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Band-filling effect on magnetic anisotropy using a Green’s function method
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We use an analytical model to describe the magnetocrystalline anisotropy energy (MAE) in solids as a function
of band filling. The MAE is evaluated in second-order perturbation theory, which makes it possible to decompose
the MAE into a sum of transitions between occupied and unoccupied pairs. The model enables us to characterize
the MAE as a sum of contributions from different, often competing terms. The nitridometalates Li2[(Li1−xTx)N],
with T = Mn, Fe, Co, Ni, provide a system where the model is very effective because atomiclike orbital characters
are preserved and the decomposition is fairly clean. Model results are also compared against MAE evaluated
directly from first-principles calculations for this system. Good qualitative agreement is found.
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I. INTRODUCTION

Magnetocrystalline anisotropy is a particularly important
intrinsic magnetic property [1]. Materials with perpendicular
magnetic anisotropy are used in an enormous variety of
applications, including permanent magnets, magnetic random
access memory, magnetic storage devices, and other spintron-
ics applications [2–5].

Modern band theory methods have been widely used to
investigate the magnetocrystalline anisotropy energy (MAE)
in many systems [6,7]. The MAE in a uniaxial system can
be obtained by calculating the total-energy difference between
different spin orientations (out of plane and in plane). However,
MAE is usually a small quantity and a reliable ab initio calcu-
lation requires very precise, extensive calculations. Moreover,
MAE is, in general, harder to interpret from the electronic
structure than other properties, such as the magnetization.
MAE often depends on very delicate details of the electronic
structure [8]. Using perturbation theory, the MAE can be
decomposed into virtual transitions between different orbital
pairs. In practice, the d bandwidth is large enough that it
is nontrivial to meaningfully resolve the MAE into orbital
components and predict its dependence on band filling.

The magnetocrystalline anisotropy originates from spin-
orbit coupling (SOC) [9] or, more precisely, the change
in SOC as the spin-quantization axis rotates. Including the
relativistic corrections to the Hamiltonian lowers the system
energy and breaks the rotational invariance with respect to the
spin-quantization axis. Here we refer to the additional energy
due to the relativistic correction as SOC energy or relativistic
energy Er . MAE is a result of the interplay between SOC and
the crystal field [10]. The MAE and change in orbital moment
on rotation of the spin-quantization axis are closely related. We
describe this below and denote them as K and KL, respectively.
Without the SOC, the orbital moment is totally quenched by
the crystal field in solids. Except for very heavy elements such
as the actinides, SOC usually alleviates only a small part of
the quenching and induces a small orbital moment relative to
the spin moment. For 3d transition metals, SOC is often much
smaller than the bandwidth and crystal-field splitting, and thus
can be neglected in a first approximation. While the Er is
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generally small, its anisotropy with respect to spin rotation is
often even orders of magnitude smaller.

Recently, it had been found that a very high magnetic
anisotropy can be obtained in 3d systems such as lithium
nitridoferrate Li2[(Li1−xFex)N] [11–14], which can be viewed
as an α-Li3N crystal with Fe impurities. As found both
in experiments [15] and calculations [12,13] using density
functional theory (DFT), the Li2(Li1−xFex)N system possesses
an extraordinary uniaxial anisotropy that originates from Fe
impurities. The linear geometry of Fe-impurity sites results
in an atomiclike orbital and then a large MAE. As found in
both x-ray absorption spectroscopy [11] and DFT calculations
[11–13], 3d ions T have an unusually low oxidation state (+1)
in Li2(Li1−xTx)N for T = Mn, Fe, Co, and Ni. Recently, Jesche
et al. [16] developed a single-crystal growth technique for
these systems and directly observed that the MAE oscillates
when progressing from T = Mn → Fe → Co → Ni [16].
Electronic structure calculations also show that the atomiclike
orbital features are preserved for different T elements. Con-
sidering the rather large MAE and well-separated density of
states (DOS) peaks in this system, it provides us with a unique
platform to investigate the MAE as a function of band filling.

Li and N are very light elements with s and p elec-
trons, respectively. They barely contribute to the MAE in
Li2[(Li1−xTx)N]; rather, MAE is dominated by single-ion
anisotropy from impurity T atoms, especially for lower T

concentration where T -T atoms become well separated. In this
work, we investigate the magnetic anisotropy with different
T elements based on second-order perturbation theory by
using a Green’s function method. Lorentzians are used to
represent local impurity densities of states and calculate the
MAE as a continuous function of band filling. First-principles
calculations of MAE are also performed to compare with our
analytical modeling.

The present paper is organized in the following way. In
Sec. II, we overview the general formalism of the single-
ion anisotropy [17,18] with Green’s functions and second-
order perturbation approach [19–24]. Analytical modeling and
calculational details are discussed. In Sec. III, we discuss the
scalar-relativistic electronic structure of these systems. The
band-filling effect on MAE in Li2[(Li1−xTx)N], with T = Mn,
Fe, Co, and Ni, is examined within our analytical model and
results are compared with first-principles DFT calculations.
The results are summarized in Sec. IV.

