedom, i.e., the
Josephson phase ϕ, the crossover temperature Tcr between
these two regimes is determined by the frequency of small
oscillations ω0 of the Josephson phase on the bottom of
potential well. Since the Josephson plasma frequency ωp is
determined by the critical current Ic as ωp ∝ I

1/2
c , one can

expect that ω0 and the crossover temperature Tcr vary with an
applied magnetic field. Indeed, the crossover temperature is
written as [1] kBTcr = �ω0

2π
= �ωp

2π
(1 − j )1/4, where j = I/Ic

is the normalized external current I . The Josephson phase
escape in the MQT regime occurs as the potential barrier
U0 � �Ic

2e
(1 − j )3/2 becomes comparable with the energy of

small oscillations �ω0. Therefore, the typical values of the
external current I allowing the Josephson phase escape are
(1 − j ) ∝ I

−2/5
c . The crossover temperature Tcr is written as

kBTcr ∝ I 2/5
c . (1)

A magnetic field applied parallel to the junction plane results
in the reduction of the critical current Ic and one can expect
a smooth decrease of the crossover temperature Tcr with the
external flux � in the region 0 < � < φ0. Here, φ0 = hc/2e

is the magnetic flux quantum.
A crucial condition allowing one to obtain the depen-

dence (1) is the absence of interactions of the Josephson phase
with other degrees of freedom. E.g., one can expect in the
correspondence with a generic analysis [3] that the Josephson

phase interaction with a large amount of linear oscillators
(such an interaction has been used as a model of dissipative
environment) results in a suppression of both the MQT and
the crossover temperature. However, a careful preparation of
experimental setup has allowed one to reduce these undesirable
effects.

The interaction of a Josephson phase with other degrees
of freedom can result in the reduction of the potential barrier
and, therefore, lead to an enhancement of the MQT [8–13].
E.g., in the presence of a magnetic field the intrinsic cavity
modes are excited, and an enhancement of the MQT has been
obtained [10,11]. However, for small Josephson junctions the
probability of the cavity modes excitation becomes rather
small [10], and an enhancement of the MQT is also small.
Moreover, such an enhancement of the MQT has to lead to
a smooth dependence of the crossover temperature Tcr on
an applied magnetic field. In all these cases the equilibrium
dynamics of the Josephson phase interacting with a set of linear
oscillators has been considered. Notice here that a strong back
influence of the Josephson phase on the oscillators dynamics
suppresses the resonant effects, and therefore, the interaction
of the Josephson phase with a set of linear oscillators cannot
lead to the resonant enhancement of the MQT.

On the other hand, we recall that in the nonequilibrium
case as the Josephson junction is subject to an externally ap-
plied microwave radiation the extremely pronounced resonant
effects have been observed in the MQT phenomena [13,14].
Such a resonant interaction of the Josephson phase with an
applied microwave radiation results in a strong suppression
of the potential barrier, and a resonant enhancement of the
MQT occurs as ω0 � ω, where ω is the frequency of applied
microwave radiation.

Therefore, an interesting question arises in this field: Is it
possible to observe a resonant enhancement of the MQT in the
equilibrium state of the Josephson junction?

In this paper we show that such a resonant enhancement
of the MQT naturally occurs in the Josephson junctions
containing a large amount of microscopic coherent two-level
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systems (TLSs). Indeed, it has been established that the TLSs
are intrinsically present in an amorphous interlayer of “typical”
Josephson junctions [15–17]. These defects can exist in the two
quantum states with an energy separation between them, �0,
and the tunneling splitting �. At high temperatures kBT � �

or as � � �0 the thermal fluctuations induce incoherent
random switchings between these states, i.e., the Poisson
noise occurs. However, in the opposite regime (kBT < � and
� > �0) the TLSs establish the coherent quantum oscillations
(Rabi oscillations) of the frequency � = �/�. These coherent
TLSs resonantly excite the oscillations of the Josephson phase
as the resonant condition, i.e., � � ω0, is satisfied. Since the
frequency of Josephson phase oscillations ω0 strongly depends
on magnetic field (ω0 ∝ I

1/2
c ) the variation of applied magnetic

field allows one to fulfill the resonant condition. Moreover,
the back influence of the Josephson phase dynamics on the
dynamics of coherent TLSs is small as the tunneling splitting
between the two low-lying states � is much smaller than other
characteristic energies, e.g., the energy of small oscillations
around equilibrium positions of fluctuators, �ω̃. Therefore,
similarly to a nonequilibrium case these coherent quantum
oscillations [13] induce a strong reduction of the potential
barrier and an enhancement of the MQT in a narrow region of
applied magnetic field.

