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Magnon transport through microwave pumping
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We present a microscopic theory of magnon transport in ferromagnetic insulators (FIs). Using magnon injection
through microwave pumping, we propose a way to generate magnon dc currents and show how to enhance
their amplitudes in hybrid ferromagnetic insulating junctions. To this end, focusing on a single FI, we first
revisit microwave pumping at finite (room) temperature from the microscopic viewpoint of magnon injection.
Next, we apply it to two kinds of hybrid ferromagnetic insulating junctions. The first is the junction between
a quasiequilibrium magnon condensate and magnons being pumped by microwave, while the second is the
junction between such pumped magnons and noncondensed magnons. We show that quasiequilibrium magnon
condensates generate ac and dc magnon currents, while noncondensed magnons produce essentially a dc magnon
current. The ferromagnetic resonance (FMR) drastically increases the density of the pumped magnons and
enhances such magnon currents. Lastly, using microwave pumping in a single FI, we discuss the possibility that
a magnon current through an Aharonov-Casher phase flows persistently even at finite temperature. We show that
such a magnon current arises even at finite temperature in the presence of magnon-magnon interactions. Due to
FMR, its amplitude becomes much larger than the condensed magnon current.
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I. INTRODUCTION

Since the observation of spin-wave spin currents [1] in
Y3Fe5O12 (YIG), ferromagnetic insulators (FIs) have been
playing a major role in spintronics [2,3]. All the fascinating
features of FIs arise from magnons [4–15] (i.e., spin waves),
which are bosonic low-energy collective excitations (i.e.,
quasiparticles) in a magnetically ordered spins system. The use
of the magnon degrees of freedom for transport perspectives
[8] has led to a new field called magnonics [16,17].

The main advantages of magnons in FIs can be summa-
rized in the following points. First, transport of magnons in
insulating magnets has a lower power absorption compared to
electronic conductors [18]. Next, it has been shown experimen-
tally by Kajiwara et al. [1] that magnon currents can carry spin
information over distances of several millimeters, much further
than what is typically possible when using spin-polarized
conduction electrons in magnetic metals. Third, magnons are
quasiparticles (i.e., magnetic excitations) which are not con-
served. Then, using microwave pumping [4–6,19–21], they can
be directly injected to FIs and their density can be controlled.
A further advantage of magnons arises from the feature that
magnons are bosonic excitations and as such they can form a
macroscopic coherent [13] state, namely, a quasiequilibrium
Bose-Einstein condensate (BEC) [22–25]. Demokritov et al.
[4] have indeed experimentally shown that such a magnon
BEC can be generated even at room temperature1 in YIG by
using microwave pumping, and Serga et al. [5] have recently
addressed the relation between microwave pumping and the
resulting quasiequilibrium2 magnon BEC (Fig. 1); the applied

1This proves that low temperatures are not required [47], which may
be of crucial importance in view of applications.

2Regarding the theoretical aspects of their quasiequilibrium magnon
BECs, see Refs. [23–25,48,49] and also references therein.

microwave drives the system into a nonequilibrium steady
state [23,24] and continues to populate the zero mode of
magnons. After switching off the microwaves, the system
undergoes a thermalization [19,26–28] (or relaxation) process
and thereby reaches a quasiequilibrium state where the pumped
magnons form a quasiequilibrium magnon BEC [6]. This
magnon BEC is not the ground state but a metastable state
[25] that corresponds to a macroscopic coherent precession
[23] in terms of spin variables which can last for about 1 μs.

Motivated by this experimental progress, we microscopi-
cally analyzed in Ref. [7] the transport [6] properties in such
[4,5] realized quasiequilibrium magnon BECs in FI junctions,
and discussed the ac and dc Josephson effects through the
Aharonov-Casher (A-C) phase [29], being a special case of
a Berry phase [30,31] in this system. We found that this
A-C phase gives a handle to electromagnetically control
the Josephson effects and to realize a persistent [12,32,33]
magnon-BEC current [10,23,34,35] in a ring. An experimental
proposal to directly measure this magnon-BEC current also has
been theoretically proposed in Ref. [7] through measurements
of the induced electric field.

Toward the direct measurement of such magnon currents,
one concern [7] might be, however, that the amount of the
magnon currents and the resulting electric fields (of the order
of μV/m) is still [7,8] very small. This might be an obstacle
to the feasibility of such experiments at present.

To overcome this problem, we propose to use instead
magnon injection through microwave pumping [4,5,20] which
offers an alternative method to enhance magnon currents
in FIs. Because the density of noncondensed magnons is
still much larger than that of the magnon condensates in
realistic experiments, [4] we consider two kinds of hybrid
FI junctions. The first one (Fig. 2) is a junction between
quasiequilibrium magnon condensate and magnons being
pumped by microwaves, while the second one (Fig. 5) is
a junction between pumped magnons and noncondensed
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FIG. 1. (Color online) A schema of the time evolution of the
quasiequilibrium magnon-BEC density due to microwave pumping:
(i) microwave pumping, (ii) thermalization (or relaxation) process,
and (iii) quasiequilibrium magnon-BEC state. This schematic picture
is based on the experiment by Serga et al. of Ref. [5]. The applied
microwave drives the system into a nonequilibrium steady state and
continues to excite the zero mode of magnons (i.e., pumped magnons).
After the microwave is switched off, the system experiences a
thermalization process for a short time, and immediately reach
a quasiequilibrium state where the pumped magnons can form a
quasiequilibrium magnon BEC. The thermalization period is [5]
about 50 ns, while the decay time of quasiequilibrium magnon BECs
amounts [5] to 400 ns and they can survive for about 1 μs.

magnons. In order to lighten notations, we denote them as
the C-P (Fig. 2) and NC-P (Fig. 5) junctions, with “C”
for quasiequilibrium magnon condensates, “P” for pumped
magnons, and “NC” for noncondensed magnons.

This paper is organized as follows. In Sec. II, we first focus
on a single FI (P) and microscopically revisit microwave pump-
ing [21,36] at finite (room) temperature from the viewpoint of
magnon injection [5]. In Sec. III, we apply these ideas to C-P
and NC-P junctions and show that dc magnon currents can
arise from an applied ac magnetic field (i.e., microwaves). The
amount is drastically enhanced by the ferromagnetic resonance
(FMR). We also address the distinctions between the C-P,
NC-P, and C-C junctions. Lastly, in Sec. IV, using a magnon
current through the A-C phase, we point out the possibility
that such realized magnon currents flow persistently even at
finite temperature due to microwave pumping. The predicted
amount turns out to be much larger, about 103 times, than the
magnon-BEC current predicted in Ref. [7]. Finally, Sec. V
summarizes our results.