1098-0121/2015/92(1)/014423(9) 014423-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.014423


LIQIN KE AND MARK VAN SCHILFGAARDE PHYSICAL REVIEW B 92, 014423 (2015)

II. THEORY AND COMPUTATIONAL DETAILS

A. Perturbation theory of the magnetocrystalline anisotropy
and orbital moment

Perturbation theory allows us to calculate magnetic
anisotropy directly from the unperturbed band structure.
Orbital moment, SOC energy, and their anisotropies can
be written in terms of the susceptibility [7,17,21,23]. The
relativistic energy Er due to the spin-orbit interaction �Vso =
ξL·S can be written as

Er = −1

2

∫ EF

−∞

dE

π
Im{Tr[G(E)�Vso]}, (1)

where G(E) is the full Green’s function, which includes SOC
and can be constructed from the nonperturbed Green’s function
G0. Using second-order perturbation theory (here we consider
only systems with a uniaxial geometry), the relativistic energy
can be written as

Er = −1

2
Im

∑
ij

∫ EF

−∞

dE

π
Tr

{
G

ij

0 (E)�V j
soG

ji

0 (E)�V i
so

}

= −1

2

∑
i

ξ 2
i

∑
σ=±1

∑
m,m′

|〈mσ |�l · �s|m′σ ′〉|2χσσ ′(i)
mm′

+ intersite terms. (2)

Green’s functions are represented in a basis of orthonor-
malized atomic functions |i,m,σ 〉, and i labels atomic sites,
m subbands (in cubic harmonics), and σ the spin. The local
susceptibility χσσ ′

mm′ , characterizing the transition between two
subbands |m,σ 〉 and |m′,σ ′〉, is defined as

χσσ ′
mm′(EF ) = χσ ′σ

m′m(EF ) =
∫ EF

−∞

dE

π
Im

{
gσ

mgσ ′
m′

}
, (3)

where gσ
m is the unperturbed on-site Green’s function. Because

we only consider the on-site contribution of MAE, only the
on-site Green’s function or local susceptibility is needed to
investigate MAE. We further assume that on-site Green’s
functions diagonalize in real harmonic space. The angular
dependence and band structure dependence of relativistic
energy Er are decoupled. In the following, we assume that
MAE is dominated by a particular site i, and consider only its
contribution.

When the spin-quantization axis is along the 001 direction,
the spin-parallel (longitudinal) components of SO interaction
lz couple orbitals with the same |m| quantum number (m =
−m′), while the spin-flip (transverse) ones l± couple orbitals
with different |m| numbers (|m| = |m| ± 1). Hereafter, we
refer to those two types of coupling as intra-|m| and inter-|m|
types, respectively. According to Eq. (2) and absorbing the site
index i, the relativistic energy can be written as

Er
001 = −ξ 2

8

∑
σ=±1

∑
m,m′

(
Amm′χσσ

mm′ + 2Bmm′χ−σσ
mm′

)
. (4)

Positive-definite coefficients A and B are just the spin-
parallel and spin-flip parts of the |L · S|2 matrix elements.
They can be written as

Amm′ = m2δm,−m′ , (5)

Bmm′ = 1

4
[l(l + 1) − m(m ± 1)]δ|m|,|m′|±1. (6)

A and B correspond to intra-|m| and inter-|m| transitions,
respectively. An interesting property of the coefficient
matrices is ∑

mm′
Bmm′ =

∑
mm′

Amm′ . (7)

For an arbitrary spin orientation other than the 001
direction, one can either obtain the relativistic energy Er by
rotating G0 [7] or Vso [25,26] in spin subspace. Here we use
the latter approach and the relativistic energy with spin being
along the 110 direction can be written as

Er
110 = −ξ 2

8

∑
σ=±1

∑
m,m′

[
Bmm′χσσ

mm′ + (Amm′ + Bmm′ )χ−σσ
mm′

]
.

(8)

Notice that spin-parallel coefficients in Eq. (8) are exactly
half of the spin-flip coefficients in Eq. (4). If the susceptibility
matrix χ is relatively homogeneous with respect to spin, then
according to Eqs. (4), (7), and (8), we should expect the spin-
flip components of the relativistic energy Er to be about twice
as large as the spin-parallel components [27]. This is true for
the weakly magnetic atoms in different compounds.

Let us define the orbital moment anisotropy (OMA)
and MAE, respectively, as KL = 〈Lz〉001 − 〈Lz〉110 and K =
Er

110 − Er
001. In this definition, a positive K indicates that the

system has a uniaxial anisotropy. If KL is also positive, then
the system has a larger orbital magnetic moment along the easy
axis. Using Eq. (4) and Eq. (8), the MAE K can be written as

K = ξ 2

8

∑
m,m′

(Amm′ − Bmm′)(χ↑↑
mm′ + χ

↓↓
mm′ − χ

↑↓
mm′ − χ

↓↑
mm′).

(9)

MAE is resolved into allowed transitions between all
pairs of orbitals |m,σ 〉 ↔ |m′,σ 〉, corresponding to the χσσ ′

mm′
terms. Since A and B are positive definite, the coefficient
of χσσ ′

mm′ is positive when (m = −m′ and σ = σ ′) or (|m| =
|m′| ± 1 and σ = −σ ′), and is negative when (m = −m′
and σ = −σ ′) or (|m| = |m′| ± 1 and σ = σ ′). In general,
the local susceptibility χσσ ′

mm′ is also positive definite; hence
we have the following simple selection rule for MAE: For
intra-|m| orbital pairs, transitions between same (different)
spin channels promote easy-axis (easy-plane) anisotropy; for
inter-|m| pairs, the sign is the other way around, i.e., transitions
between same (different) spin channels promote easy-plane
(easy-axis) anisotropy. This simple rule is illustrated in Fig. 1.

