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Photon cross-correlations emitted by a Josephson junction in two microwave cavities
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We study a voltage-biased Josephson junction coupled to two resonators of incommensurate frequencies. Using
a density matrix approach to analyze the cavity fields and an input-output description to analyze the emitted
photonic fluxes and their correlation functions, we have shown, both for infinite- and finite-bandwidth detectors,
that the emitted radiation is nonclassical in the sense that the correlators violate Cauchy-Schwarz inequalities.
We have also studied the time dependence of the photonic correlations and showed that their linewidth becomes
narrower with the increase of the emission rate approaching from below the threshold limit.

DOI: 10.1103/PhysRevB.92.014503 PACS number(s): 85.25.Cp, 42.50.Lc, 42.50.Dv

I. INTRODUCTION

In atomic cavity quantum electrodynamics (cQED), the
electric dipole moment of an isolated atom interacts with the
vacuum-state electric field of the cavity. The quantum nature
of the electromagnetic field can give rise to coherent Rabi
oscillations between the atom and the cavity provided the
relaxation and decoherence rates are smaller than the Rabi
frequency [1]. Similar physics can be observed when the atom
is replaced by a two-level solid-state system, often called an
artificial atom, capacitively coupled to a single mode of the
microwave cavity [2,3]. Such paradigmatic systems can be
described by a Hamiltonian H = Hsys + Hcavity + Hint, where
Hsys denotes the Hamiltonian of the atom or artificial atom.
The interaction of light and matter is encoded in Hint while
Hcavity describes the cavity Hamiltonian.

When the system under study is characterized by a finite
number of degrees of freedom, the physics is rather well
understood. However, replacing the atom by a mesoscopic
conductor with open Fermi reservoirs leads to a dramatically
different physics as the whole Fermi sea is affected by
the coupling to the cavity. Such setups composed of a
quantum conductor coupled to a cavity have been realized
experimentally, both in experiments using metallic tunnel
junctions [4,5] and in more recent experiments with high-Q
microwave cavities coupled to either quantum dots [6–8] or
carbon nanotubes [9–11].

For an electric conductor, the dimensionless parame-
ter that encodes the light-matter interaction is given by
the ratio between the impedance of the environment and
the quantum of resistance RK = h/e2. It can therefore be
controlled and significantly increased by modulating the
impedance of the environment. Under such conditions, one
can potentially analyze the two sides of our system, namely
the electronic one by standard transport measurements or
the optical one by measuring the photons emitted in the
cavity.

The influence of an electromagnetic environment on the
electronic transport properties of a coherent conductor has
been studied experimentally rather extensively in the past 25
years. Such a phenomenon is well understood for quantum
conductors in the tunneling regime and is called the dynamical
Coulomb blockade (DCB) [12–15]. This occurs when a
quantum coherent conductor, such as a tunnel junction, is
inserted into a circuit. When an electron tunnels through a
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FIG. 1. (Color online) Sketch of the Josephson junction system
coupled to two resonators. The L1(2) and C1(2) elements stand for
the left (right) inductance and capacitance, respectively, and V is the
voltage bias applied over the JJ. The oscillators frequencies is such
that 2eV = �ω1 + �ω2. Also, b̂out,1(2) stand for the emitted radiation
by the left (right) oscillator and collected by the left (right) detector.
This radiation is expected to show strong quantum-mechanical
correlations (see text).

junction, this entails sudden voltage variations at the edge
of the environment which excite its electromagnetic modes.
The backaction of the circuit then affects the charge transfer
through the junction and its conductance is reduced in a
nonlinear way [16]. In this respect, the microwave cavity acts
as a structured environment that can absorb photons (or emit at
finite temperature). DCB has been experimentally probed both
for nonresonant environments [17–20] and for environments
formed by resonators [4,5,21–24], with excellent theoretical
agreement.

For a Josephson junction (JJ), DCB effects are more
dramatic since at bias voltages smaller than 2�/e, with �

the superconducting gap, quasiparticles cannot be excited.
Therefore the only possible channel to dissipate the energy
of tunneling Cooper pairs is to transform it into photons
emitted in the electromagnetic environment [16,25]. In a
recent experiment [21], Hofheinz et al. have observed and
characterized the radiation associated with the flow of Cooper
pairs connected to a microwave resonator. In particular, two-
photon processes were shown, for which a single Cooper
pair tunneling through the junction emits two photons into
the environment [21]. Such two-photons processes which are
triggered by tunneling through a quantum conductor are very
peculiar because they carry nonclassical correlations and may
therefore offer a source of pairs of correlated photons which
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could be very useful for quantum communications [26]. The
microwave radiation emitted by a Josephson junction coupled
to a single resonator has been theoretically studied recently
in various regimes [27–30]. In particular, it has been shown
by Leppagankas et al. [28] that the radiation emitted by the
two-photon processes is nonclassical, and that it violates a
classical Cauchy-Schwarz inequality for two mode power
cross-correlated fluctuations.