II. C-P JUNCTION

We consider the C-P junction shown in Fig. 2 between
two FIs, the left FI (C) being in a quasiequilibrium magnon
BEC [4,5], while magnons are being pumped into the right FI
(P) by the applied microwave field [20]. We assume that the
magnons in the left FI have already reached a quasiequilibrium
condensate state (i.e., after microwave pumping) through a
procedure such as realized in Ref. [4], while we continue
to apply a microwave only to the right FI and generate
continuously magnons.

interface
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FIG. 2. (Color online) Schematic representations of a C-P junc-
tion between two FIs, one prepared as a BEC (left FI) and the other
(right FI) with pumped magnons. (a) Both magnetic fields are applied
along the z axis, BL(R) = BL(R)ez. The circles in the right FI are the
magnons pumped by microwaves (frequency � ∼ 100 MHz) and
the cloud of circles in the BEC represents the quasiequilibrium
magnon condensate. Both phases correspond to a macroscopic
coherent precession in terms of spin variables S�L and S�R . A distinct
difference, however, is that the frequency of the magnon BEC is
controlled by the applied magnetic field BL (∼mT), while that of the
pumped magnons is controlled by the frequency � of the applied
microwave. The relation between gμBBL/� and � plays the key role
in the ac-dc conversion of magnon currents. Tuning �� = gμBBR, a
FMR occurs in the right FI and consequently the number of pumped
magnons drastically increases. (b) Close-up of the C-P junction. Only
the boundary spins S�L in the left FI and S�R in the right FI are relevant
to magnon transport. We assume a large spin S � 1. The two FIs are
separated by an interface and thereby weakly exchange coupled with
strength Jex. For typical values Jex ∼ 0.1 μeV this gives rise to an
interface of width ∼10 Å.

A. Spin Hamiltonian

Each three-dimensional FI depicted in Fig. 2 is described
by a Heisenberg spin Hamiltonian in the presence of a Zeeman
term (we assume a cubic lattice):

HFI = −
∑
〈ij〉

Si · J · Sj − gμBBL(R) ·
∑

i

Si , (1)

where J denotes a diagonal 3×3 matrix with diag(J) =
J {1,1,η}. The exchange interaction between neighboring
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spins in the ferromagnetic insulator is J > 0, η denotes the
anisotropy of the spin Hamiltonian, and BL(R) = BL(R)ez is an
applied magnetic field to the left (right) FI (ez denotes the unit
vector along the z axis). The symbol 〈ij 〉 indicates summation
over neighboring spins in each FI, Si denotes the spin of length
S at lattice site i, and we assume large [37,38] spins S � 1.

We then use the Holstein-Primakoff transformation, [39]
S+

i = √
2S[1 − a

†
i ai/(2S)]1/2ai and Sz

i = S − a
†
i ai , and map

Eq. (1) onto a system of magnons that satisfy [ai,a
†
j ] = δi,j .

Using the long-wavelength approximation and taking the
continuum limit, the energy dispersion relation of magnons in
the isotropic system (i.e., η = 1) becomes ωk = 2JSα2k2 +
gμBBL(R) ≡ Dk2 + gμBBL(R), where α denotes the lattice
constant, |k| ≡ k, and D ≡ 2JSα2.

Within our microscopic calculation (see the Appendix
for details), we find that in the continuum limit the
magnon-magnon interaction Hm-m

FI could arise from the η �= 1
anisotropic spin Hamiltonian HFI as the O(1 − η) term:

Hm-m
FI = −Jm-mα3

∫
dr a†(r)a†(r)a(r)a(r), (2)

where Jm-m ≡ −J (1 − η) = O(S0) and [a(r),a†(r′)] =
δ(r − r′). Therefore the magnon-magnon interaction does not
influence the magnon transport between η = 1 isotropic FIs in
any significant manner [7,9] and we can neglect them in the
isotropic case (see also Sec. II B 2). Due to the next leading 1/S

expansion of the Holstein-Primakoff transformation, magnon-
magnon interactions of the type a†a†aa = O(S0) arise also
from the hopping terms as well as from the potential term
(i.e., the z component). Thus the magnon-magnon interaction
[Eq. (2)] is given by Jm-m = −J (1 − η) in the continuum
limit (see the Appendix for the details). We mention that
the microscopic relation between the spin Hamiltonian HFI

[Eq. (1)] and the Gross-Pitaevskii (GP) Hamiltonian that
describes the Josephson effect in magnon BECs has already
been addressed in Ref. [7] (see also the Appendix) and
we add it here too for readability. The GP Hamiltonian
actually shows that the magnon-magnon interactions do not
influence transport of condensed magnons in such isotropic
C-P junctions.

Due to a finite overlap of the wave functions, there exists
in general a finite exchange interaction between the spins
located at the boundaries of the different FIs. Thus, only the
boundary spins, denoted as S�L and S�R in the left and right FI,
respectively (see Fig. 2), are relevant to transport of magnons
in the junction. The exchange interaction between the two FIs
may thus be described [7] by the Hamiltonian

Hex = −Jex

∑
〈�L�R〉

S�L · S�R , (3)

where Jex > 0 is the magnitude of the exchange interaction at
the interface. The two FIs are assumed to be weakly exchange
coupled, i.e., Jex 
 J . In terms of magnon operators, Hex can
be rewritten as

Hex = −JexS
∑

〈�L�R〉

(
a�La

†
�R

+ a
†
�L

a�R

) + O(S0). (4)

We have ignored terms arising from the z component of the spin
variables in the Hamiltonian Hex, since these do not influence

the dynamics of the junction [7]. Finally, the total Hamiltonian
H that describes transport of magnons in the junction reads
H = HFI + Hex.

Using the Heisenberg equation of motion, the time evolu-
tion under H of the magnon density operator I in the left FI
becomes

I ≡ ṅL(t) = −iJexSaL(t)a†
R(t)/� + H.c., (5)

where nL(t) ≡ a
†
L(t)aL(t) is the operator of the magnon

number density. The operator I characterizes the exchange of
spin angular momentum via magnons per unit time between
the FIs. Therefore (in that sense) it could be regarded as the
magnon current density operator in the FI junction.