Similarly, the OMA KL can be written as

KL = ξ

2

∑
m,m′

(Amm′ − Bmm′ )(χ↓↓
mm′ − χ

↑↑
mm′). (10)

Hence, OMA originates from the difference between ↑↑
and ↓↓ components of each pair susceptibility, while MAE
originates from the difference between the spin-parallel and
spin-flip components. If we sum over contributions from all
the spin components from each pair of orbitals (m,m′) and
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FIG. 1. (Color online) Illustration of the dependence of the easy-
axis direction on the orbital quantum numbers (m,m′) and the spin
quantum numbers (σ,σ ′) of two subbands. Configurations (a) and
(d) favor uniaxial anisotropy, while (b) and (c) favor easy-plane
anisotropy. The vertical dotted line corresponds to the Fermi energy,
EF . The horizontal line separates the majority (up) and minority
(down) spin channels. Occupied states with different |m| numbers
are filled with different colors.

define

χε
mm′ = χ

↑↑
mm′ + χ

↓↓
mm′ − χ

↑↓
mm′ − χ

↓↑
mm′ , (11)

χl
mm′ = χ

↓↓
mm′ − χ

↑↑
mm′ , (12)

then Eqs. (9) and (10) can be written as

4

ξ 2
K = 1

2

∑
m,m′

(Amm′ − Bmm′)χε
mm′ , (13)

1

ξ
KL = 1

2

∑
m,m′

(Amm′ − Bmm′)χl
mm′ . (14)

Obviously, the correlation between OMA and MAE [28]
only happens when the susceptibility is dominated only by
one of the spin-parallel components. If it is dominated by χ↑↑,
then the system has a smaller orbital moment along the easy
axis [27]. If it is dominated by χ↓↓, then the system has a larger
orbital moment along the easy axis and we have K = ξ

4 KL.
Equation (9) is useful to explain the MAE in two extreme

cases. (i) Nonmagnetic limit: Since the orbitals are spin inde-
pendent, we have χ

↑↑
mm′ = χ

↑↓
mm′ = χ

↓↑
mm′ = χ

↓↓
mm′ . χε

mm′ vanishes
for every pair of subbands mm′ because the spin-parallel
components cancel out the spin-flip ones. (ii) Zero crystal-field
limit: Since orbitals are degenerate,

∑
mm′ (Amm′ − Bmm′ )χσσ ′

mm′
in Eq. (9) vanishes for each of the four spin components σσ ′.
Thus the total anisotropy vanishes as in a free atom.

Using the expressions of coefficients in Eqs. (5) and (6), for
a d-orbital system, Eq. (9) can be written as

4

ξ 2
K = 4χε

−2,2 + χε
−1,1 − 3

2

(
χε

−1,0 + χε
0,1

)

− 1

2

(
χε

−2,−1 + χε
−2,1 + χε

−1,2 + χε
1,2

)
, (15)

where the ordering of the states is |−2〉 = dxy , |−1〉 = dyz,
|0〉 = dz2 , |1〉 = dxz, and |2〉 = dx2−z2 . Different point-group

symmetry results in different orbital degeneracy on site i.
By summing up the coefficients of equivalent orbital pairs,
Eq. (15) can be simplified.

For tetragonal, square planar, or square pyramidal geome-
tries, one pair of orbitals (dxz,dyz) is degenerate. Equation (15)
can be written as

4

ξ 2
K = 4χε

−22 + χε
11 − χε

12 − 3χε
01 − χε

−2,1. (16)

For linear, trigonal, petagonal bipyramidal, and square anit-
prismatic geometries, besides (dxz,dyz) orbitals, (dx2−y2 ,dxy)
orbitals are also degenerate. Equation (16) can be further
simplified as

4

ξ 2
K = 4χε

22 + χε
11 − 3χε

01 − 2χε
12. (17)

We recover Eq. (13) in Ref. [21]. On the other hand, for
tetrahedral and octahedral geometries, five d orbitals split into
two groups Eg and T2g , namely, (dz2 , dx2−y2 ) and (dxy , dyz, dxz).
One can easily show that the right side of Eq. (15) vanishes as
expected for cubic geometry.

Similarly, with the coefficient matrices and orbital degen-
eracy, one easily recovers the formulas for the orbital moment
in the tetragonal system as in Ref. [17] or A1 and A2 as in
Ref. [7].

B. Band-filling effect on MAE in a two-level model

As shown in Eq. (9), the MAE and OMA can be resolved
into contributions from allowed transitions between all pairs
of orbitals. The sign and weight of the contribution are deter-
mined by coefficients Am,m′ and Bm,m′ , which only depend on
the orbital characters of the corresponding orbital pairs. On the
other hand, χε

mm′ , or its four components χσσ ′
mm′ , are determined

by the electronic structure, namely, the Fermi level (electron
occupancy or band filling), band width, crystal-field splitting,
and spin splitting. Here we investigate the band-filling effect
on the MAE contribution from a single pair of orbitals. For
each orbital pair mm′, there are four spin components: two
spin-parallel (↑↑ and ↓↓) terms and two spin-flip terms (↑ ↓
and ↓ ↑). As assumed in the Anderson model, Lorentzians
are used to represent the local densities of state (LDOS)
in our analytical model to illustrate the electronic structure
dependence of χσσ ′

mm′ and MAE. Similarly, Ebert et al. [17]
used Lorentzians DOS to analytically investigate the orbital
magnetic moment and relate it to the impurity density of states
at the Fermi level. For simplicity, we use the same width for
every Lorentzian orbital, and the on-site Green’s function for
subband |m〉 in one spin channel σ is given by

gσ
m(E) = 1

E − εσ
m + iw

, (18)

where εσ
m is the band center and w is the half width. The

corresponding LDOS for subbands |m〉 and |m′〉 in two spin
channels are shown in Fig. 2(a). For simplicity, we further
assume that the two subbands have the same spin splitting,
εσ
m − εσ ′

m = εσ
m′ − εσ ′

m′ ≡ �s, or, equivalently, have the same
crystal-field splitting, εσ

m − εσ
m′ = εσ ′

m − εσ ′
m′ ≡ �c, in the two

spin channels.
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According to Eq. (3), the pairwise local susceptibility for orbitals |m,σ 〉 and |m′,σ ′〉 can be written as