Here we theoretically extend these considerations by ana-
lyzing the radiation emitted by a Josephson junction coupled to
two resonators with different resonance frequencies ω1 �= ω2.
The device we study is sketched in Fig. 1. The JJ is coupled
to two LC resonators, and the light emitted in the processes
is captured by photons detectors. We analyze the correlations
between the photon emitted by the JJ in these two resonators
at a voltage bias matching the condition 2eV = �ω1 + �ω2,
but also the power correlations of the microwave fields in
the corresponding transmission lines using an input-output
formalism. We evaluate the degree of nonclassicality of the
emitted light by establishing various inequalities obeyed by
the photonic correlators in the full quantum theory, and
comparing them with their classical analogs (Cauchy-Schwarz
inequalities). Our goal is to find instances when the classical
theory associated with a probabilistic description of the emitted
photons breaks down and set up the experimental range over
which such violation holds. More precisely, a (quasi)classical
description amounts to writing the density matrix of the
photons in the two resonators as

ρfield =
∫

dαdβ P (α,β) |αβ〉〈αβ|, (1)

where α and β are coherent states associated with the first
and second photonic mode (or resonator), respectively, and
P (α,β) is the so called P representation of the electromagnetic
field [31]. If P (α,β) is positive definite and nonsingular, it can
be identified as a classical probability distribution function for
the photonic field [31]. However, if in some range P (α,β) < 0,
then the classical description breaks down, and the emitted
photons have strong quantum correlations. In this paper we
will discuss such quantum correlations and calculate explicitly
the departure from the classical result.

The paper is organized as follows. In Sec. II we introduce
the setup and the system Hamiltonian of the Josephson junction
coupled to two LC oscillators. In Sec. III we introduce the
reduced density matrix describing the coupled system and cal-
culate various observables, such as the average photon number
and the second-order coherence functions. In Sec. IV we utilize
the input-output theory to characterize the emitted light by the
two oscillators, for both infinite and finite bandwidths of the
detectors. We also calculate the time-dependent second-order
coherence functions, as well as the Fano factor associated with
the fluctuations in the emitted radiation. Finally, in Sec. V we
end up with some conclusions and our outlook.

II. MODEL HAMILTONIAN

In the following we will describe the proposed model and
the associated Hamiltonian. In Fig. 1 we show a schematics
of the voltage-biased Josephson junction (JJ) coupled to two
distinct LC oscillators which, themselves, are coupled to a

transmission line that can be used to probe each oscillator
independently. The model Hamiltonian describing the entire
setup, including the external lines (which in Fig. 1 quantify
the emitted radiation) reads

Htot =
∑
i=1,2

(
Hi

res + Hi
env + Hi

r−e

) + HJ , (2)

being the sum of the resonators Hamiltonians, the environment
(the external transmission lines), their coupling to the corre-
sponding resonator, and the Josephson junction Hamiltonian,
respectively. Specifically,

Hi
res = q2

i

2Ci

+
(

h

2e

)2 1

2Li

φ2
i (3)

is the Hamiltonian of the ith (i = 1,2) resonator, with φi

and qi being the phase and charge operators acting on the
capacitance Ci and inductance Li , respectively [28–30]. The
second term Hi

env = ∑
q ωi,qa

†
q,iaq,i is the Hamiltonian of the

ith environment, with a
†
q,i (aq,i) being the photon creation

(annihilation) operator for the photons in that environment,
with ωq,i and q being the energy and their wave vector,
respectively. The third term represents the coupling between
the oscillator i and the environment and reads

Hi
r−e = φi

∑
q

gi
q(a†

q,i + aq,i), (4)

where gi
q are the coupling strengths. Finally, the last term

describes the Josephson junction and its capacitive coupling
to the two oscillators:

HJ = −EJ cos η − 2e

(
V −

∑
i=1,2

V i
res

)
N, (5)

where EJ , η, V , N , and Vres are the Josephson energy, the
phase bias, the voltage bias, the number of Cooper pairs, and
the voltage induced by the oscillators, respectively. The latter
is given by Vres = ∑

i=1,2 V i
res, with

V i
res = −

(
�

2e
φ̇i

)
, φ̇i = i

�

[
Hi

res,φi

]
. (6)

Note that we defined the following conjugate variables for the
cavities and the JJ, respectively:

[qi,φj ] = 2ieδij , (7)

[N,η] = −i, (8)

and we have that EJ = EJ,0 cos (π�/�0), with EJ,0 the
Josephson energy and � the flux threaded through the JJ
(�0 = h/2e is the flux quantum); namely it can be controlled
by controlling the flux � [21]. Next we exclude the Cooper
pair number from the Hamiltonian by performing a time-
dependent unitary transformation on the full Hamiltonian,
namely [29]

H̃tot = UN (t)HtotU
†
N (t) + i ∂tUN (t)U †

N (t) (9)

with

UN (t) = ei(ωJ t+φ1+φ2)N, (10)
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where ωJ ≡ 2eV/�. This affects both the resonators and JJ
Hamiltonians so that they become

H̃ i
res = q̃2

i

2Ci

+
(

�

2e

)
φ2

i

2Li

, (11)

H̃J = −EJ cos

(
ωJ t +

∑
i=1,2

φi

)
, (12)

where q̃i = qi + 2eN is still continuous, although N is
discrete, so that the Hamiltonian of the resonators becomes
identical to the original one. We can quantize the excitations
in the two resonators by writing

φi = √
κi(a

†
i − ai), q̃i = i

√
ξi(a

†
i + ai), (13)

with κi = �/2miωi , ξi = 2miωi�, and mi = (�/2e2)Ci , and
a
†
i (ai) are the creation (annihilation) operators for the

resulting photons (and which satisfy [ai,a
†
j ] = δij ). Using this

description, the oscillators Hamiltonian becomes

H̃ i
res = ωia

†
i ai, (14)

with ωi = 1/
√

LiCi . We note that the parameter κi ≡
R−1

K

√
Li/Ci quantifies the range of the coupling regime:

for κi � 1 the setup is in the weak-coupling limit which,
combined with small photonic emission rate (∝ EJ ), is well
described by the so called P (E) theory [13–15]. For κi > 1
instead, one can reach the strong-coupling regime where
nonlinearities and feedback effects of the electronic transport
on the cavity (and vice versa) become manifest. In this paper
we will only be concerned with the weak-coupling limit, since
most experiments are carried out in this regime.