B. Microwave pumping

To clarify the features of transport of magnons in the
C-P junction, we first focus on the right FI (the pumped
magnon part of the C-P junction) and microscopically revisit
microwave pumping [20,21,36] from the viewpoint of magnon
injection [4,5] (Fig. 1). The interaction between the spins in
the FI (P) and the applied microwave (i.e., clockwise rotating
magnetic field) may be described by the Hamiltonian [40]

Vac = −gμB�0

∑
j

[ei(�t+ϑac)S+
j + e−i(�t+ϑac)S−

j ], (6)

where �0(
 BL(R)) is the magnitude of the applied magnetic
microwave field, � represents the frequency, and ϑac is the
phase of the microwave field that depends on the initial
condition. The summation is over all spins in the right FI
(P). Using the Holstein-Primakoff transformation, we rewrite
Eq. (6) in terms of magnon operators:3

Vac = −
√

2SgμB�0

∑
j

[aj ei(�t+ϑac) + a
†
j e−i(�t+ϑac)]

+O(S−1/2). (7)

1. FMR

Using again the Heisenberg equation of motion, the time
evolution of the magnon density nR(t) ≡ a

†
R(t)aR(t) under

microwave pumping [i.e., Vac in Eq. (7)] becomes

〈ṅR(t)〉P = −i

√
2S̃gμB�0

�
〈aR(t)〉P ei(�t+ϑac) + c.c., (8)

where S̃ ≡ S/α3. The subscript “P” in 〈aR(t)〉P means the
expectation value under microwave pumping Vac. Treating Vac

as the perturbative term, the standard procedure [41] of the
Schwinger-Keldysh formalism [42,43] gives

〈aR(t)〉P = i
√

2S̃gμB�0

∫
dr′

∫
c
dτ ′〈TcaR(τ )a†

R(τ ′)〉

× e−i(�τ ′+ϑac)/� + O[(�0)3],

where τ and τ ′ denote the contour variables defined on the
Schwinger-Keldysh closed time path [42,43] c, and Tc is

3Since we apply a weak microwave |�0/BL(R)| ∼ 10−5, the
Holstein-Primakoff transformation is applicable.
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FIG. 3. (Color online) A plot of the number density of pumped
magnons 〈nR〉P (in cm−3) as a function of the magnetic field BR

(in mT) obtained by numerically solving Eq. (12). As an example,
for � = 400 MHz, �0 = 0.25 μT, τp = 100 ns, α ≈ 1 Å, g = 2,
and S = 16, the number density of pumped magnons amounts to
〈nR〉P = 3.2×1021 cm−3 at FMR (�� = gμBBR, i.e., BR = 2 mT).

the path-ordering operator defined on it. Using the Langreth
[42,43] method, it becomes

〈aR(t)〉P = −
√

2S̃gμB�0

∫
dr′

∫
dt ′

× [
G t

R(t,t ′) − G<
R (t,t ′)

]
e−i(�t ′+ϑac)/�, (9)

where G t(<,r)(r,t,r′,t ′) ≡ G t(<,r)(t,t ′) is the bosonic time-
ordered (lesser or retarded) Green’s function, which satisfies
Gr = G t − G<. After Fourier transformation, it becomes

〈aR(t)〉P = −
√

2S̃gμB�0e−i(�t+ϑac)Gr
R,k=0,�. (10)

Phenomenologically introducing [43] a finite lifetime [4] τp

(∼100 ns) of the pumped magnons mainly due to nonmagnetic
impurity scatterings, it becomes

〈aR(t)〉P = −
√

2S̃gμB�0

�� − gμBBR + i�
2τp

e−i(�t+ϑac). (11)

The zero-mode population of magnons is generated by
microwave pumping [Eq. (10)] and the number density of
the pumped magnons 〈nR〉P = 〈aR(t)〉∗P〈aR(t)〉P reads

〈nR〉P = 2S̃(gμB�0)2

(�� − gμBBR)2 + (
�

2τp

)2 . (12)

In terms of spin variables, Eq. (11) shows a homogeneous
macroscopic coherent precession [23] with the frequency
� which can be semiclassically [7] treated. The applied
microwave forces spins to precess coherently at the same
frequency � with the microwave. Thus, we can control the
frequency of the homogeneous coherent precession through
the applied microwave field.

Equation (12) shows that the number density of pumped
magnons strongly increases at the FMR [20] (Fig. 3):

�� = gμBBR. (13)

With the help of Eqs. (8) and (11), the resulting magnon
pumping rate becomes

〈ṅR〉P = 8τpS̃(gμB�0/�)2. (14)

Assuming [4] �0 = 0.25 μT, τp = 100 ns, α ≈ 1 Å, g = 2,
and [37,38] S = 16, the magnon pumping rate amounts to
〈ṅR〉P ∼ 1028 cm−3 s−1 at FMR. Thus, using microwave
pumping, we can continuously inject zero-mode magnons into
the right FI (P).

2. Magnon-magnon interaction

We next consider the finite (room) temperature effect on
microwave pumping. We remark that a theory [21,36] on
microwave pumping at zero temperature has been considered
before, but to the best of our knowledge not yet for finite
temperatures.

As remarked in Sec. II A (see the Appendix for the details
of the derivation), our microscopic calculation actually shows
that in the continuum limit the magnon-magnon interaction
Hm-m

FI could arise from the η �= 1 anisotropic spin Hamil-
tonian HFI as the O(1 − η) term [see Eqs. (1) and (2)];
Hm-m

FI = −Jm-mα3
∫

dr a†(r)a†(r)a(r)a(r) with Jm-m ≡
−J (1 − η) = O(S0) and [a(r),a†(r′)] = δ(r − r′). Assum-
ing an anisotropic [7,9] exchange interaction η �= 1 among
the nearest-neighboring spins, in addition to Vac = O(S1/2)
[Eq. (7)], magnon-magnon interactions Hm-m

FI = O(S0) thus
arise [7,9]. The magnitude of the magnon-magnon interaction
|Jm-m| = |J (1 − η)| depends on the anisotropy of the exchange
interaction in the right FI, and we assume

|Jm-m| 
 J, (15)

to be treated perturbatively (i.e., a small anisotropy enough to
become |η − 1| 
 1). Taking this magnon-magnon interaction
into account, we evaluate the expectation value 〈aR(t)〉m-m

P and
clarify the finite temperature effect on microwave pumping.

Following the same procedure with Sec. II B 1, a straightfor-
ward calculation [41] based on Schwinger-Keldysh formalism
[42,43] gives

〈aR(t)〉m-m
P = 4i

√
2S̃Jm-mgμB�0α

3

�2

∫
dr′

∫
dr′′

×
∫

dt ′
∫

dt ′′e−i(�t ′+ϑac)G<
R (t ′′,t ′′)

× [
G t

R(t,t ′′)G t
R(t ′′,t ′) − G<

R (t,t ′′)G>
R (t ′′,t ′)

−G t
R(t,t ′′)G<

R (t ′′,t ′) + G<
R (t,t ′′)G t̄

R(t ′′,t ′)
]

+O
(
J 2

m-m

)
,

where G(r,t,r′,t ′′) ≡ G(t,t ′′) and G t(t̄,<,>) is the bosonic time-
ordered (antitime ordered, lesser, or greater) Green’s function.
Using the retarded (advanced) Green’s function Gr(a), they
satisfy [42,43] G t = Gr + G<, G t̄ = G< − Ga, and G< − G> =
Ga − Gr. Consequently, after the Fourier transformation, it
becomes

〈aR(t)〉m-m
P = 4

√
2S̃Jm-mgμB�0α

3

[∑
k

fB
(
ωR

k

)/
V

]

× (
Gr

R,k=0,�

)2
e−i(�t+ϑac), (16)
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where fB(ωR
k ) = (eβωR

k − 1)−1 is the Bose-distribution func-
tion, β ≡ 1/(kBT ) is the inverse temperature, and V is the
volume of the system (here the right FI). We now assume room
temperature T 
 300 K, which implies fB(ωR

k ) 
 kBT/ωR
k .