χσσ ′
mm′(EF ) =

⎧⎪⎨
⎪⎩

1
π

1
εσ ′
m′ −εσ

m

(
arctan

[EF −εσ
m

w

] − arctan
[EF −εσ ′

m′
w

])
if εσ

m �= εσ ′
m′

D(EF ) = 1
π

w(
EF −εσ

m

)2
+w2

if εσ
m = εσ ′

m′
. (19)

χσσ ′
mm′ (EF ) is a positive-definite function for any EF and reaches

the maximum at EF = (εσ
m + εσ ′

m′)/2. The maximum value
increases as the two band centers approach each other until
becoming degenerate because the energies required to transfer
electrons from occupied states to the unoccupied states become
smaller. Band narrowing increases χσσ ′

mm′ quickly (nearly 1/w)
until it reaches the atomic limit. When the bandwidth becomes
comparable to or smaller than the SOC constant, SOC can lift
the orbital degeneracy and shift two states, i.e., one above
and the other below the Fermi level EF completely. On the
other hand, if the Fermi level sits between two well-separated
narrow subbands and bandwidth is small compared to the
distance between the Fermi level and the two band centers,
w  EF − εσ

m and w  εσ ′
m′ − EF , according to Eq. (19), then

χε
mm′ = 1/(εσ ′

m′ − εσ
m) does not depend on the Fermi energy.

FIG. 2. (Color online) (a) Schematic Lorentzian-shape densities
of states for subbands m and m′. (b) χε

mm′ and its four spin components
as functions of Fermi energy. The amplitudes of χε

mm′ with (c) the
maximum at ε

(1,3)
F and (d) the minimum at ε

(2)
F as functions of spin

splitting �s and crystal-field splitting �c.

Using Eqs. (11) and (19), the dependencies of χε
mm′ and its

four spin components on the Fermi energy EF are shown in
Fig. 2(b). There is one minimum at ε

(2)
F and two maxima at

ε
(1,3)
F , with

ε
(i)
F = ε1 + ε2 + �s

2
+ i − 2

2

√
(�c)2 + (�s)2 + 4w2. (20)

The two maximum peaks originate from the two spin-
parallel terms χ

↑↑
mm′ and χ

↓↓
mm′ , while the minimum originates

from the spin-flip terms −(χ↑↓
mm′ + χ

↓↑
mm′ ). In Eq. (20), each spin

component χσσ ′
mm′ has its maximum amplitude when the Fermi

level is around the middle of the corresponding two band
centers. The two spin-flip components have their maximum
values at the same Fermi level ε

(2)
F because we assume that

the two orbitals have the same spin splittings. Contributions
from the two spin-flip components become identical when two
states |m〉 and |m′〉 are degenerate.

As shown in Eqs. (9) and (13), the MAE coefficients for
intra-|m| (A) and inter-|m| terms (−B) have different signs.
To have a large uniaxial anisotropy, the Fermi level should
be around the ε

(1)
F or ε

(3)
F for intra-|m| orbital pairs and ε

(2)
F

for inter-|m| orbital pairs. Two orbitals can accommodate four
electrons in two spin channels, and ε

(i)
F roughly corresponds

to band filling of one, two, and three electrons with i = 1, 2,
and 3, respectively. Figures 2(c) and 2(d) shows the maximum
amplitude of χε

ij (EF = ε
(i)
F ) as functions of crystal splitting

�c and spin splitting �s. For EF = ε
(1,3)
F , it requires �c = 0 to

align the two subbands in the same spin channel (two subbands
becomes degenerate). For EF = ε

(2)
F , it requires �s = ±�c to

align the two subbands in different spin channels.

C. Crystal structures

Li2(Li1−xTx)N crystallizes in the α-Li3N structure type,
which is hexagonal and with space group P 6/mmm (no. 191).
The unit cell of α-Li3N contains one formula unit. There are
two crystallographically inequivalent sets of Li atoms, LiI (1b)
and LiII (2c), with 6/mmm and −6m2 point-group symme-
tries, respectively. The LiI atoms are sandwiched between two
N atoms and form a linear −LiI − N− chain along the axial
direction, while LiII sites have twofold multiplicities and form
coplanar hexagons which are centered at −LiI − N− chains
and parallel to the basal plane. LiII is more close packed in
lateral directions and 3d atoms randomly occupy LiI sites. We
carried out DFT calculations for small doping concentration
with x = 0.166 and found that all T elements with T = Mn,
Fe, Co, and Ni indeed prefer to occupy LiI sites. To calculate
the electronic structure and MAE, we use a supercell which
corresponds to a

√
3 × √

3 × 2 superstructure of the original
α-Li3N unit cell. Details of the supercell construction can be
found in Ref. [12]. For x = 0.5, as shown in Fig. 3, there
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Li