Until now, the description was exact, but the coupling
between the JJ and the resonators is strongly nonlinear.
To make further progress, it is instructive to switch to the
interaction picture with respect to the two cavities, which
pertains to writing

H̃J (t) = −EJ cos

[
ωJ t +

∑
i=1,2

√
κi(a

†
i e

iωi t + aie
−iωi t )

]
,

(15)

which is generally time-dependent. In the following we are
interested in photonic processes that are resonant with ωJ ,
namely where the energy of the Cooper pairs gained from the
bias voltage equals the energy of a given number of quanta in
the two resonators. In particular, in this paper we are interested
in the two-photon emission processes, one from each cavity,
such that the bias voltage is tuned to ωJ = ω1 + ω2.

Typically, one performs the so called rotating-wave approx-
imation (RWA), which amounts to keeping only the terms in
the above Hamiltonian that do not depend explicitly on time.
To identify such terms, we expand the argument of the cosine
function so that we obtain

H̃J (t) = −EJ

2
e−(κ1+κ2)/2

[ ∏
i=1,2

∑
ni ,mi

eiωJ t i
ni+mi (

√
κi)ni+mi

ni!mi!

× (a†
i )ni (ai)

mi ei(ni−mi )ωi t + H.c.

]
. (16)

Now we perform the RWA by keeping only the static terms;
namely we impose the condition n1 − m1 = n2 − m2 ≡ −1.
This statement is only valid if the two frequencies are
incommensurate with ωJ , namely ωJ /ω1 �= s/r , with s,r ∈ N
[and thus ωJ /ω2 �= r/(s − r)]. Otherwise, we would have the
condition

(n1 − m1)s

r
+ (n2 − m2)(r − s)

r
= −1 (17)

or

n1 − m1 =
[

(n2 − m2) − (n2 − m2 + 1)
r

s

]
, (18)

which implies that (n2 − m2 + 1)r/s = q ∈ N. For example,
if r/s = 1/2, we have that n2 − m2 + 1 = 2q and n1 − m1 =
q − 1. We will not consider this commensurate limit any
further here, and we leave it as a subject for a future study. We
mention that the single-photon and two-photon emission from
a single cavity have been already discussed theoretically [28–
30] and implemented experimentally [21]. Thus, even if the
energy of these modes is the same, the resulting processes must
not be similar to the single-cavity case. We then obtain for the
static part of the above Hamiltonian the following expression:

HRWA
J = − ẼJ

2

[ ∏
i=1,2

∑
ni

(i
√

κi)2ni+1

ni!(ni + 1)!
(a†

i )ni (ai)
ni+1 + H.c.

]

= ẼJ

2
: (a1a2 + a

†
1a

†
2)

J1(2
√

κ1n1)√
n1

J1(2
√

κ2n2)√
n2

:,

(19)

where ẼJ = EJ exp [−(κ1 + κ2)/2], and Jp(z) is the Bessel
function of the first kind that has the form

Jp(z) =
∑

n

(−1)n
(z/2)2n+p

n!(n + p)!
, (20)

and : . . . : means normal ordering of the operators, i.e., all
annihilation operators on the right side of all the creation
ones. We mention, however, that we still need to add the
environments and their coupling to the two oscillators to
complete the approximate setup. While we should in principle
perform the same RWA on the external modes too (and on their
coupling), it turns out that for gi

q � ωi we can safely utilize
the initial coupling Hamiltonian.

Before analyzing in detail the photon dynamics induced by
the above RWA Hamiltonian, it is instructive to reveal some
qualitative features based solely on the so called P (E) theory.
We will not, however, provide demonstrations for the following
formulas as these can be found in various previous studies (e.g.,
Ref. [21]). The emission of the photons into the two resonators
is naturally associated with the electronic (emission) noise of
the JJ [21]. It was shown that the photonic rate can be written
as follows:

�ph(ω) = 2Re[Z(ω)]

RK�ω
SII (ω,V ), (21)

where Z(ω) is the impedance of the circuit at frequency ω, and
SII (ω,V ) is the current noise at frequency ω and for a voltage
bias V . The current noise, on the other hand, has been shown
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to be given by [21]

SII (ω,V ) ≈ πE2
J

2RK�

Re[Z(2eV − ω)]

�(2eV − ω)
. (22)

If we assume, for simplicity, that �ω = eV (half the Joseph-
son frequency, which corresponds to two-photon emission),
we obtain for the photonic rate the following simplified
expression:

�ph(ω) ≈ πE2
J

�

(
Re[Z(ω)]

RK�ω

)2

. (23)

The real part of the impedance of the resonator Z(ω)
can be easily calculated for the single-mode case, and in
particular it becomes rather simple when ω ≡ ω0 (cavity
frequency):

Z(ω0) = RKκQ ≡ RKκ
ω0

γ
, (24)

where we defined the quality factor of the resonator Q = ω0/γ

(and we recall that κ is the coupling strength between the
electromagnetic field and the JJ). Using this expression, we
finally obtain for the photonic emission rate the following
dependence:

�ph(ω0) ∝ E2
J κ2

γ 2
= E2

J κ2Q2

ω2
0

. (25)

This qualitative description should be recovered, at least in
some limits, by a detailed microscopic theory.

In the following we analyze the photon emission by the
junction by using both the density matrix approach and the
input-output approach. We will calculate quantities such as
the average photon number (or fluxes) and the second
coherence factors that unravel the photonic statistics.