The paper is organized as follows: In Sec. II we present
a model and describe the Josephson phase dynamics in the
presence of coherent two-level defects. In Sec. III the escape
rate of the Josephson phase in the MQT regime and the
magnetic field dependence of the crossover temperature Tcr

are obtained. Section IV provides conclusions.

II. THE JOSEPHSON JUNCTION CONTAINING TLSs
IN THE PRESENCE OF MAGNETIC FIELD:

THE JOSEPHSON PHASE DYNAMICS

Next, we quantitatively analyze the MQT regime of the
Josephson phase escape in small (the junction size L < λJ ,
where λJ is the Josephson penetration length) Josephson
junctions in the presence of magnetic field H applied parallel
to the junction plane along the y direction. We also take into
account TLSs randomly distributed in an amorphous interlayer
of the Josephson junction. The schematic of such a system is
presented in Fig. 1(a).

The dynamics of a small Josephson junction is character-
ized by time t and coordinate x dependent Josephson phase
ϕ(t,x). Moreover, since the magnetic field penetrates small
Josephson junctions homogeneously, and H ∝ dϕ/dx, the
Josephson phase is written as

ϕ(t,x) = 2π�x

φ0L
+ χ (t,x), (2)

where � = HS is the external magnetic flux; S is the junction
area.

For small Josephson junctions we can also neglect exci-
tation of cavity modes, and the Lagrangian LJ depends on
spatially averaged time-dependent Josephson phase χ (t) as

LJ = EJ0

[
1

2ω2
p0

χ̇2 − γ (�)[1 − cos(χ )] − jχ

]
, (3)

(a)

(b)

FIG. 1. (Color online) (a) The schematic of a small Josephson
junction in the presence of magnetic field applied parallel to the
junction plane. The TLSs located in the interlayer of a junction are
shown. (b) The typical dependence of the Josephson critical current
on the magnetic field for a small Josephson junction [Eq. (4)].

where the parameter γ (�) determines magnetic field induced
suppression of the Josephson critical current as

Ic(�) = Ic0γ (�) = Ic0

∣∣∣∣ φ0

π�
sin

(
π�

φ0

)∣∣∣∣. (4)

The typical dependence of the Josephson critical current on the
magnetic field, Ic(�), is shown in Fig. 1(b). Here, EJ0 and ωp0

are the Josephson coupling energy and the Josephson plasma
frequency in the absence of magnetic field, accordingly. The
normalized dc bias j = I/Ic0 allows one to effectively tune
(decrease) the potential relief [see Eq. (3)] for the Josephson
phase.

The Lagrangian of two-level defects distributed in an
insulator layer of the Josephson junction reads as

LT LS =
∑

i

m

2
[�̇i]

2 − U (�i), (5)

where �i and U (�i) are correspondingly the degree of
freedom (the relative angle between the dipole momentum
and the z axis) and a double-well potential characterizing a
single TLS; m is the effective mass of the TLSs.

A most important interaction of TLSs with the Josephson
phase is the dipole-electric field interaction [15] which reads
as Uint = −�d �E, where �d is the dipole moment of TLS and
�E is the intrinsic electric field of a Josephson junction. Such
an interaction leads to the additional term Lint in the total
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Lagrangian

Lint = EJ0η

ωp0

∑
i

�̇i(t)χ (t), (6)

where the dimensionless parameter η � dωp0

DIc0
(D is the in-

terlayer thickness of a Josephson junction) determines the
interaction strength of the Josephson phase with a single TLS.
The total Lagrangian of the Josephson junction containing the
TLSs is written as

L = LJ + LT LS + Lint. (7)

The dynamics of the Josephson phase χ (t) interacting with
the TLSs is described by the nonlinear differential equation

− 1

ω2
p0

χ̈ (t) + V ′(χ ) = η

ωp0

∑
i

�̇i(t), (8)

where the potential V (χ ) = γ (�)[1 − cos(χ )] − jχ .
To solve this equation we represent the Josephson phase

χ (t) as a sum of low- and high-frequency terms, i.e., χ (t) =
π
2 + χ̃(t) + ξ (t). The high-frequency term ξ (t) displays the
classical behavior, and it is found as

ξ (t) = η

ωp0

∑
i

∫ ∞

0
dτ1G(t − t1)�̇i(t1), (9)

where G(t) is the Green’s function of the linearized equa-
tion (8) that reads a:

− 1

ω2
p0

Ÿ (t) + γ (�)χ̃Y (t) = δ(t). (10)

Explicitly the Green’s function G(t) is written as

G(t) =
∫

dω

2π
G(ω)eiωt

=
∫

dω

2π
eiωt

ω2
p0

ω2 − ω2
p0γ (�)χ̃ + iαω

. (11)

Here, we introduce the parameter α in order to describe the
dissipative effects in the Josephson phase dynamics.