Using this approximation, Eq. (16) becomes

〈aR(t)〉m-m
P ≈ 4

√
2S̃Jm-mgμB�0γα3kBT(
�� − gμBBR + i�

2τp

)2 e−i(�t+ϑac), (17)

where the constant γ is defined by
∑

k fB(ωR
k )/V ≡ γ kBT .

Assuming J = 0.1 eV, BR = 50 mT, α 
 1 Å, g = 2, and
[37,38] S = 15, it amounts to γα3 
 5×10−4 eV−1.

Equation (17) shows that even in the presence of the
magnon-magnon interaction Jm-m the spin dynamics under
microwave pumping essentially remains the same as the previ-
ous one [Eq. (11)] (i.e., without magnon-magnon interactions);
localized spins precess coherently with the frequency �. The
significant distinction, however, is that in addition to the
zero mode of magnons Gr

R,k=0,� that arises from the applied
microwave, the nonzero modes of magnons

∑
k fB(ωR

k ) are
excited by the magnon-magnon interaction Jm-m [Eq. (16)].
The magnon-magnon interaction thus characterizes the finite
temperature effect on microwave pumping:

〈aR(t)〉m-m
P ∝ T . (18)

That is, due to the magnon-magnon interaction Jm-m, the
nonzero modes of magnons are excited and consequently the
quantity 〈aR(t)〉m-m

P becomes proportional to the temperature T

(for high temperatures). The number density of such pumped
magnons reads

〈nR〉m-m
P = ∣∣〈aR(t)〉m-m

P

∣∣2 ∝ T 2. (19)

This means that the number density of pumped magnons due
to the magnon-magnon interaction increases with temperature
as T 2 in the high-temperature regime considered here. We
remark that since

〈nR〉m-m
P = O(Jm-m

2), (20)

the temperature dependence in Eq. (19) is independent of
the sign of Jm-m in Eq. (2) and thus holds for repulsive and
attractive magnon-magnon interactions alike.

In conclusion, in the presence of the magnon-magnon
interaction Jm-m [Eq. (2)], the total number density of pumped
magnons at high temperatures becomes [Eqs. (12) and (19)]

〈nR〉P + 〈nR〉m-m
P ,

where 〈nR〉P = O(J 0
m-mT 0) and 〈nR〉m-m

P = O(J 2
m-mT 2). The

amount of such pumped magnons becomes maximal at
the FMR (�� = gμBBR) and it increases with increasing
temperature. Assuming [4,37,38] α = 1 Å, S = 16, g = 2,
τp = 100 ns, �0 = 0.5 μT, γα3 
 5×10−4 ev−1, T = 300 K,
and Jm-m = 25 μeV, we get from Eqs. (12) and (19) 〈nR〉P ∼
1×1022 cm−3 and 〈nR〉m-m

P ∼ 2×1021 cm−3 at the FMR.

C. Nonequilibrium magnon currents

Next, we apply the results obtained in Sec. II B to the hybrid
C-P junction (Fig. 2); the junction between the magnon BEC
in the left FI (C) and the pumped magnons in the right FI (P).

Assuming again isotropic [7,9] exchange interaction η = 1 in
HFI [Eq. (1)] among the nearest-neighboring spins whose spin
lengths are large enough [37,38] [i.e., S � 1], we continue to
apply the microwave only to the right FI (P) and clarify the
features of magnon transport [6,19]. We remark that in terms
of spin variables both correspond to a macroscopic coherent
precession [23]. A distinct difference, however, is that the
frequency of quasiequilibrium magnon BECs is essentially
characterized [7] by the applied magnetic field BL in the left
FI (C), while that of pumped magnons is characterized by
the frequency � of the applied microwave [Eq. (11)]. This
plays the key role in the ac-dc conversion of the magnon
current we describe below. The number of magnons in the C-P
junction is not conserved due to the magnon injection through
microwave pumping. Therefore the Josephson equation of the
C-C junction microscopically derived in Ref. [7] is not directly
applicable to the C-P junction.

Since both the quasiequilibrium magnon condensate and
the pumped magnons correspond to macroscopic coherent
precession [23] in terms of spin variables, they may be
treated semiclassically [7]. Therefore, following Ref. [11] the
interaction between them may be described by the Hamiltonian
[Eq. (4)]

HC-P
ex = −JexS

∑
〈�L�R〉

[〈a�L〉C〈a†
�R

〉P + c.c.], (21)

where [7] 〈a�L〉C is the expectation value in the quasiequi-
librium magnon-BEC state. Under the Hamiltonian HC-P

ex ,
a nonequilibrium magnon current arises from microwave
pumping in the C-P junction [Eq. (5)]:

〈I (t)〉C-P = −iJexS〈aL(t)〉C〈a†
R(t)〉P/� + c.c., (22)

where 〈aL(t)〉C = √
nL(t)exp[−iϑL(t)]. The magnon number

density in the left FI is nL(t) and the phase ϑL(t). They are
characterized by the GP Hamiltonian that can be microscop-
ically derived from the spin Hamiltonian HFI [see Eq. (1)
in Ref. [7]]. The GP Hamiltonian actually shows that only
the homogeneous condensates play a role, without space
dependence of 〈aL(t)〉C. Associated with the macroscopic
coherence, the magnon current 〈I (t)〉C-P arises from theO(Jex)
term. This is the same with the Josephson magnon current [7]
in BECs addressed in Ref. [7].

We further remark that there could be some contributions
in Eq. (22) [or Eq. (4)] that might arise from higher-order
terms in the Holstein-Primakoff expansion [39] [e.g., O(S0)
and O(S−1)]. Such contributions can be taken into ac-
count by using the semiclassical relation 〈S+

i 〉C(P) = √
2S[1 −

〈a†
i 〉C(P)〈ai〉C(P)/(2S)]1/2〈ai〉C(P). We have actually confirmed

[Eq. (17)] that the main mechanism responsible for the
magnon currents remains in place even in the presence of
such higher-order terms. In addition, we now assume a large
spin [4,37,38] S ∼ 10. Therefore, this is enough to focus on
the magnon current 〈I 〉C-P = O(S) expressed by Eq. (22).