III. DENSITY MATRIX DESCRIPTION

In this section we analyze the photons in the cavity by
resorting to the density matrix approach, similar to that
used in Ref. [29]. Such a description allows us to analyze
the photonic fields inside each of the two cavities. Let us
start by writing down the equation of motion for the total
photonic density matrix, including the external transmission
lines (environments):

dρtot

dt
= − i

�

[
HRWA

J +
∑
i=1,2

(
Hi

env + Hi
r−e

)
,ρtot

]
, (26)

so that the reduced density matrix ρS(t) describing only the
oscillators and the JJ can be found by tracing the environment
degrees of freedom, namely ρS(t) = Trenv[ρtot(t)]. Within the
Markov approximation, and up to second order in the coupling
gi

q , one obtains the following (Lindblad) form for the system
density matrix:

dρS

dt
= LρS = − i

�

[
HRWA

J ,ρS

]
+

∑
i=1,2

γi[2aiρSa
†
i − {a†

i ai,ρS}],

which describes the dynamics of the electromagnetic modes
in the cavity, with γi = 2π

∑
q |gi

q |2 being the ith cavity

decay rate. Note that the expectation value of an operator
X̂ reads 〈X̂(t)〉 = Trsys[X̂ρS(t)], where the trace is taken over
the oscillators degrees of freedom. In order to characterize
the photonic emission statistics, we define the following
second-order correlation function [31]:

G
(2)
pj (t,τ ) = 〈: np(t)nj (t + τ ) :〉 = 〈: nj (0)eLτ [ρS(t)np(0)]:〉,

(27)

which describes the probability to detect a photon in branch p

at time t and one photon in branch j at time t + τ , with τ being
the time delay between the photonic counts. For p �= j (p =
j ) they correspond to the cross-correlation (autocorrelation)
of the photonic emission, namely detection of photons from
different (the same) emitter. In the stationary limit, for t → ∞,
the correlators depend only on the time delay τ [31]. One
defines a normalized second correlation function (for t → ∞)
as

g
(2)
pj (t,τ ) = G

(2)
pj (t,τ )

〈np(t)〉〈nj (t + τ )〉 , (28)

which, in the stationary limit and for τ = 0 (zero time delay)
becomes

g
(2)
pj (0) = 1 + V (np,nj ) − δpj 〈nj 〉

〈np〉〈nj 〉 , (29)

with V (np,nj ) = 〈npnj 〉 − 〈np〉〈nj 〉 being the variance of the
field. By accessing the g

(2)
pj (0) one can infer the degree of

“quantumness” of the emitted light. Let us now analyze in
detail this statement, by comparing the possible outcomes
from both the classical and quantum descriptions. The cor-
relation between the photon emission processes from the two
oscillators is encoded in the variance Var(n1 − n2) = 〈(δn1 −
δn2)2〉 � 0. Assuming 〈n1〉 = 〈n2〉 = 〈n〉 (equally populated
cavities), this implies that 〈δn2

1〉 + 〈δn2
2〉 � 2〈δn1δn2〉. For a

classical field, we can define g
(2)
c,pj (0) = 〈δnpδnj 〉/n2, without

normal ordering since ni are not operators, but random
variables. By using the above condition, we obtain for classical
states the following Cauchy-Schwarz inequalities:

g
(2)
c,12(0) �

g
(2)
c,11(0) + g

(2)
c,22(0)

2
, g

(2)
c,12(0) �

√
g

(2)
c,11(0)g(2)

c,22(0).

(30)

For a quantum field instead, 〈δnpδnj 〉 = 〈: δnpδnj :〉 +
δpj 〈np〉 and, since in this case g

(2)
q,pj (0) = 〈: δnpδnj :〉, we

obtain that 〈δnpδnj 〉/〈n〉2 = g
(2)
q,pj (0) + (1/〈n〉)δpj . Thus, the

quantum description leads to the less stringent condition

g
(2)
q,12(0) �

g
(2)
q,11(0) + g

(2)
q,22(0)

2
+ 1

〈n〉 , (31)

which implies that the Cauchy-Schwarz inequalities can be
violated. It is instructive to discuss briefly the physical reason-
ing behind such violations utilizing also the (quasi)classical
density matrix in Eq. (1). Assuming again 〈n1〉 = 〈n2〉 ≡ 〈n〉,
we can write for the autocorrelators and cross-correlators the
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following expressions, respectively:

g(2)
aa (0) = 1

〈n〉2

∫
dαdβP (α,β)|α|4, (32)

g
(2)
ab (0) = 1

〈n〉2

∫
dαdβP (α,β)|α|2|β|2, (33)

which when combined lead to the following equality:

g
(2)
11 + g

(2)
22 − 2g

(2)
12 = 1

〈n〉2

∫
dαdβP (α,β)(|α|2 − |β|2)2.

(34)

We can easily see now that if the function P (α,β) > 0, ∀α,β,
the classical inequality g

(2)
11 + g

(2)
22 − 2g

(2)
12 � 0 holds, and we

can interpret P (α,β) as a probability distribution. However, if
P (α,β) acquires negative values over some range of α and β,
the classical inequality can be violated, which in turn can be
interpreted as emission of nonclassical light. Such nonclassical
behavior occurs, for example, when the light emitted shows
antibunching or when it becomes squeezed [31].