N

1a

2d

FIG. 3. (Color online) Schematic representation of the supercell
used in the DFT calculation for Li2[(Li1−xTx)N] with x = 0.5.
Both T1a and T2d sites are derived from the LiI (1b) site in the
original α-Li3N structure, while other Li atoms, which form coplanar
hexagons, correspond to LiII (2c) sites in the original α-Li3N
structure.

are three T atoms in the 24-atom supercell with one on the
1a site and the other two on the 2d sites. Both T1a and T2d

sites are derived from the 1b site in the original α-Li3N.
They have a linear geometry and a strong hybridization with
neighboring N atoms along the axial direction. T1a have six Li
neighbors, while T2d have three T2d and three Li neighbors in
the T -Li plane. This structure (denoted as hex2 in Ref. [12])
is of particular interest because two types of T sites, T1a and
T2d , possess very different local surroundings and represent
different local impurity concentrations. Along the in-plane
direction, T -T distances are rather large, especially for the
1a site. Since the T1a site represents a relatively low impurity
concentration and dominates the uniaxial MAE for T = Fe,
most of the results in this work are focused on the T1a site
in the hex2 supercell. We also consider other concentrations
such as x = 0.16 and x = 0.33.

D. DFT calculational details

We carried out first-principles DFT calculations using the
Vienna ab initio simulation package (VASP) [29,30] and a
variant of the full-potential linear muffin-tin orbital (LMTO)
method [31]. We fully relaxed the atomic positions and lattice
parameters, while preserving the symmetry using VASP. The
nuclei and core electrons were described by the projector
augmented-wave potential [32] and the wave functions of
valence electrons were expanded in a plane-wave basis set
with a cutoff energy of 520 eV. For relaxation, the generalized
gradient approximation of Perdew, Burke, and Ernzerhof
was used for the correlation and exchange potentials. The
spin-orbit coupling is included using the second-variation
procedure [33,34]. We also calculated the MAE by carrying
out all-electron calculations using the full-potential LMTO
(FP-LMTO) method to check our calculational results. For the

MAE calculation, the k-point integration was performed using
a modified tetrahedron method with Blöchl corrections, with
163 k points in the first Brillouin zone of the 24-atom unit
cell. By evaluating the SOC matrix elements 〈VSO〉 and its
anisotropy [27], we resolve the anisotropy of orbital moment
and MAE into sites, spins, and orbital pairs. The correlation
effects are also considered by using the local-density approxi-
mation (LDA)+U method. Here we choose the fully localized
limit implementations of the double counting introduced by
Liechtenstein et al. [35] considering it is more appropriate for
materials with electrons localized on specific orbitals.

III. RESULTS AND DISCUSSIONS

A. Electronic structures

Without considering SOC, the axial crystal field on both
T1a and T2d sites splits five 3d orbitals into three groups:
degenerate (dxy , dx2−y2 ) states, degenerate (dyz, dxz) states,
and dz2 state. Equivalently, they can be labeled as m = ±2,
m = ±1, and m = 0 using cubic harmonics.

The scalar-relativistic partial densities of states (PDOS)
projected on the T1a site are shown in Fig. 4. For T = Fe,
the PDOS obtained is very similar to what was previously
reported [12]. The Fe 3d shell has seven electrons and the
majority spin channels of d orbitals are fully occupied with
five electrons.

The Fe dz2 states hybridize with pz states of N atoms
along the axial direction and mix with on-site 4s states, which
causes the dz2 orbital to be lower in energy than the other
d orbitals [12]. The dz2 states spread out and lie below the
Fermi level and accommodate one electron in the minority
spin channel. The last electron occupies half of the degenerate
(dxy , dx2−y2 ) states in the minority spin channel. These states
have a very narrow bandwidth and cross the Fermi level.

The linear geometry minimizes the in-plane hybridization
between the T 3d orbitals and the neighboring atoms, making
them atomiclike and resulting in narrower bands. The T2d site
shows a similar PDOS as the T1a site; however, the in-plane
hybridization with other T2d sites results in a much broader
bandwidth than the 1a sites.

For other T elements, the DOS peaks are well separated as
in T = Fe. The minority spin channel clearly shows a different
band-filling pattern with different T elements. The deviation
from the rigid-band model is also obvious. Spin splitting
decreases from Mn to Ni, while the crystal-field splitting values
(the energy difference between m = ±1 and m = ±2 states)
are larger for T = Mn and Fe than for T = Co and Ni.

Figure 5(a) shows the schematic Fe PDOS and how
the Fermi level changes with different T in a rigid-band
approximation (RBA). Different T elements correspond to
different integer number of 3d electrons. Since each degenerate
state pair can accommodate two electrons in one spin channel,
the Fermi level either intersects the degenerate peaks or sits in
the middle of two peaks.

B. MAE in Li2[(Li1−x Tx)N] with T = Fe

MAE in Li2[(Li1−xTx)N] with T = Mn, Fe, Co, and Ni
and x = 0.5 are calculated in DFT and summarized in Table I.
The system has uniaxial anisotropy with T = Fe or Ni and
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FIG. 4. (Color online) Partial densities of states projected on the
3d states of the T1a site in the hex2 structure in Li2[(Li1−xTx)N],
where x = 0.5 and T is (a) Mn, (b) Fe, (c) Co, and (d) Ni. The vertical
dotted line corresponds to the Fermi energy, EF . The horizontal dotted
line separates the majority (up) and minority (down) spin channels.
Calculation is within LDA, without spin-orbit coupling included.

easy-plane anisotropy with T = Mn or Co. MAE is dominated
by the contributions from the 1a site for T = Fe or Ni. Results
are in qualitative agreement with previous calculations [11–
13]. The extraordinary MAE for T = Fe originates from the
unique band structure in this system. Because the well-isolated
Fe atoms, such as the Fe1a site in the hex2 supercell, provide
the major contribution to the uniaxial anisotropy, we focus on
the Fe1a site.