Using Eqs. (11) and (13), the term 〈aR(t)〉P in Eq. (22) at
FMR reads

〈aR(t)〉P = 2iτp

�

√
2S̃gμB�0e−i(�t+ϑac). (23)
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FIG. 4. Plots of the rescaled magnon number NL ≡ nLα3 as a
function of the rescaled time T ≡ (JexS/�)t obtained by numerically
solving Eq. (28) for the values g = 2, S = 16, Jex ≈ 0.1 μeV,
�0 = 0.125 μT, τp = 100 ns, α ≈ 1 Å, ϑL(0) − ϑac = π , NL(T =
0) = 10−5, and � = 400 MHz. The rescaled time T = 1 corresponds
to t = 5 ns and NL = 1 corresponds to nL = 1024 cm−3. dNL/(dT )
represents the magnon current. (a) �� = gμBBL (i.e., BL = 2 mT).
Since the sign of the function dNL/(dT ) does not change all the
time, it can be regarded as a dc magnon current. (b) �� �= gμBBL:
BL = 2.05 mT. This gives the ac magnon current whose period
becomes of the order of 10−1 μs.

Consequently, the magnon current density [Eq. (22)] becomes

〈I 〉C-P = −4τpJexS
√

2S̃nLgμB�0

�2

× cos[ϑL(t) − �t − ϑac]. (24)

This is the general expression of the magnon current density
in the C-P junction.

We recall that the frequency of the coherent precession
due to the magnon BEC ϑL(t) can be essentially characterized
by the effective magnetic field along the z axis, [7] and the
magnitude can be controlled by the applied magnetic field:

ϑ̇L(t) = gμBBL/�. (25)

Thus, by tuning it to the microwave frequency (Fig. 2)

gμBBL/� = �, (26)

the magnon current density becomes

〈I 〉C-P = −4τpJexS

�2

√
2S̃nLgμB�0cos[ϑL(0) − ϑac]. (27)

This result proves that by adjusting the frequency of the applied
microwave in the right FI to that of the magnon BEC in the left
FI a dc magnon current can arise from an applied ac magnetic
field [Fig. 4(a)].

We note that the dc magnon current arises not from the FMR
condition given in Eq. (13) (see Fig. 3), gμBBR = ��, but
from the condition between magnon BECs and microwaves
[Eq. (26) and Fig. 4(a)], gμBBL = ��. That is, if only the
frequency of the applied microwave in the right FI is adjusted
to that of the magnon BEC in the left FI [Eq. (26)], a dc
magnon current can arise. The condition for FMR [Eq. (13)] is
not responsible for the ac-dc conversion of the magnon current
but it does lead to its drastic enhancement (see Fig. 3).

Assuming [4,37,38] Jex ≈ 0.1 μeV, �0 = 0.125 μT, τp =
100 ns, α ≈ 1 Å, g = 2, S = 16, ϑL(0) − ϑac ≈ 0, and4 nL ∼
1019 cm−3, the magnitude of the dc magnon current [Eq. (27)]
becomes |〈I 〉C-P| ∼ 1029cm−3 s−1. Due to the magnon injec-
tion through microwave pumping and the resulting FMR, it is
worth stressing that this value is actually much larger, about
106 times, than the one obtained from the dc Josephson magnon
current in the C-C junction (the “C-C” junction denotes the FI
junction between magnon condensates (C) that was introduced
in Ref. [7]).

The magnon currents can be experimentally measured by
using the same method [8,44] as for the Josephson magnon
current described in Ref. [7]. Since the moving magnetic
dipoles (i.e., magnons with magnetic moment gμBez) produce
electric fields, magnon currents can be observed by measuring
the resulting voltage drop,5 which is proportional to the amount
of the magnon current. This means that the voltage drop
in the C-P junction becomes much larger, about 106 times,
than the one in the C-C junction [7]. Therefore we expect that
the measurement of the magnon currents in the C-P junction
is experimentally more accessible than the Josephson magnon
currents in the C-C junction. We remark that, applying an
electric field to the interface and using the resulting A-C phase
as in Ref. [7], we could tune the magnitude of the phase in
the cosine function of Eq. (27) and, consequently, we might
control the direction of the dc magnon current.

D. Distinction from C-C junction

Introducing the rescaled time T and the number of magnons
NL by t ≡ �T /(JexS) and nL ≡ NL/α3, Eq. (24) can be
rewritten as [with the help of Eqs. (25) and (5)]

dNL(T )

dT = −4
√

2SτpgμB�0

�

√
NL(T )

× cos

[
gμBBL − ��

JexS
T + ϑL(0) − ϑac

]
. (28)

Figure 4 shows the results obtained by numerically solving
Eq. (28). Based on them, we summarize the qualitative
distinction between the magnon currents in the C-P junction
and those in the C-C junction [7].

1. dc magnon currents

The frequency of the macroscopic coherent spin precession
of magnon BECs is characterized by the magnetic field along
the z axis. Through a Berry phase [30,31] referred to as the
A-C phase [29], the dc Josephson magnon current in the C-C
junction arises [7] from an applied time-dependent magnetic
field (for details, see Ref. [7]). In that case, the magnetic field
gradient has to be proportional to the time:

BL − BR ∝ t (i.e., BL �= BR). (29)

4Since Serga et al. [5] have reported that the decay time of
the quasiequilibrium magnon condensate is much longer than that
of pumped magnons, we here assume that the lifetime of the
quasiequilibrium magnon condensate is infinite.

5Regarding the detail, see Ref. [7].
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This is the condition for the dc Josephson magnon current in
the C-C junction.

On the other hand, the C-P junction does not require such
conditions. The applied microwave forces spins to precess
coherently [Eq. (11)]. The frequency of the macroscopic
coherent precession in the FI (P) is characterized not by the
magnetic field gμBBR/� but by the applied microwave �.
Therefore, by tuning � = gμBBL/�, a dc magnon current can
arise [Fig. 4(a)]. The relation between each magnetic field BL

and BR has nothing to do with the dc magnon current, which
is in sharp contrast to the C-C junction [Eq. (29)].

We note that by adjusting the magnetic field of the
right FI (P), gμBBR/� = � (= gμBBL/�), FMR does occur
and, consequently, the pumped magnon drastically increases
(Fig. 3). This leads to a drastic enhancement of the dc magnon
current. In conclusion, through FMR, a dc magnon current
of the C-P junction can arise from the condition [Fig. 4(a)]
BL = BR = ��/(gμB), which is in sharp contrast to the C-C
junction [7] [Eq. (29)].