Next we analyze explicitly these Cauchy-Schwarz inequal-
ities for our two-photon setup. For that, we first calculate
various average quantities in the stationary limit d〈X̂〉/dt = 0,
so that for the average photon number X̂ = n̂j and photon
number product X̂ = n̂pn̂j , we obtain the following relations:

〈np〉 = − i

2γj

〈[
np,HRWA

J

]〉
, (35)

〈npnj 〉 = − i

2(γj + γp)

〈[
npnj ,H

RWA
J

]〉 + 1

2
〈nj 〉δpj . (36)

Because the Hamiltonian HRWA
J is not quadratic in the field

operators, the system of equations does not close, and we find[
nj ,H

RWA
J

] = ẼJ
√

κj : (aj̄ aj − a
†
j̄
a
†
j )

× [J0(2
√

κjnj ) + J2(2
√

κjnj )]
J1(2

√
κj̄nj̄ )

√
nj̄

:,

(37)

and a similar but more complicated result for the [npnj ,H
RWA
J ]

commutator (not shown). To make progress, in the following
we recall again the weak-coupling assumption, κ1,2 � 1, as
in the experiments carried out in Ref. [21], and consider also
that the two cavities are populated on average by only a few
photons, so that κi〈ni〉 � 1. The latter condition depends on
the parameter range and has to be checked self-consistently at
the end of the calculation. Under these assumptions, we can
approximate the system Hamiltonian as follows:

HRWA
J ≈ ẼJ

√
κ1κ2 : (a†

1a
†
2 + a1a2):, (38)

neglecting terms of the order O(κini)2. This simple quadratic
Hamiltonian describes the well known nondegenerate para-
metric amplifier [31]. For the photon number expectation
values in the two cavities we get

〈nj 〉 = β2

2
(〈nj 〉 + 〈np〉 + 1), (39)

where β = (2ẼJ

√
κ1κ2/γ ) for the case of two identical

cavities (γ1 = γ2), so that 〈n1〉 = 〈n2〉 ≡ 〈n〉, with

〈n〉 = β2

2(1 − β2)
. (40)

We see that β = 1 is the threshold for an instability at which the
cavities become coherently populated instead of incoherently,
as happens below this threshold. We will not discuss any
further the behavior above this threshold, as we are interested
here in the incoherent regime. However, note that for the
quadratic approximation to be valid, the condition κi〈ni〉 �
must be met, and thus the threshold cannot be achieved within
this limit as strong quantum fluctuation may change the critical
condition [27]. Under all these assumptions and after some
lengthy but straightforward calculations we obtain

〈njnp〉 = β2[〈n2〉 + (1 + β2)〈n〉 + 2〈n1n2〉 + β2/2]

4 − β2

+ β2

4
(2〈n〉 + 1) + 1

2
〈n〉δjp, (41)

or

〈n2〉 = A〈n2〉 + B〈n1n2〉 + C, (42)

〈n1n2〉 = A〈n2〉 + B〈n1n2〉 + D, (43)

with

A = β2

4 − β2
,

C = β4

(1 − β2)(4 − β2)
+ β2

2(1 − β2)
, (44)

D = β4

(1 − β2)(4 − β2)
+ β2

4(1 − β2)
, (45)

and B = 2A. By further manipulating the above expression,
we finally obtain

〈n2〉 = 2(〈n〉)2 + 〈n〉, (46)

〈n1n2〉 = 〈n〉(1 + 4〈n〉)
2

, (47)

which in turn leads to

g
(2)
11 (0) = g

(2)
22 (0) = 2,

g
(2)
12 (0) = 2 + 1

2〈n〉 . (48)

We mention that for g
(2)
ii (0) = 2 the radiation resembles the

thermal radiation, although the system is at T = 0, and it is
characteristic of the parametric nondegenerate oscillator. For
the cross-correlation instead, g

(2)
12 (0) ∼ 1/2〈n〉 for 〈n〉 � 1,

meaning strong bunching of the emitted radiation at low
emission rates ∝ 〈n〉. In order to check the nonclassical
character of the emitted pairs, we calculate the so called noise
reduction factor (NRF ) given by

NRF = Var(n1 − n2)

2〈n〉 = 〈n〉
2

(
g

(2)
11 + g

(2)
22 − 2g

(2)
12

) + 1, (49)
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which is NRF � 1 for classical light, when the photon
emission is uncorrelated, and can be 0 < NRF < 1 when
quantum correlations are manifest. For the few-photon limit
considered here, we find NRF = 1/2, which means the
photon pair emission shows strong quantum correlations,
which should be easily detected in experiments. The very same
relation implies that the classical Cauchy-Schwarz inequalities
in Eq. (30) are violated.

We mention that for larger emission rates (∝ EJ ) or larger
κi’s, one can go beyond the few-photon limit and access higher
nonlinearities of the JJ. Such a regime, although interesting, is
left for a future study [32].

IV. INPUT-OUTPUT DESCRIPTION

While the density matrix approach allows us to calculate
the field inside the cavity, it does not tell us the properties
of the field exiting in the transmission lines and measured by
the detectors. In order to address this issue, we resort to the
input-output description of the system: an input field is sent to
the combined system formed by the JJ and the two oscillators,
and the output field is measured. The input field could even be
just the quantum vacuum, as will be assumed in the following.

In Fig. 1 we show a schematics of the input-output fields.
We assume that each oscillator is coupled to its external
transmission line (environment) by only one side, so that
there is only one input and one output field, respectively.
The relations between the input, output, and cavity fields for
oscillator α = 1,2 are as follows [31]:

ȧα(t) = − i

�

[
aα(t),HRWA

J (t)
] − γα

2
aα(t) − √

γαbin,α(t),

(50)

bout,α(t) = bin,α(t) + √
γαaα(t), (51)

where bα
in(t) [bα

out(t)] are the input (output) fields defined as
follows:

bin,α(t) = 1√
2πρα

∑
q

e−iωq,α (t−t0)aq,α(t0), (52)

bout,α(t) = 1√
2πρα

∑
q

e−iωq,α (t−t1)aq,α(t1), (53)

with t0 < t < t1, and ρα = ∑
q δ(ωα − ωq,α) is the environ-

ment α density of states. We mention that for deriving
these expressions we assumed the RWA to hold; i.e., we
neglected the terms of the form a†

αa
†
q,α and aαaq,α (counter-

rotating terms). Because of the second term in Eq. (50) (the
commutator), the equation of motion is highly nonlinear, and
reads[

aα,HRWA
J (t)

] = ẼJ

√
κα :

[
aᾱ

aα

a
†
α

J2(2
√

καnα)

− a
†
ᾱJ0(2

√
καnα)

]
J1(2

√
κᾱnᾱ)√
nᾱ

:

≈ −ẼJ

√
κακᾱa

†
ᾱ + O[(καnα)2], (54)

where in the last line we presuppose the limit καnα � 1.
Moreover, we assume the two oscillators have large Q

factors so that their overlap in frequency is negligible; i.e.,
|ω1 − ω2| � γ1,2.

