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Role of nonlinear anisotropic damping in the magnetization dynamics of topological solitons
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The consequences of nonlinear anisotropic damping, driven by the presence of Rashba spin-orbit coupling in
thin ferromagnetic metals, are examined for the dynamics of topological magnetic solitons such as domain walls,
vortices, and skyrmions. The damping is found to affect Bloch and Néel walls differently in the steady-state
regime below Walker breakdown and leads to a monotonic increase in the wall velocity above this transition
for large values of the Rashba coefficient. For vortices and skyrmions, a generalization of the damping tensor
within the Thiele formalism is presented. It is found that chiral components of the damping affect vortexlike
and hedgehoglike skyrmions in different ways, but the dominant effect is an overall increase in the viscouslike
damping.
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I. INTRODUCTION

Dissipation in magnetization dynamics is a longstanding
problem in magnetism [1–3]. For strong ferromagnets such as
cobalt, iron, nickel, and their alloys, a widely used theoretical
approach to describe damping involves a local viscous form
due to Gilbert for the Landau-Lifshitz equation of motion

∂m
∂t

= −γ0m × Heff + α0m × ∂m
∂t

, (1)

which appears as the second term on the right-hand side,
proportional to the damping constant α0. This equation
describes the damped magnetization precession about a local
effective field Heff = −(1/μ0Ms)δU/δm, which is given by
a variational derivative of the magnetic energy U with respect
to the magnetization field described by the unit vector m,
with γ0 = μ0γ being the gyromagnetic constant and Ms is the
saturation magnetization. Despite the multitude of physical
processes that underlie dissipation in such materials, such as
the scattering of magnons with electrons, phonons, and other
magnons, the form in Eq. (1) has proven to be remarkably
useful for describing a wide range of dynamical phenomena
from ferromagnetic resonance (FMR) to domain-wall
motion.

One feature of the dissipative dynamics described in Eq. (1)
is that it is local, i.e., the damping torque only depends on
the local magnetization and its time dependence. With the
advent of magnetic heterostructures, however, this restriction
of locality has been shown to be inadequate for systems such
as metallic multilayers in which nonlocal processes can be im-
portant [4]. A striking example involves spin pumping, which
describes how spin angular momentum can be dissipated in ad-
jacent magnetic or normal-metal layers through the absorption
of spin currents generated by a precessing magnetization [5,6].
Early experimental observations of these phenomena involved
iron films sandwiched by silver layers [7] and permalloy films
in close proximity with strong spin-orbit normal metals such as
palladium and platinum [8,9], where ferromagnetic resonance
linewidths were shown to depend strongly on the composition
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and thickness of the adjacent layers. Such observations also
spurred other studies involving ferromagnetic multilayers sep-
arated by normal-metal spacers, where spin-pumping effects
can lead to a dynamic coupling between the magnetization
in different layers [10,11]. In the context of damping, such
dynamic coupling was shown to give rise to a configuration-
dependent damping in spin-valve structures [12,13].

A generalization of the spin-pumping picture in the context
of dissipation was given by Zhang and Zhang, who proposed
that spin currents generated within the ferromagnetic material
itself can lead to an additional contribution to the damping,
provided that large magnetization gradients are present [14].
This theory is based on an sd model in which the local moments
(4d) are exchange coupled to the delocalized conduction
electrons (3s), which are treated as a free-electron gas. The
spin current “pumped” at one point in the material by the
precessing local moments is dissipated at another if the current
encounters strong spatial variations in the magnetization such
as domain walls or vortices, a mechanism that can be thought
of as the reciprocal process of current-induced spin torques
in magnetic textures [15–18]. For this reason, the mechanism
is referred to as “feedback” damping since the pumped-spin
currents generated feedback into the magnetization dynamics
in the form of a dissipative torque. This additional contribution
is predicted to be both nonlinear and nonlocal, and can
have profound consequences for the dynamics of topological
solitons such as domain walls and vortices as a result of
the spatial gradients involved. Indeed, recent experiments on
vortex wall motion in permalloy stripes indicate that such
nonlinear contributions can be significant and be of the same
order of magnitude as the usual Gilbert damping characterized
by α0 in Eq. (1) [19].