2. ac magnon currents

The above discussion is applicable also to the distinction
between the ac magnon current in the C-C junction [7] and
that in the C-P junction. In the C-C junction, an ac Josephson
magnon current arises when a static magnetic field gradient
is produced (ḂL(R) = 0) BL − BR = (constant) �= 0. On the
other hand, this condition does not necessarily manifest the
ac magnon current in the C-P junction. Even in that case, a
dc magnon current arises (due to the same reason explained
above) if BL = ��/(gμB).

Figure 4(b) is an example of the ac magnon current in
the C-P junction obtained by numerically solving Eq. (28).
Assuming g = 2, � = 400 MHz, and BL = 2.05 mT [i.e.,
BL �= ��/(gμB)], the period of the oscillation becomes of the
order of 10−1 μs, which is within experimental reach. The
period can be controlled by tuning � or gμBBL/�.

E. Elastic scatterings

In this paper we consider insulators having the parabolic
dispersion relation [i.e., ωk = Dk2 + gμBBL(R)] where the
zero-mode k = 0 is the lowest-energy state and therefore we
have assumed that magnon BECs are formed in the zero
mode [23]. We have then seen that the ac and dc magnon
transport properties are characterized by the macroscopic co-
herence of pumped and condensed magnons in the zero-mode
〈a0〉 �= 0. In such C-P junctions, those zero-mode magnons are
exchanged in O(Jex), and actually only the kinetic momentum
conserved scatterings at the interface play an essential role;
for elastic scattering, the momentum nonconserved scatterings
indeed cannot contribute to transport due to the macroscopic
coherence. Therefore in this paper we have focused on
the momentum conserved scatterings. Despite the enormous
experimental challenge, we believe that such magnon BECs in
the zero mode would be experimentally realizable.

We mention, however, that taking into account inelastic
scatterings our description of magnon transport O(Jex) might
in principle be applicable also to the general BECs in the
nonzero modes (k = kmin �= 0). The frequency of the k = 0
BECs we have used is [Eq. (25)] gμBBL/� where BL is the

Γ SS
R 

Pumped
magnons

Microwave (Ω)

Right FI (P
)

BR

Γ S L 

xy
z

Left F
I (N

C) 

BL

FIG. 5. (Color online) Schematic representation of the NC-P
junction, consisting of a left FI with noncondensed magnons (NC)
and a weakly exchange-coupled right FI with pumped magnons (P).
The microwave at frequency � is applied only to the right FI. The
distinction to the C-P junction in Fig. 2 is that the magnons in the left
FI are not condensed (i.e., 〈aL〉 = 0). Due to the exchange interaction
Hex [Eq. (4)], the applied microwave to the right FI can indirectly
affect the noncondensed magnons of the left FI and thereby generate
an indirect FMR there.

external magnetic field, while that of the general k = kmin

BECs becomes [23] gμBBeff/� where gμBBeff = gμBBL +
Dk2

min. Taking into account inelastic scatterings and replacing
BL by Beff , our description for O(Jex) magnon transport would
be applicable also to the general BECs.

III. NC-P JUNCTION

In the last section (Sec. II), we have seen that the quasiequi-
librium magnon condensate generates ac and dc magnon
currents from the applied ac magnetic field (i.e., microwave).
Microwave pumping and the resulting FMR (Fig. 3) drastically
enhance the amount of such magnon currents.

In this section, we further develop it by taking into account
experimental results that [4] the density of noncondensed
magnons is still much larger than that of the magnon
condensate, and we thus propose an alternative way to generate
a dc magnon current and enhance it.

To this end, we replace the magnon BECs of the C-P
junction (Fig. 2) with noncondensed [23] magnons 〈aL〉 = 0
as shown in Fig. 5. Thus we newly consider the hybrid ferro-
magnetic insulating junction between noncondensed magnons
and pumped magnons, namely, the NC-P junction (Fig. 5).
The only difference to the C-P junction (Sec. II) is that the
magnons in the left FI are not condensed 〈aL〉 = 0.

Then, using the microscopic description of microwave
pumping addressed in Sec. II B, we clarify the features of the
magnon current in the η = 1 isotropic NC-P junction (Fig. 5).
Focusing on the effect of the noncondensed magnons on the
ac-dc conversion of the magnon current, we then discuss the
difference from the C-P and C-C junctions [7].

A. dc magnon current

Following the same procedure with Sec. II B, a straight-
forward calculation based on the Schwinger-Keldysh [42,43]
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formalism gives the magnon current 〈I 〉NC-P at FMR (�� =
gμBBR) in the NC-P junction:

〈I 〉NC-P = 2Re

[
i

�
(2JexSτp

√
2S̃gμB�0)2Gr

L,k=0,�

]

+O
(
J 4

ex

) + O
(
J 2

exS
2
)
, (30)

where Gr is the bosonic retarded Green’s function and
〈I 〉NC-P = O(J 2

exS
3). Since we assume a weak exchange

coupling Jex/J ∼ 10−6 and η = 1 isotropic large [4,37,38]
spins S � 1, any higher perturbation terms in terms of Jex

and those due to the 1/S expansion of the Holstein-Primakoff
transformation [i.e., O(J 4

ex) and O(J 2
exS

2)] do not influence
in any significant manner. We have actually confirmed that
compared with that 〈I 〉NC-P [Eq. (30)] the O(J 2

exS
2) term

arising from the next leading 1/S expansion becomes quite
small, about 10−6 times, and it is indeed negligible.

We then phenomenologically introduce [43] a lifetime
τNC of noncondensed magnons in the left FI mainly due to
nonmagnetic impurity scatterings into the Green’s function Gr

(in the same way with Sec. II B). Consequently, the magnon
current density becomes

〈I 〉NC-P = 1

�2

τ 2
p

τNC

(2
√

2S̃JexSgμB�0)2

(�� − gμBBL)2 + [�/(2τNC)]2
. (31)

Due to the effect that the magnons in the left FI are not
condensed 〈aL〉 = 0, the magnon current arises from the
O(J 2

ex) term and it becomes essentially the dc magnon current.
These are in sharp contrast [7] to the C-P and C-C junctions.

Tuning

�� = gμBBL, (32)

the amount 〈I 〉NC-P becomes maximal.