Utilizing the same quadratic approximation of the JJ
Hamiltonian, we arrive at the following equation of motion
for the cavity field operators:

ȧα(t) = −iωαaα(t) − iẼJ

√
καa

†
ᾱ(t)e−i(ω1+ω2)t

− γα

2
aα(t) − √

γαbin,α(t), (55)

which implies that the left and right fields are coupled and we
need to solve the dynamics for both of them at the same time.
It is instructive to switch to the Fourier space in order to obtain
the needed relationships

aα(t) = 1√
2π

∫ ∞

−∞
dωeiωtaα(ω) (56)

and the commutation relations

[a†
α(ω),aα(ω′)] = δ(ω − ω′), (57)

and similarly for the other operators. This in turn allows us
to write the following equation relating the input and cavity
fields:[

i(ω − ωα) − γα

2

]
aα(ω) + ẼJ

√
καa

†
ᾱ(ω1 + ω2 − ω)

= √
γαbin,α(ω). (58)

Manipulating this relation and its Hermitian conjugate, and
utilizing the relation between the input, output, and cavity
fields in Eq. (51), we obtain

aα(ω) = Aα(ω)bin,α(ω) + Bα(ω)b†in,ᾱ(ω1 + ω2 − ω), (59)

bout,α(ω) = [
√

γαAα(ω) + 1]bin,α(ω)

+√
γαBα(ω)b†in,ᾱ(ω1 + ω2 − ω), (60)

with

Aα(ω) = −
√

γα

−i(ω − ωα) + γα

2 + Ẽ2
J κακᾱ

i(ω−ωα)−γᾱ/2

, (61)

Bα(ω)

= iẼJ
√

κακᾱγᾱ[
i(ω − ωα) − γᾱ

2

][ − i(ω − ωα) + γα

2 + Ẽ2
J κακᾱ

i(ω −ωα ) − γᾱ/2

] .

(62)

We are now in position to use the above findings to calculate
the relevant observables and correlators. However, we will
analyze both the case where the detectors have infinite
bandwidth, namely all photons emitted by the two resonators
are collected, and the finite-bandwidth case, and state the
differences compared to the density matrix approach. Let us
start with the infinite-bandwidth case, and then discuss briefly
the implications of finite-bandwidth detection.

A. Infinite-bandwidth detection

Here we assume that the efficiency of the detectors is unity
and that their bandwidth is infinite; thus they are collecting
all the emitted photons. The outgoing photonic flux from
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oscillator α reads

�α(t) = 〈b†out,α(t)bout,α(t)〉

= 1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ei(ω−ω′)t 〈b†out,α(ω)bout,α(ω′)〉

= γα√
2π

∫ ∞

−∞
dω|Bα(ω)|2 =

√
2πβ2γα

2(1 − β2)
, (63)

which, by assuming γ1 = γ2 ≡ γ , implies �α ≡ �, while
the autocorrelation and cross-correlation functions at τ = 0
respectively read

G(2)
αα(0) = 〈b†out,α(t)b†out,α(t)bout,α(t)bout,α(t)〉

= γ 2
α

π

[∫ ∞

−∞
dω|Bα(ω)|2

]2

= πβ4

(1 − β2)2
, (64)

G
(2)
αᾱ(0) = 〈b†out,α(t)b†out,ᾱ(t)bout,ᾱ(t)bout,α(t)〉

= 1

2π

∫
dω

∫
dω′[B∗

α(ω)A∗
ᾱ(ω1 + ω2 − ω)

×Bᾱ(ω′)Aα(ω1 + ω2 − ω′) + |Bα(ω)|2|Bᾱ(ω′)|2]

= πγ 2β2(1 + β2)

2(1 − β2)2
. (65)

From these expression, we can readily evaluate the zero time
delay (τ = 0) second-order coherence functions:

g
(2)
αα′ (0) = 〈b†out,α(t)b†out,α(t)bout,α(t)bout,α(t)〉

〈b†out,α(t)bout,α(t)〉〈b†out,α(t)bout,α(t)〉

=
{

2, α′ = α,

2 +
√

πγ√
2�

, α′ = ᾱ.
(66)

We see that in the infinite-bandwidth limit we obtain again
the same result we found from the density matrix approach for
the autocorrelation function, g(2)

αα = 2, while g
(2)
12 (0) ∝ 1/� for

�/γ � 1. Note that experimentally it is not the cavity field but
the external photon flux that is measured and the above results
are due to the well known relationships

�α = 〈b†out,α(t)bout,α(t)〉 = γα〈a†
α(t)aα(t)〉, (67)

〈b†out,α(t)b†out,α(t)bout,α(t)bout,α(t)〉
= γ 2

α 〈a†
α(t)a†

α(t)aα(t)aα(t)〉, (68)

which hold in the infinite-bandwidth case. Once again,
deviations from the quadratic Hamiltonian lead to changes
in the second-order coherence factors, of the order (κ�/γ ).
Since we consider the few-photon regime, such corrections
are negligible. It is worth mentioning that due to the corre-
spondence in Eq. (68) the Cauchy-Schwarz inequalities are
violated in the same way as described in the previous section;
thus the emitted light from the cavities into the transmission
lines is nonclassical.