An extension to this feedback damping idea was proposed
recently by Kim and co-workers, who considered spin pump-
ing involving a conduction electron system with a Rashba
spin-orbit coupling (RSOC) [20]. By building upon the Zhang-
Zhang formalism, it was shown that the feedback damping
can be expressed as a generalization of the Landau-Lifshitz
equation [14,20]

∂m
∂t

= −γ0m × Heff + m × DLL(m) · ∂m
∂t

, (2)
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where the 3 × 3 matrix DLL represents the generalized damp-
ing tensor, which can be expressed as [20]

Dij

LL = α0δij + η
∑

k

(Fki + α̃Rε3ki)(Fkj + α̃Rε3kj ). (3)

Here, α0 is the usual Gilbert damping constant, η =
gμB�G0/(4e2Ms) is a constant related to the conductivity
G0 of the spin bands [14], Fki = (∂m/∂xk)i are components
of the spatial magnetization gradient, α̃R = 2αRme/�

2 is the
scaled Rashba coefficient, εijk is the Levi-Civita symbol,
and the indices (ijk) represent the components (xyz) in
Cartesian coordinates. In addition to the nonlinearity present
in the Zhang-Zhang picture, the inclusion of the αR term
results in an anisotropic contribution that is related to the
underlying symmetry of the Rashba interaction. Numerical
estimates based on realistic parameters suggest that the Rashba
contribution can be much larger than the nonlinear contribution
η alone [20], which may have wide implications for soliton
dynamics in ultrathin ferromagnetic films with perpendicular
magnetic anisotropy, such as Pt/Co material systems, in which
large spin-orbit effects are known to be present.

In this paper, we explore theoretically the consequences
of the nonlinear anisotropic damping given in Eq. (3) on the
dynamics of topological magnetic solitons, namely, domain
walls, vortices, and skyrmions, in which spatial gradients can
involve 180◦ rotation of the magnetization vector over length
scales of 10 nm. In particular, we examine the role of chirality
in the Rashba-induced contributions to the damping, which
are found to affect chiral solitons in different ways. This paper
is organized as follows. In Sec. II, we discuss the effects
of nonlinear anisotropic damping on the dynamics of Bloch
and Néel domain walls, where the latter is stabilized by the
Dzyaloshinskii-Moriya interaction. In Sec. III, we examine the
consequences of this damping for vortices and skyrmions, and
we derive a generalization to the damping dyadic appearing
in the Thiele equation of motion. Finally, we present some
discussion and concluding remarks in Sec. IV.

II. BLOCH AND NÉEL DOMAIN WALLS

The focus of this section are domain walls in ultrathin
films with perpendicular magnetic anisotropy. Consider a
180◦ domain wall representing a boundary separating two
oppositely magnetized domains along the x axis, with z being
the uniaxial anisotropy axis that is perpendicular to the film
plane. We assume that the magnetization remains uniform
along the y axis. The unit magnetization vector m(x,t) can
be parametrized in spherical coordinates (θ,φ), such that
m = (sin θ cos φ, sin θ sin φ, cos θ ). With this definition, the
spherical angles for the domain-wall profile can be written as

θ (x,t) = 2 tan−1 exp

(
± x − X0(t)




)
,

(4)
φ(x,t) = φ0(t),

where X0(t) denotes the position of the domain wall, 
 =√
A/K0 represents the wall-width parameter that depends on

the exchange constant A and the effective uniaxial anisotropy
K0, and the azimuthal angle φ0(t) is a dynamic variable but spa-
tially uniform. The anisotropy constant K0 = Ku − μ0M

2
s /2

involves the difference between the magnetocrystalline (Ku)
and shape anisotropies relevant for an ultrathin film. In this
coordinate system, a static Bloch wall is given by φ0 = ±π/2,
while a static Néel wall is given by φ0 = 0,π . A positive sign
in the argument of the exponential function for θ in Eq. (4)
describes an up-to-down domain-wall profile going along the
+x direction, while a negative sign represents a down-to-up
wall.