B. Indirect FMR

Equation (31) indicates that tuning �� = gμBBL an indi-
rect FMR does occur in the left FI. Any microwaves are not
directly applied to the left FI (Fig. 5). Nevertheless, a FMR
does occur in the left FI since the applied microwave to the
right FI can still affect the spins of the left FI via the exchange
interaction Hex [Eq. (4)]. The applied microwave forces the
spins of the right FI to precess coherently with the frequency
� and excite the zero mode of magnons [Eqs. (8) and (10) in
Sec. II B]. Those pumped magnons propagate and interact with
the (boundary) spins in the left FI via Hex, and produce the
zero mode of magnons with the frequency � [i.e., Gr

L,k=0,� in
Eq. (30)], which have the same frequency with the microwave
directly applied to the right FI. Thus, the applied microwave
to the right FI can indirectly affect the left FI via the pumped
magnons and generate the indirect FMR. These double FMRs,
the direct FMR in the right FI and the indirect one in the left
FI, lead to the drastic enhancement of the resulting magnon
current.

C. Distinctions from C-C and C-P junctions

Focusing on the distinction from the C-P and C-C junctions,
we summarize the features of magnon currents in the NC-P
junction (Fig. 5).

The main point is that in the NC-P junction the magnon
currents arise as 〈I 〉NC-P = O(J 2

ex) [Eq. (31)]. This is in sharp
contrast [7] to the C-C and C-P junctions. Therefore even
when we apply an electric field to the interface, the resulting
A-C phase cannot play any roles on magnon transport in any
significant manners. This is in sharp contrast to the C-C and
C-P junctions, where the A-C phase can play the key role on
the ac-dc conversion of the magnon currents O(Jex).

Another distinction is that the magnon current of the
NC-P junction becomes essentially the dc one [Eq. (31)].
The noncondensed magnons generate the dc magnon current
from the applied ac magnetic field. Even when a static [i.e.,
time-independent dBL(R)/(dt) = 0] magnetic field gradient
is produced, BL − BR �= 0, the resulting magnon current
becomes the dc one. This is in sharp contrast to the C-C and
C-P junctions, where the magnon current can become the ac
one due to the reason addressed in Sec. II D. As stressed, the
conversion of the ac and dc magnon currents in the C-P junction
is characterized not by the magnetic fields but by the relation
between gμBBL/� and �. Therefore, if gμBBL/� �= �, the
magnon current becomes an ac one even in that case.

Finally, comparing the maximum magnon current densities
available in each hybrid junction, we clarify the quantitative
effect of microwave pumping on the generation of magnon
currents: 〈I 〉NC-P, 〈I 〉C-P, and the one of the C-C junction [7]
〈I 〉C-C. Assuming [4,37,38] Jex = 0.1 μeV, α = 1 Å, S = 15,
g = 2, τp(NC) = 100 ns, the magnon-BEC density [Eq. (24)]
nL ∼ 1019 cm−3, and �0 = 0.5 μT, each ratio on the direct and
the resulting indirect FMRs [BL = BR = ��/(gμB)] becomes
[7]

|〈I 〉NC-P|
|〈I 〉C-P| 
 1.1×105, (33a)

|〈I 〉NC-P|
|〈I 〉C-C| 
 3.6×106. (33b)

These give

|〈I 〉C-C| 
 |〈I 〉C-P| 
 |〈I 〉NC-P|. (34)

This shows that the magnon injection through microwave
pumping and the resulting FMRs drastically enhances the
magnon current. In addition to the direct FMR, due to the
indirect FMR in the adjacent left FI (Sec. III B), the magnon
current of the NC-P junction (Fig. 5) can become much larger
than that of the C-P junction.

IV. MAGNON CURRENT THROUGH
AHARONOV-CASHER PHASE

Lastly, using microwave pumping, we discuss the possi-
bility that a magnon current through the A-C phase flows
persistently [12,32,33] even at finite (room) temperature. In
Ref. [7], using magnon BECs [4,5], we have found that the
A-C phase [29–31] generates a persistent magnon-BEC [6]
current at zero temperature. Since both magnon condensate
and pumped magnons correspond to the macroscopic coherent
precession [23] in terms of spin variables, it is expected
that a similar [6,19] magnon current arises from microwave
pumping. Therefore, based on the microscopic description
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of microwave pumping in Sec. II B, we consider finite
temperatures and evaluate the magnon current driven by an
A-C phase.

To this end, we revisit the discussion of Ref. [7], and expand
it by taking the effect of microwave pumping into account. We
consider a single FI described by the HamiltonianHFI [Eq. (1)]
and apply now an electric field E along the y axis E(r) = Eey

as well as a homogeneous magnetic field B along the z axis. A
magnetic dipole gμBez (i.e., magnon) moving along a path ν

in an electric field E(r) acquires a Berry phase [30,31], called
the A-C phase [29]:

θA-C = gμB

�c2

∫
ν

dl · [E(r) × ez]. (35)

Since E(r) = Eey , it becomes E(r)×ez = Eex . Therefore
we focus on magnon transport along the x axis, which
is essentially described [7,8] by the Hamiltonian HA-C

FI =
−JS

∑
j (aja

†
j+1e−iθA-C + H.c.) + gμBB

∑
j a

†
j aj . The sum-

mation is over all spins along the x axis. The A-C phase reads
θA-C = [gμB/(�c2)]Eα.

We then continue to apply microwave � [Vac in Eq. (7)]
and generate a macroscopic coherent precession described by
Eq. (11). Consequently, the A-C phase induces a magnon
current analogous to the magnon-BEC current [6,7]. The
amount becomes maximal at FMR �� = gμBB (Fig. 3). The
resulting magnon current density induced by the A-C phase
reads [7]

〈I〉 = 2JS

�
〈n〉P sinθA-C, (36)

where 〈n〉P = 8S̃(τpgμB�0/�)2 is the pumped magnon density
at FMR [Eq. (12) and Fig. 3]. In the presence of the magnon-
magnon interaction (Sec. II B 2), it becomes

〈I〉 = 2JS

�

[〈n〉P + 〈n〉m-m
P

]
sinθA-C, (37)

where 〈n〉m-m
P = (16

√
2S̃τ 2

p Jm-mgμB�0γα3kBT/�
2)2 ∝ T 2

[Eqs. (17) and (19)].
Using the above single FI and microwave pumping, we

form a ring consisting of a cylindrical wire analogous to the
magnon-BEC ring. Then, it is expected that the magnon current
flows like the persistent [7] magnon-BEC current (we refer the
reader for further details of the magnon-BEC ring where the
current is quantized to Ref. [7]). We point out the possibility
that, due to microwave pumping, the magnon current might
flow even at finite temperatures. Dissipations [45,46] would
arise at finite temperature due to the coupling with the thermal
bath, e.g., due to lattice vibrations (i.e., phonons), but such
detrimental effects can be compensated by magnon injection
[4,5] through microwave pumping where the pumping rate
[Eqs. (8) and (14)] is larger than the dissipative decay rate.