As shown in Fig. 1, the sign of the MAE contribution from
transitions between a pair of subbands |m,σ 〉 and |m′,σ ′〉 is
determined by the spin and orbital character of the involved

Mn: c 2 s 3 w 0.08

Fe: c 1.7 s 2.4 w 0.06
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FIG. 5. (Color online) (a) Schematic partial densities of states
projected on the 3d states of Fe1a sites. Orbital transitions and the sign
of their contributions to the MAE are also shown. Solid line indicates
positive contribution (easy axis) and the dashed line indicates negative
contribution (easy plane) to the easy-axis anisotropy. (b) Scaled MAE
4K/ξ 2 from T1a site and its decomposition into orbital susceptibilities
as functions of band filling. (c) Magnetic anisotropy energy K from
T1a site as a function of T . Different sets of electronic structure
parameters �s, �c, and w are used to represent the DFT PDOS on
T1a sites in Li2[(Li0.5T0.5)N] for different T elements.

orbitals. Because the dz2 orbital is spread out relatively further
below the Fermi level and contributes negligibly to the MAE,
we only consider the transitions between subbands with m=
−2, −1, 1, and 2. Intra-|m| transitions |1〉 ↔ |−1〉 and |2〉 ↔
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TABLE I. Lattice constants, total and site-resolved MAE
Li2[(Li0.5T0.5)N] with T = Mn, Fe, Co, and Ni. The MAE values
for T2d site are in unit of meV/atom, and there are two T2d atoms in
the supercell.

Lattice
parameters K (meV)

T a (a.u.) c/a cell T1a T2d Others

Mn 12.143 1.202 − 1.14 − 0.35 − 0.38 − 0.03
Fe 12.091 1.183 20.83 14.77 3.09 − 0.12
Co 12.144 1.154 − 3.69 − 0.89 − 1.32 − 0.15
Ni 12.113 1.156 2.52 1.71 0.37 0.06

|−2〉 promote easy-axis anisotropy when they are within the
same spin channel, and easy-plane anisotropy when between
different spin channels. For inter-|m| transitions, it is the other
way around. Transition |±1〉 ↔ |±2〉 promotes easy-plane
anisotropy when it is within the same spin channel and easy-
axis anisotropy when between different spin channels. The
signs and coefficients of the MAE contributions from different
orbital pair transitions are indicated in Fig. 5(a). Transitions
contribute to MAE only when they cross the Fermi level. The
amplitude of MAE depends on the orbital characters and also
the energy difference between the two band centers. When
the Fermi level intersects the narrow degenerate states, the
transition energy required to excite an electron across the Fermi
level is very small (between 0 and bandwidth), making the
MAE contribution from this pair of orbitals very large. On
the other hand, when the Fermi level is between two well-
separated DOS peaks, the required transition energy is much
larger so the amplitude is much smaller.

To elucidate the orbital contributions from the Fe1a site to
the MAE in Li2[(Li0.5Fe0.5)N], we approximate the densities of
states (DOS) of |±1〉 (dxz,dyz) and |±2〉 (dxy,dx2−y2 ) subbands
with two Lorentzian functions. Crystal-field splitting �c =
ε|m|=1 − ε|m|=2 = 1.8 eV, spin splitting �s = 2.4 eV, and half
width w = 0.06 eV are used to represent the DFT-calculated
PDOS, as shown in Fig. 4. The PDOS used in our model is
shown in Fig. 5(a) and the MAE contribution from the 1a site
and its decomposition into orbital pair transitions as functions
of the Fermi energy are shown in Fig. 5(b). With T = Fe,
the Fermi level intersects the |±2,↓〉 states, which results in
a large uniaxial anisotropy. Using Eq. (17), Fe1a has a MAE
contribution which is of the order of 15 meV/Fe. As shown
in Fig. 5(b), for T = Fe, nearly all MAE contributions are
from the transitions |2,↓〉 ↔ |−2,↓〉, in other words, between
dx2−y2 and dxy orbitals in the minority spin channel.

To compare with the above analytical modeling, MAE
calculations were carried out in both VASP and all-electron
FP-LMTO. The difference of MAE values using two methods
is less than 5% for T = Fe. To decompose the MAE, we
evaluate the SOC matrix element 〈Vso〉 and its anisotropy
K(〈Vso〉), which can be easily decomposed into sites, spins,
and orbital pairs [27]. We found that K ≈ K(〈Vso〉)/2 for all
T compounds, which suggests that second-order perturbation
theory is a good approximation. As shown in Table I, for
T = Fe, the total MAE is 20.8 meV (per 24-atom cell) and
MAE contributions from 1a and 2d sites are 14.77 and 3.09

TABLE II. Orbital-resolved MAE from the T1a site in
Li2[(Li0.5T0.5)N] with T = Mn, Fe, Co, and Ni.