To determine the role of the nonlinear anisotropic damping
term in Eq. (3) on the wall dynamics, it is convenient to
compute the dissipation function W (Ẋ0,φ̇0) for the wall
variables, where the notation Ẋ0 ≡ ∂tX0, etc., denotes a time
derivative. The dissipation function per unit surface area is
given by

W (Ẋ0,φ̇0) = Ms

2γ

∫ ∞

−∞
dx ṁi Dij

LL(m) ṁj , (5)

where mi = mi[x − X0(t),φ0(t)] and the Einstein summation
convention is assumed. By using the domain-wall ansatz (4),
the integral in Eq. (5) can be evaluated exactly to give W =
W0 + WNL, where W0 represents the usual (linear) Gilbert
damping

W0 = α0
Ms


γ

(
Ẋ2

0


2
+ φ̇2

0

)
, (6)

while WNL is the additional contribution from the nonlinear
anisotropic damping

WNL = Ms


γ

[
1

3
α3 sin2 φ0(t)

Ẋ2
0


2

+
(

2

3
α1 ± π

2
α2 cos φ0(t) + α3 cos2 φ0(t)

)
φ̇2

0

]
, (7)

where α1 ≡ η/
2, α2 ≡ η α̃R/
, and α3 ≡ η α̃2
R are dimen-

sionless nonlinear damping constants. In contrast to the linear
case, the nonlinear anisotropic dissipation function exhibits a
configuration-dependent dissipation rate where the prefactors
of the Ẋ2

0 and φ̇2
0 terms depend explicitly on φ0(t).

In addition to the nonlinearity, a chiral damping term,
proportional to α2, appears as a result of the Rashba interaction
and is linear in the Rashba coefficient αR. The sign of this
term depends on the sign chosen for the polar angle θ in the
wall profile (4). To illustrate the chiral nature of this term, we
consider small fluctuations about the static configuration by
writing φ0(t) = φ0 + δφ(t), where δφ(t) � π is a small angle.
This approximation is useful for the steady-state regime below
Walker breakdown. For up-to-down Bloch walls (φ0 = ±π/2),
the nonlinear part of the dissipation function to first order in
δφ(t) becomes

WNL,Bloch ≈ Ms


γ

[
α3

3

Ẋ2
0


2
+

(
2α1

3
+ Cx

πα2

2
δφ(t)

)
φ̇2

0

]
.

(8)
The quantity Ci = ±1 is a component of the chirality vector
[21]

C = 1

π

∫ ∞

−∞
dx m × ∂xm, (9)

which characterizes the handedness of the domain wall.
For a right-handed Bloch wall, φ0 = −π/2 and the only
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nonvanishing component is Cx = 1, while for a left-handed
wall (φ0 = −π/2) the corresponding value is Cx = −1. Thus,
the term proportional to α2 depends explicitly on the wall
chirality. Similarly, for up-to-down Néel walls, the same
linearization about the static wall profile leads to

WNL,Neel ≈ Ms


γ

(
2α1

3
+ Cy

πα2

2
+ α3

)
φ̇2

0, (10)

where Cy = 1 for a right-handed Néel wall (φ0 = 0) and
Cy = −1 for its left-handed counterpart (φ0 = π ). Since the
fluctuation δφ(t) is taken to be small, the chiral damping term
is more pronounced for Néel walls in the steady-state velocity
regime since it does not depend on the fluctuation amplitude
δφ(t) as in the case of Bloch walls.