Assuming [4,37,38] α = 1 Å, S = 16, g = 2, τp = 100 ns,
�0 = 0.5 μT, γα3 
 5×10−4 ev−1 (Sec. II B 2), T = 300 K,
and Jm-m = 30 μeV, they amount to 〈n〉P 
 1.28×1022 cm−3

and 〈n〉m-m
P 
 3×1021 cm−3. The magnon current [Eq. (37)]

becomes much larger, about 103 times, than the magnon-BEC
current [7]. Using the same setup (i.e., cylindrical wire) with
Ref. [7], the electric field [8,44] of the order of mV/m is
induced (see Sec. II C) and, consequently, the voltage drop
amounts to the order of μV, which is actually much larger than

the one arising from the magnon-BEC current (∼nV). Thus,
we expect the direct measurement of such magnon currents to
be experimentally more realizable.

V. SUMMARY

We have constructed a microscopic theory on magnon
transport through microwave pumping in FIs. Due to the
magnon-magnon interaction, the nonzero mode of magnons
is excited and the number density of such pumped magnons
(P) increases when temperature rises. We have then shown that
the magnon injection through such microwave pumping and
the resulting ferromagnetic resonance drastically enhances the
magnon currents in FIs. In hybrid FI junctions, quasiequilib-
rium magnon condensates (C) convert the applied ac magnetic
field (i.e., microwaves) into an ac and dc magnon current,
while noncondensate magnons (NC) convert it into essentially
a dc magnon current. Due to the direct and indirect FMRs, the
NC-P junction becomes the best one (among the C-C, C-P, and
NC-P junctions) to generate the largest magnon current. In a
single FI, microwave pumping can produce a magnon current
through a Berry phase (i.e., the Aharonov-Casher phase)
even at finite temperature in the presence of magnon-magnon
interactions. The amount of such magnon currents increases
when temperature rises, since the number density of pumped
magnons increases. Due to FMR, the amount becomes much
larger, about 103 times, than the magnon-BEC current.
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APPENDIX: SPIN ANISOTROPY AND
MAGNON-MAGNON INTERACTION

In this Appendix, starting from the general Heisenberg spin
Hamiltonian, we microscopically provide magnon-magnon
interactions in the continuum limit. To this end, it is enough to
focus on the spins aligned along the x axis in each FI and the
spin Hamiltonian HFI gives [Eq. (1)]

HFI = −J
∑

i

[
1

2
(S+

i S−
i+1 + S−

i S+
i+1) + ηSz

i S
z
i+1

]

− gμBBL(R)

∑
i

Sz
i , (A1)

where the exchange interaction between neighboring spins
in the ferromagnetic insulator is J > 0, η denotes the spin
anisotropy, and BL(R) = BL(R)ez is the applied magnetic field
along the z axis. The summation is over all spins aligned
along the x axis in each FI. Using the (nonlinearized)
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Holstein-Primakoff transformation [39],

S+
i =

√
2S

(
1 − a

†
i ai

4S

)
ai + O(S−3/2) = (S−

i )†, (A2a)

Sz
i = S − a

†
i ai, (A2b)

Eq. (A1) provides the magnon-magnon interaction of the
form

Hm-m
FI = J

4

∑
i

(a†
i a

†
i+1aiai + a

†
i+1a

†
i+1aiai+1

+ a
†
i a

†
i+1ai+1ai+1 + a

†
i a

†
i aiai+1

− 4ηa
†
i a

†
i+1aiai+1). (A3)

It should be noted that due to the next leading 1/S expansion of
the Holstein-Primakoff transformation [Eq. (A2a)] magnon-
magnon interactions of the type a†a†aa = O(S0) arise also

from the hopping terms (i.e., S+
i S−

i+1+ H.c.) of Eq. (A1) as
well as from the potential term (i.e., z component) ηSz

i S
z
i+1.

Finally, taking the continuum limit (i.e., the lattice constant
α → 0) and using the corresponding representation, ai/

√
α ≡

a(x) − (α/2)(∂a/∂x) and ai+1/
√

α ≡ a(x) + (α/2)(∂a/∂x),
Eq. (A3) reduces to

Hm-m
FI = J (1 − η)α

∫
dx a†(x)a†(x)a(x)a(x) + O(α2),

(A4)

where [a(x),a†(x ′)] = δ(x − x ′). Thus, in the continuum limit,
the magnon-magnon interaction becomes [Eq. (2)]

Hm-m
FI = −Jm-mα

∫
dx a†(x)a†(x)a(x)a(x), (A5)

with Jm-m ≡ −J (1 − η) = O(S0). This shows that, in the
isotropic case η = 1, Jm-m = 0, and therefore the magnon-
magnon interaction does not influence the magnon transport
in any significant manner within the continuum limit.
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[12] F. Schütz, M. Kollar, and P. Kopietz, Phys. Rev. Lett. 91, 017205

(2003).
[13] T. Morimae, A. Sugita, and A. Shimizu, Phys. Rev. A 71, 032317

(2005).
[14] S. N. Andrianov and S. A. Moiseev, Phys. Rev. A 90, 042303

(2014).
[15] A. Chakraborty, P. Wenk, and J. Schliemann, Eur. Phys. J. B 88,

64 (2015).
[16] A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D 43,

264002 (2010).
[17] R. L. Stamps, S. Breitkreutz, J. Akerman, A. V. Chumak, Y.

Otani, G. E. W. Bauer, J.-U. Thiele, M. Bowen, S. A. Majetich,
M. Klaui et al., J. Phys. D 47, 333001 (2014).

[18] B. Trauzettel, P. Simon, and D. Loss, Phys. Rev. Lett. 101,
017202 (2008).

[19] P. Clausen, D. A. Bozhko, V. I. Vasyuchka, B. Hillebrands,
G. A. Melkov, and A. A. Serga, Phys. Rev. B 91, 220402(R)
(2015).

[20] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys.
Lett. 88, 182509 (2006).

[21] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,
Rev. Mod. Phys. 77, 1375 (2005).

[22] A. S. B.-Romanov, Y. M. Bunkov, V. V. Dmitriev, and Y. M.
Mukharskiy, JETP Lett. 40, 1033 (1984).

[23] Y. M. Bunkov and G. E. Volovik, in Novel Superfluids, edited by
K. H. Bennemann and J. B. Ketterson (Oxford University Press,
Oxford, 2013), Chap. 4.

[24] V. I. Yukalov, Laser Phys. 22, 1145 (2012).
[25] V. Zapf, M. Jaime, and C. D. Batista, Rev. Mod. Phys. 86, 563

(2014).
[26] V. E. Demidov, O. Dzyapko, S. O. Demokritov, G. A. Melkov,

and A. N. Slavin, Phys. Rev. Lett. 99, 037205 (2007).
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