K (meV)

Term Orbital transition Mn Fe Co Ni

4χε
22 dxy ⇔ dx2−y2 − 0.86 15.10 0.71 − 0.03

χε
11 dyz ⇔ dxz − 0.22 − 0.42 − 0.78 3.68

−2χε
12 dyz,dxz ⇔ dxy,dx2−y2 0.73 − 0.18 − 0.81 0.09

−3χε
01 dz2 ⇔ dyz,dxz 0.03 0.08 − 0.01 − 0.25

meV/Fe, respectively. The contributions from Li and N atoms
are nearly zero, as expected. Thus, the impurity Fe (especially
Fe1a) atoms are essentially the only MAE providers. By
further investigating the matrix element of SOC on the 1a

site, we found that nearly all the MAE contributions came
from intra-|m| transitions of |2,↓〉 ↔ | − 2,↓〉. As shown
in Table II, the 4χε

22 term (dominated by χ
↓↓

22 for T =
Fe) contributes 15.1 meV/Fe and the χε

11 term has a much
smaller negative value of −0.42 meV/Fe, while other terms
are negligible. Hence, DFT results agree with our model very
well.

With magnetization along the c direction, the SOC can lift
the orbital degeneracy and shift two narrow bands m = ±2,
one below and the other above the Fermi level completely,
with orbital quantum number mc = ±2, respectively, where
mc is the orbital quantum number in the complex spherical
harmonics. As a result, the density of states at the Fermi
level becomes very small. Indeed, experiments [15] found this
system to be an insulator for T = Fe. It had been shown
that [11–13,36] the correlation effect further enhances the
separation between occupied and unoccupied states. Using the
LDA+U method, we also found that correlation can enhance
the orbital moment when the spin is along the axial direction.

Fe concentration and site disordering can significantly
affect the MAE. As we have shown, the Fe2d sites, which
represent a high-doping concentration, have much lower
anisotropy than the Fe1a sites, which represent a lower-doping
concentration. By replacing the Fe2d sites back with Li atoms
in the hex2 supercell, we calculated the MAE with a smaller
concentration x = 0.166 and found that MAE increase to
22 meV/Fe, which is in very good agreement with previous
calculations [12]. An interesting concentration is x = 0.33.
If only one of two 2d sites is occupied by Fe in the hex2
supercell, as shown in Fig. 3, then this configuration would
correspond to x = 0.33 and the supercell has two well-isolated
Fe atoms. The DFT calculation shows high MAE with a value
of 20 meV/Fe. On the other hand, if the two Fe atoms occupy
the 2d sites and then are not well separated, the resulting
MAE is much smaller (2.8 meV/Fe). Even if we assume
that Fe atoms tend to separate, with a concentration beyond
x = 0.33, it is unavoidable to have Fe atoms neighboring
each other and the hybridization between them causes the
MAE (per Fe) to decrease. Furthermore, impurity sites are
disordered, as found in experiments. At least at a higher
concentration, many Fe atoms would not have the symmetric
lateral surroundings as the two Fe sites do in the hex2 supercell
we used in the calculations. This site disordering may also have
an effect on MAE by lowering the point-group symmetry of
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Fe impurity sites. And the m = ±2 states on Fe sites are no
longer degenerate, which may decrease MAE per Fe.

C. MAE in Li2[(Li1−x Tx)N] with T = Mn, Co, and Ni:
The band-filling effect

Figure 5(a) shows how the Fermi level changes with
different T elements in a simple rigid-band picture. Only those
transitions across the Fermi level contribute to MAE. With
T elements other than Fe, the |±2,↓〉 states become either
fully occupied or unoccupied. The large uniaxial anisotropy
that originated from transition |2,↓〉 ↔ |−2,↓〉 (term 4χ

↓↓
22 )

vanishes and other transitions becomes important, depending
on the position of the Fermi level. For T = Ni, the Fermi level
intersects the degenerate |±1,↓〉 states. Hence anisotropy con-
tributions are dominated by the transitions |1,↓〉 ↔ |−1,↓〉
(term χ

↓↓
11 ). This transition promotes the uniaxial anisotropy,

as 4χ
↓ ↓

22 does for T = Fe. For T = Co, the Fermi level
is between |±2,↓〉 and |±1,↓〉 peaks. The transitions of
|±2,↓〉 ↔ |±1,↓〉 (term −3χ

↓ ↓
12 ) and |±1,↑〉 ↔ |∓1,↓〉

[term −(χ↑↓
11 + χ

↓↑
11 )] support easy-plane anisotropy, while

the transition |±2,↑〉 ↔ |±1,↓〉 (term 3χ
↓↑

12 ) promotes easy-
axis anisotropy. However, the two bands involved in the last
transition are far away from each other and this contribution
is relatively small. Hence, for T = Co, one should expect
the system to have easy-plane anisotropy. For T = Mn, there
are four transitions that contribute to the MAE; all of them
are between the two spin channels, in which two inter-|m|
transitions |±1,↑〉 ↔ |±2,↓〉 (term 3χ

↑ ↓
12 ) and |±2,↑〉 ↔

|±1,↓〉 support easy-axis anisotropy, while two other intra-|m|
transitions |±1,↑〉 ↔ |∓1,↓〉 and |±2,↑〉 ↔ |∓2,↓〉 [term
−4(χ↑ ↓

22 + χ
↓↑

22 )] support easy-plane anisotropy. The four
transitions compete and the sign of the total MAE is not
obvious and requires a more quantitative description.