In order to reveal the dynamics of the two resonators, we
next calculate the time dependence of the g

(2)
αα′(τ ) function that

is defined as follows:

g
(2)
αα′ (τ ) = G

(2)
αα′ (τ )

�2
. (69)

The autocorrelation and cross-correlation second-order coher-
ence functions are given respectively by

G(2)
αα(τ ) = 〈b†out,α(t + τ )b†out,α(t)bout,α(t)bout,α(t + τ )〉

= πγ 2β4

2(1 − β2)2
[1 + e−γ τ (cosh(ẼJ τ ) + β sinh(ẼJ τ ))2],

G
(2)
αᾱ(τ ) = 〈b†out,α(t + τ )b†out,ᾱ(t)bout,ᾱ(t)bout,α(t + τ )〉

= πγ 2β4

2(1−β2)2
[1 + e−γ τ (β cosh(ẼJ τ ) + sinh(ẼJ τ ))2],

(70)

which leads to the following normalized coherence functions:

g
(2)
αα′ (τ ) = 1 +

{
e−γ |τ |[β cosh(βγ |τ |)+sinh(βγ |τ |)]2

β2 , α′ = α,
e−γ |τ |[cosh(βγ |τ |)+β sinh(βγ |τ |)]2

β2 , α′ = ᾱ.
(71)

These functions are witnesses of the dynamics of oscillators
as they reveal their effective linewidth and thus their trend
towards the instability point β = 1. Having found these
functions, we can directly relate them to the nonsymmetrized
photonic frequency noise, defined as follows:

Sαα′ (ω) =
∫ ∞

−∞
dτ 〈�̂α(τ )�̂α′(0)〉e−iωτ

≡ �2
∫ ∞

−∞
dτ

[
g

(2)
αα′(τ ) − 1

]
e−iωτ , (72)

with �̂α(τ ) = b
†
out,α(τ )bout,α(τ ) representing the photonic flux

operator out of the oscillator α. That allows us to extract the
noise-to-signal ratio, or the Fano factor Fαα′ = Sαα′ (0)/�.
This offers an estimate for the number of photons that are
correlated in the emission process [27], and it is given by

Fαα′ = �

∫ ∞

−∞
dτ

[
g

(2)
αα′ (τ ) − 1

]
. (73)

Using the expression for the photonic rate � in Eq. (63), and
expressing the coefficient β in terms of this quantity, we obtain
for the autocorrelation Fano factor

Fαα′ =
{

5�
γ

+ 4�2

γ 2 , α′ = α,

2 + 5�
γ

+ 4�2

γ 2 , α′ = ᾱ.
(74)

We see that for �/γ � 1 (but so that κ�/γ < 1), F ∝ �2,
which is a signature for strong photon bunching. We note that
for a Poisson process F = 1, while for a thermal distribution
F = 2.

In Fig. 2 we plot the dependence of the functions g(2)
αα(τ )

on the time delay (left) and the autocorrelated noise Sαα(ω)
(right). We see that for τ → ∞ g(2)

αα → 1, while from the
right plot we see that the linewidth becomes narrower as the
emission rate ∝ EJ increases to values close to the instability
threshold. In Fig. 3 on the other hand, we plot the dependence
of the functions g

(2)
αᾱ(τ ) on the time delay (left) and the

cross-correlated noise Sαᾱ(ω) (right), which shows a similar
behavior.
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FIG. 2. (Color online) Left plot: The time dependence of the
second-order autocorrelation function g(2)

αα(τ ) for different values of
β ∝ ẼJ . Right plot: The frequency dependence of the autocorrelation
noise function Sαα(ω) for different values of β ∝ ẼJ . In both
plots, the red, blue, brown, green, and yellow curves correspond
to β = 0.1,0.3,0.7,0.8, and 0.95, respectively. Here the time scales
are all expressed in terms of γ , and we recall that � ∝ β2.

B. Finite-bandwidth detection

In this section we discuss the properties of the outgoing
light when the detection is taken within a finite frequency
window �ω around both ω1 and ω2. For simplicity, we assume
the same frequency window for both oscillators. We already
expect that if �ω � γ the results to be practically the same as
in the previous section. However, when �ω � γ , one expects
the photon statistics to be affected, and we aim at quantifying
such changes.

The photon flux detected within the bandwidth �ω reads

�r,α(t) = 〈b†out,α(t)bout,α(t)〉�ω

= γ√
2π

∫ ωα+�ω/2

ωα−�ω/2
dω|Bα(ω)|2

= γβ√
2π

[
arctan

(
r

1−β

)
1 − β

−
arctan

(
r

1+β

)
1 + β

]
, (75)

where r = �ω/γ . The rate becomes Eq. (63) for �ω � γ up
to corrections (γ /�ω)3. For r < 1, we obtain

��ω
α ≈ 4β2�ω

(1 − β2)2
+ O[r2]. (76)

Next we calculate the second-order correlation functions.
We obtain

G(2)
αα,r (0) = γ 2β2

π

[
arctan

(
r

1−β

)
1 − β

−
arctan

(
r

1+β

)
1 + β

]2

, (77)
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ᾱ
( ω

)

g
(2

)
α

ᾱ
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τ ω

FIG. 3. (Color online) Left plot: The time dependence of the
second-order cross-correlation function g

(2)
αᾱ(τ ) for different values of

β ∝ ẼJ . Right plot: The frequency dependence of the autocorrelation
noise function Sαᾱ(ω) for different values of β ∝ ẼJ . In both
plots, the red, blue, brown, green, and yellow curves correspond
to β = 0.1,0.3,0.7,0.8, and 0.95, respectively.