Notice here, that in Eqs. (9) and (11) we neglect a small sup-
pression of the function G(t) that is due to the back influence of
the Josephson phase dynamics on the dynamics of TLSs. This
is valid as the energy difference between two low-lying states
is much smaller than other characteristic energies. Indeed, the
back influence effect induces the switching between the two
states of TLS. The matrix element of this process is small as
�/(�ω̃) � 1, where ω̃ is the frequency of small oscillations
in equilibrium positions of the TLS. In this case, the dynamics
of quantum degrees of freedom �i weakly depends on ξ (t),
and TLSs just show the quantum Rabi oscillations with the
frequencies �i .

Due to a nonlinearity of the potential V (χ ) the high-
frequency term ξ (t) leads to the effective resonant reduction
of the potential barrier as

Veff = V (χ̃) − ξ 2(χ̃)

2
χ̃ . (12)

The equilibrium value of χ̃ is determined by an external bias
current as

χ̃0 =
√

2δ =
√

2[j − γ (�)]

γ (�)
. (13)

III. MQT AND CROSSOVER TEMPERATURE Tcr :
INFLUENCE OF QUANTUM (RABI)

OSCILLATIONS OF TLSs

The Josephson phase escape in the MQT regime is deter-
mined by the quantum-mechanical tunneling of the Josephson
phase χ̃ through the effective stationary (independent on time)
barrier, Veff . By making use of the quasiclassical analysis of
the MQT [3,18] we obtain the escape rate of the Josephson
phase in the MQT regime as

�(δ) � exp

{
−36EJ0γ

1/2(�)

5�ωp0
{2[δ − ξ 2(χ̃0)/2)]}5/4

}
. (14)

Equation (14) indicates that the enhancement of � is deter-
mined by the value of ξ 2.

Taking into account that the typical values of δ = δ0

allowing non-negligible escape of the Josephson phase χ̃

are determined by the condition �(δ) � 1, we obtain the
transcendent equation for δ0,

δ0 − ξ 2(δ0)/2 �
(

�ωp0

EJ0

)4/5

γ −2/5(�), (15)

and the crossover temperature Tcr is written as

Tcr = �ωp0γ
1/2(�)

2πkB

(2δ0)1/4. (16)

Since in the absence of TLSs the parameter ξ = 0 we arrive
at Eq. (1) for the magnetic field dependence of Tcr . It reads
explicitly as

Tcr = 21/4
�ωp0

2πkB

(
�ωp0

EJ0

)1/5

γ 2/5(�). (17)

Such a smooth dependence is shown in Fig. 2 by a blue (black)
line. The deviation from Eq. (17) is also small in the regime
as the Josephson phase weakly interacts with a set of linear
oscillators because in this case the function G(t) does not
display the resonant behavior.

The situation changes drastically as we turn to the inter-
action of the Josephson phase with the coherent TLSs. At
low temperatures the TLSs display coherent quantum Rabi
oscillations, and quantitatively the coherent dynamics of TLSs
is described by the Bloch equations [19]. In this case we obtain

ξ 2 = η2

ω2
p0

∑
i

∫
dt1

∫
dt2Ġ(t − t1)Ġ(t − t2)Ki(t1 − t2),

(18)

where the time-dependent correlation function Ki(t1 − t2) =
〈�i(t1)�i(t2)〉 of coherent TLSs has been obtained in
Refs. [19–21] as

K0
i (t) = �2

0e−i�t/�−�̃|t |, (19)

where ±�0 are the values of � in two quantum states, the
�i is the energy splitting of the ith TLS, and the parameter
�̃ describes the decay rate of quantum Rabi oscillations.
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FIG. 2. (Color online) The typical dependencies of the crossover
temperature Tcr on the magnetic field: the interaction with TLSs is
absent [the blue (black) line]; a weak interaction with the TLSs having
the same splitting energies � [the red (gray) line]; a weak interaction
with the TLSs having randomly distributed splitting energies in the
range between �max and �min [the green (light-gray) line]. The
parameters �/(2πkB ) = �max/(2πkB ) = 0.1 K and �min/(2πkB ) =
0.02 K have been used. The quality factor of the resonance �/α̃ is
equal to 20. The coupling between a single TLS and the Josephson
phase, η�0 = 7 × 10−4, and a number of coherent TLSs N = 100
have been chosen.