To better appreciate the magnitude of the chirality-
dependent damping term, it is instructive to estimate numer-
ically the relative magnitudes of the nonlinear damping con-
stants α1,α2,α3. Following Ref. [20], we assume η = 0.2 nm2

and αR = 10−10 eV m. If we suppose 
 = 10 nm, which is
consistent with anisotropy values measured in ultrathin films
with perpendicular anisotropy [22], the damping constants can
be evaluated to be α1 = 0.002, α2 = 0.052, and α3 = 1.37.
Since α0 varies between 0.01–0.02 [23] and 0.1–0.3 [24]
depending on the material system, the chiral term α2 is
comparable to Gilbert damping in magnitude, but remains
almost an order of magnitude smaller than the nonlinear
component α3 that provides the dominant contribution to the
overall damping.

The full equations of motion for the domain-wall dynamics
can be obtained using a Lagrangian formalism that accounts for
the dissipation given by W [25,26]. For the sake of simplicity,
we will focus on wall motion driven by magnetic fields alone,
where a spatially uniform magnetic field Hz is applied along
the +z direction. In addition, we include the Dzyaloshinskii-
Moriya interaction appropriate for the geometry considered
[27,28] when considering the dynamics of Néel walls. From
the Euler-Lagrange equations with the Rayleigh dissipation
function

d

dt

∂L

∂Ẋ0
− ∂L

∂X0
+ ∂W

∂Ẋ0
= 0, (11)

with an analogous expression for φ0, the equations of motion
for the wall coordinates are found to be

φ̇0 +
(

α0 + α3

3
sin2 φ0

)
Ẋ0



= γ0Hz, (12)

Ẋ0



−

(
α0 + 2α1

3
+ πα2

2
cos φ0 + α3 cos2 φ0

)
φ̇0

= −γ0

(
π

2

Dex

μ0Ms

+ 2K⊥

μ0Ms

cos φ0

)
sin φ0, (13)

where Dex is the Dzyaloshinskii-Moriya constant [28] and
K⊥ represents a hard-axis anisotropy that results from volume
dipolar charges. The Dzyaloshinskii-Moriya interaction (DMI)
is present in ultrathin films in contact with a strong spin-
orbit coupling material [29,30] and favors a Néel-type wall
profile [31,32]. The DMI itself can appear as a consequence
of the Rashba interaction and, therefore, its inclusion here is
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FIG. 1. (Color online) Bloch wall dynamics. (a) Steady-state
domain-wall velocity 〈Ẋ0〉 as a function of perpendicular applied
magnetic field μ0Hz for several values of the Rashba coefficient αR.
The horizontal dashed line indicates the linear Walker velocity and
the arrows indicate the Walker transition. (b) The ratio between the
Walker velocity vW to its linear damping value vW,0 as a function of
αR. (c) Deviation in the wall angle from rest at the Walker velocity
δφW as a function of αR .

consistent with the nonlinear anisotropic damping terms used
[20,33,34].

Results from numerical integration of these equations of
motion for Bloch and Néel walls are presented in Figs. 1 and 2.
We used parameters consistent with ultrathin films with per-
pendicular anisotropy, namely, α0 = 0.1, Ms = 1 MA/m, 
 =
10 nm, and K⊥ = μ0NxM

2
s /2 with the demagnetization factor

Nx = 0.02 [28]. To study the dynamics of the Dzyaloshinskii
(Néel) wall we assumed a value of Dex = 1 mJ/m2, which is
much stronger than the volume dipolar interaction represented
by K⊥ and is of the same order of magnitude as values deter-
mined by Brillouin light spectroscopy in Pt/Co/Al2O3 films
[35]. As in the discussion on numerical estimates above, we
assumed η = 0.2 nm2 but considered several different values
for the Rashba coefficient αR. The steady-state domain-wall
velocity 〈Ẋ0〉 was computed as a function of the perpendicular
applied magnetic field Hz. In the precessional regime above
Walker breakdown in which φ0(t) becomes a periodic function
in time, 〈Ẋ0〉 is computed by averaging the wall displacement
over several hundred periods of precession.