The SOC constant ξ changes with element. In Fig. 5(b), we
plot the scaled MAE K̃ = K/4ξ 2 and its orbital-resolved com-
ponents as functions of the Fermi level by using parameters of
�s, �c, and w for T = Fe. In a rigid-band picture, it clearly
shows that Ni also has a uniaxial anisotropy with contributions
coming from the χ

↓↓
11 term. Since we are using the same half

width w of LDOS for m = ±1 and m = ±2 subbands, we have
K̃Ni ≈ 1

4 K̃Fe because of the intra-|m| transitions coefficients
m2, as shown in Eqs. (5) and (9). Figure 5(c) shows the
MAE K as a function of the number of occupied electrons
by using different sets of �s, �c, and w parameters to better
present DFT-calculated PDOS for different T elements, as
shown in Fig. 4. The SOC constant ξ is interpolated by using
DFT-calculated ξ values for 3d elements. Since ξ decreases
with the atomic number within a given nl shell, K quickly
decreases with smaller atomic numbers due to the factor ξ 2.
The DFT MAE values are also plotted to compare with the
modeling MAE function. As shown in Fig. 5(c), with T = Fe
parameters, the modeling MAE (Fe rigid-band approximation)
can already correctly describe the MAE trend with different T

elements.
Although the RBA predicts the correct easy-axis direction

for T = Ni, the difference between RBA modeling and DFT
is rather large. In RBA modeling, KNi/KFe = (ξNi/ξFe)2/4 ≈
0.6, while the DFT value (1.71 meV/atom) for T = Ni is

about one order of magnitude smaller than for T = Fe. This
can be explained as follows. First, we use the same bandwidth
for all DOS peaks in our modeling. In fact, the |±1,↓〉
bands are much broader than the |±2,↓〉 bands. The easy-axis
anisotropy contribution from the transition between |±1,↓〉
states decreases with increasing bandwidth. Second, the Ni
PDOS deviates from the Fe PDOS more than Mn or Co, so
RBA is less appropriate for T = Ni. The spin splitting �s

and crystal-field splitting �c are much smaller in Ni than in
Fe. This causes the amplitudes of the negative contributions
from |±2,↓〉 ↔ |±1,↓〉 and |±1,↑〉 ↔ | ∓ 1,↓〉 to become
larger and decrease the total uniaxial anisotropy. As shown in
Fig. 5(c), if we use a smaller �s, smaller �c, and larger
w to better represent the Ni PDOS calculated from DFT
calculations, then much better agreement between model and
DFT values can be reached.

For T = Co, the model MAE is about twice the DFT
value, probably because of the simplified model DOS. The
orbital-resolved T1a MAE calculated in DFT are summarized
in Table II. Overall, there is a qualitative agreement between
DFT and the analytical model for the orbital-resolved MAE
values for all T elements. It is interesting that with T = Co,
the contribution of the 4χε

22 term is comparable to that of
−2χε

12 and χε
11 in DFT, which is not expected in the model.

As shown in Fig. 4(c), there is a small portion of unoccupied
|±2,y ↓〉 states right above the Fermi level in the minority spin
channel, which makes the 4χ

↓ ↓
22 terms comparable to others.

However, this electronic structure detail is not considered in
the simplified DOS we use in modeling. If we neglect the 4χε

22
terms in DFT, then a better agreement between modeling and
DFT can be achieved for T = Co.

Thus, the contributions from well-separated impurity sites
with T can be well understood. For T = Mn and Co, the
easy-plane anisotropy is a result of competition between
different transitions, instead of being dominated by the intra-
|m| transition, which strongly depends on the bandwidth of the
degenerate |±m〉 states that are intersected by the Fermi level.
As a result, the band-narrowing effect on MAE is not as strong
as for T = Fe or Ni. As shown in Table I, the contributions
from 2d sites are comparable or even larger than 1a sites for
T = Mn and Co.

IV. SUMMARY AND CONCLUSION

Based on second-order perturbation theory, MAE is re-
solved into contributions from different pairs of orbital tran-
sitions, more precisely, the difference between spin-parallel
and spin-flip components of the orbital susceptibilities of the
corresponding orbital pair. In the Li2[(Li1−xTx)N] systems,
with T = Mn, Fe, Co, and Ni, the linear geometry of the
T sites minimizes the in-plane hybridization and results in
atomiclike orbitals around the Fermi level for all T elements.
The MAE oscillates with the atomic number from T = Mn
to T = Ni, which is a result of the competition between
contributions from all allowed orbital transitions. As the Fermi
level evolves with T , different orbital pair transitions dominate
the contribution to MAE. For T = Fe and T = Ni, the intra-|m|
transitions within the minority spin channel dominate the MAE
contribution and result in a uniaxial anisotropy. For T = Mn
and Co, the easy-plane anisotropy is a result of the competition
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between contributions from several transitions with different
signs. Using Lorentzian density of states, we investigate the
band-filling effect on MAE in an analytical model based on a
Green’s function technique. We show the MAE as a continuous
function of atomic number. This analytical model can already
describe the correct trend of the MAE obtained using DFT,
by just using a simple rigid Fe band picture. If we take into
account the deviation from the rigid Fe band model and some
details of DFT electronic structure, an even better agreement
between the model and DFT can be found. To further validate
our modeling analysis, we also calculate the orbital-resolved
MAE by evaluating the SOC matrix element in DFT. Overall,
Li2[(Li1−xTx)N], with T = Mn, Fe, Co, and Ni, is a unique

system which clearly shows the band-filling effect on MAE
and the nature of this effect can be understood in a very simple
model.
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