G
(2)
αᾱ,r (0) = γ 2β2

π

[
arctan

(
r

1+β

)
(1 + β)2

+
arctan

(
r

1−β

)
(1 − β)2

]
, (78)

which results again in g(2)
αα(0) = 2, independently of the

bandwidth �ω, while for the cross-correlation coefficient we
obtain

g
(2)
αᾱ,r (0)

= 1 +
[
(1 + β) arctan

(
r

1−β

) + (1 − β) arctan
(

r
1+β

)]2[
(1 + β) arctan

(
r

1−β

) − (1 − β) arctan
(

r
1+β

)]2 ,

(79)

which instead depends on the bandwidth �ω. Let us analyze
this expression in more detail. In experiments, one measures
the photonic rate exiting the device, instead of the bare
emission rate β. Thus, we should calculate g

(2)
αᾱ(0) as a function

of �r,α . Assuming the emission rate is such that the system is far
below the instability threshold, β � 1, we found the general
form

g
(2)
αᾱ,r (0) = a12 + b12

�α

, (80)

with a12 ≈ 2 for β < 1 and all values of r , while b12 is given
by

b12 ≈
√

2

π

[
arctan r − r

2 + r2

]
. (81)

In Fig. 4 we show the dependence of g
(2)
αᾱ,r (0) (left) and b12

(right) on r for different values of the measured rate �. We
see that b12 increases monotonically with increasing �ω, and
that it saturates to bmax

12 = √
π/2. To conclude the zero time

delay discussion, we see that the input-output results match our
findings from the density matrix approach, but that considering
a finite bandwidth affects the correlation function which shows
less bunching (i.e., less correlated emission) as the bandwidth
is decreased to smaller values than the natural bandwidths of
the oscillators �.

For completeness, let us also investigate the time de-
pendence of the second-order correlation functions for a
finite-bandwidth detection. They are defined as in Eq. (69),
with the second-order correlation functions and rate being

0 2 4 6 8 10
2
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10

12

0 5 10 15 20 25 30
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

g
(2

)
α

ᾱ
,r

(0
)

b 1
2

b12 ≡ Γr,α[g(2)
αᾱ,r(0) − 2]

r = Δω/γ r = Δω/γ

FIG. 4. (Color online) Left: The cross-correlation factor g
(2)
αᾱ,r (0)

as a function of the bandwidth r = �ω/γ for various values of the
rate �. The red, blue, brown, green, and yellow curves correspond to
� = 0.1, 0.3, 0.5, 1, and 3, respectively. Right: The b12 function in
Eq. (80), together with the approximate expression in Eq. (81). Here
all curves, for which we used the same parameters as in the left plot,
lie on the same line, and are fitted well by the approximate result.
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FIG. 5. (Color online) Left (right): The autocorrelation (cross-
correlation) factor g(2)

αα,r (τ ) [g(2)
αᾱ,r (τ )] as a function of the time delay

τ for different values of r = �ω/γ . The black, red, blue, brown,
green, and yellow curves correspond to r = ∞, 3, 1, 0.5, and 0.2,
respectively, and we choose � = 0.1.

calculated over a finite bandwidth. While even in this case there
are possible analytical expressions for the g

(2)
αα′,r (τ ) functions,

they are too lengthy and uninspiring to be displayed. However,
in the left (right) plot in Fig. 5 we show g(2)

αα,r (τ ) [g(2)
αᾱ,r (τ )] as

a function of the delay time τ for various values of r . We see
that the finite bandwidth strongly modifies the decay of the
correlation functions for r < 1, which now shows correlations
over a longer time scale, on the order of 1/�ω. Note that the
effective linewidth of the oscillators in the presence of the JJ
is on the order of γ (1 − β2), which needs to be compared with
1/�ω. The cross-correlation Fano factor is also modified, and
for β � 1 it reads F r

12 = 2 + 5�f (r), with

f (r) = π [33r + 40r3 + 15r5 + 15(1 + r2)3 arctan r]

30(1 + r2)[r + (1 + r2) arctan r]2
. (82)

This function behaves as f (r) ≈ 2π/5r [f (r) ≈ 1 + 8/3πr3]
for r → 0 (r → ∞).

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the radiation emitted by a
voltage-biased JJ into two LC oscillators when the the bias

is set such that 2eV = �ω1 + �ω2. We have employed both
the density matrix approach to study the cavity fields, and
the input-output description to analyze the emitted photonic
fluxes in the so called weak-coupling regime characterized
by an environmental impedance much smaller than RK .
Specifically, we have calculated both the photon number and
the photonic correlations (second-order coherence function).
We have shown that the emitted radiation is nonclassical by
proving that a Cauchy-Schwarz inequality is violated. Such
violation of the Cauchy-Schwarz inequality can be traced back
directly to the negativity of the quasiprobability distribution
of the photonic field [see Eq. (1)]. In order to analyze the
effective dynamics of the oscillators, we also calculated the
time dependence of the photonic correlations and showed
that their linewidth becomes narrower as the emission rate
increases, signaling the approach to the threshold instability.
We also briefly considered the effect of a finite-bandwidth
detection and showed that the qualitative features stay the
same, but that the violation of the Cauchy-Schwarz inequality
becomes less pronounced. In the future, it would be interesting
to address also the strong-coupling regime together with the
region around the threshold instability, as well as the full
counting statistics of the emitted photons, as discussed in
Ref. [27].

Note added. Recently we became aware of similar results
obtained by Armour et al. [33] using the density matrix
approach for the cavity fields.
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