Equation (19) is valid as kBT < � and two-level systems
display the weakly decaying coherent Rabi oscillations. In the
opposite case, kBT > �, random switchings occur between
two stable states, and the contribution of TLSs in the MQT
dynamics becomes negligible. Substituting (19) in (18) we find
that the parameter ξ has a resonant form and it is written as

ξ 2 = πη2�2
0ω2

p0
α + �̃

α

×
∑

i

{[�i − �ωp0γ
1/2(�)(2δ0)1/4]2 + α̃2}−1. (20)

Here, the parameter α̃ =
√

2(α2 + �̃2) determines the strength
of the resonance, and it depends on all dissipative effects in
both the TLSs and Josephson phase dynamics.

Next, analysis depends on the distribution of tunneling
splitting energies �i of TLSs in Josephson junctions. First,
for simplicity we consider a case where all TLSs have the
same splitting energies �. In this case all TLSs give the same
contribution to ξ 2, and substituting (20) in (15) and (16) we
obtain the narrow peak in the dependence of Tcr (�). In this
case the width of the peak is determined by a small ratio α̃/�.
The typical dependency of Tcr on the magnetic field is shown
in Fig. 2 by a red (gray) line.

In a more realistic case as tunneling splittings �i are
randomly distributed in a wide range, i.e., �min < � < �max,
the enhancement of MQT occurs also in a wide range of
magnetic fields �. The width of the peak is determined by
“inhomogeneous broadening,” and it can be much larger than
in the case of a narrow distribution of tunneling splitting
energies. The typical dependence of Tcr on the magnetic field
for this case is shown in Fig. 2 by a green (light-gray) line.

IV. CONCLUSIONS

We theoretically studied the MQT phenomenon in the
Josephson junction containing quantum TLSs and in the
presence of an externally applied magnetic field. At high
temperatures the thermal fluctuations induce the Josephson
phase escape, and below the crossover temperature Tcr the
Josephson phase escape is determined by the MQT. We
focused on the dependence of Tcr on an externally applied
magnetic field characterized by magnetic flux �. In the
absence of TLSs the crossover temperature Tcr displays a
smooth decrease with � in the range −φ0 < � < φ0 [see
Eqs. (1) and (17); the typical dependence is shown in Fig. 2
by a blue (black) line].

In the presence of even a weak interaction of the Josephson
phase with the TLSs the resonant enhancement of the MQT
was obtained. First of all, such an enhancement of the
MQT leads to a substantial increase of the Josephson phase
escape rate �(δ) [see Eq. (14)]. Another manifestation of this
phenomenon is a narrow peak obtained in the dependence of
Tcr (�) [see Eqs. (16), (15), and (20)].

The obtained resonant enhancement of the MQT is ex-
plained by a resonant suppression of the potential barrier
for the Josephson phase escape which, in turn, is due to
the presence of the coherent quantum (Rabi) oscillations
in the equilibrium state of coherent quantum TLSs. Such
an effect resembles a resonant suppression of the potential
barrier in the Josephson junctions subject to an externally
applied microwave radiation [13,14]. This enhancement is
especially strong if the TLSs have the same splitting energies
�. The typical dependence of Tcr (�) showing a narrow peak
is shown in Fig. 2 by a red (gray) line. In the opposite
case as the tunneling splittings display a wide distribution,
we find that a narrow peak transforms in a “bump” in the
dependence of Tcr (�) [see Fig. 2, green (light-gray) line],
and an enhancement of the MQT occurs in a wide range of
magnetic fields. A crucial condition allowing one to observe
such a resonant enhancement of the MQT is the presence in
Josephson junctions of a large amount of coherent TLSs, i.e.,
TLSs with the tunneling splitting � � kBT , and � � �0,
where �0 is the energy difference between the minimums of
a double-well potential characterizing the TLSs. The quality
factors of both the Josephson junction and the TLSs have to be
large.

The observation of these remarkable effects, namely,
the resonant enhancement of the MQT and the crossover
temperature Tcr can result in a strong impact on the properties
of Josephson junctions at low temperatures, and it will provide
an opportunity to study diverse coherent quantum phenomena
in an ensemble of TLSs intrinsically present in Josephson
junctions.
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