For the Bloch case [Fig. 1(a)], the Walker field is observed to
increase with the Rashba coefficient, which is consistent with
the overall increase in damping experienced by the domain
wall. However, there are two features that differ qualitatively
from the behavior with linear damping. First, the linear Walker
velocity is not attained for finite αR, where the peak velocity
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FIG. 2. (Color online) Dzyaloshinskii (Néel) wall dynamics.
(a) Steady-state domain-wall velocity 〈Ẋ0〉 as a function of perpen-
dicular applied magnetic field μ0Hz for several values of the Rashba
coefficient αR. The horizontal dashed line indicates the linear Walker
velocity and the arrows indicate the Walker transition. (b) The ratio
between the Walker velocity vW to its linear damping value vW,0 as
a function of αR . (c) The wall angle at the Walker velocity φW as a
function of αR .

at the Walker transition is below the value reached for αR = 0.
This is shown in more detail in Fig. 1(b), where the ratio
between the Walker velocity vW and its linear damping value
vW,0 is shown as a function of αR. The Walker limit is set by
the largest extent to which the wall angle φ0 can deviate from
its equilibrium value φ0,eq. By assuming φ̇ = 0 in the flow
regime, we can determine this limit by rearranging Eqs. (12)
and (13) to obtain the following relationship for the Bloch
wall:

2Hz

NxMs

= −
(

α0 + α3

3
sin2 φ0

)
sin 2φ0. (14)

The angle φ0 = φW for which the right-hand side of this
equation is an extremum determines the Walker limit. In
Fig. 1(c), we present this limit in terms of the deviation angle
δφW ≡ |φW − φ0,eq|, which is shown as a function of αR. As
the Rashba parameter is increased, the maximum wall tilt
possible in the flow regime decreases from the linear damping
value of π/4, which results in an overall reduction in the
Walker velocity. Second, the field dependence of the wall
velocity below Walker breakdown is nonlinear and exhibits a
slight convex curvature, which becomes more pronounced as
αR increases. This curvature can be understood by examining
the wall mobility under fields, which can be deduced from

Eq. (12) by setting φ̇ = 0:

Ẋ0 = γ0


α0 + (α3/3) sin2 φ0
Hz. (15)

Since the angle φ0 for Bloch walls varies from its rest value of
φ0,eq = ±π/2 at zero field to φW at the Walker field, the sin2 φ0

term in the denominator decreases from its maximum value of
sin2 φ0,eq = 1 at rest with increasing applied field and therefore
an increase in the mobility is seen as Hz increases, resulting
in the convex shape of the velocity versus field relation below
Walker breakdown.

It is interesting to note that the nonlinear damping terms
affect the Dzyaloshinskii (Néel) wall motion differently. In
contrast to the Bloch case, the Walker velocity for increasing
αR slightly exceeds the linear damping value, which can be
seen by the arrows marking the Walker transition in Fig. 2(a)
and in detail in Fig. 2(b). In addition, the field dependence of
the velocity exhibits a concave curvature below breakdown,
which can also be understood from Eq. (15) by considering
that φ0 instead deviates from the rest value of φ0,eq = 0 or π

at zero field. As for the Bloch wall case, the deviation angle
at breakdown is determined by the value of φ0 that gives an
extremum for the right-hand side of

2Hz

NxMs

= −
(

α0 + α3

3
sin2 φ0

)(
πDex

2K⊥

cos φ0 + sin 2φ0

)
,

(16)
and is also seen to decrease with increasing Rashba coefficient
[Fig. 2(c)]. In contrast to the Bloch wall case, however,
changes in φW have a comparatively modest effect on the
Walker velocity. The shape of the velocity versus field curve is
consistent with experimental reports of field-driven domain-
wall motion in the Pt/Co (0.6 nm)/Al2O3 system [36], which
possesses a large DMI value [35] and harbors Néel-type
domain-wall profiles at equilibrium [37].

As the preceding discussion shows, the differences in the
field dependence of the wall velocity for the two profiles are
a result of the DMI, rather than the chiral damping term that
is proportional to α2. This was verified by setting α2 = 0 for
the Néel wall case with D �= 0, which did not modify the
overall behavior of the field dependence of the velocity. In
the one-dimensional approximation for the wall dynamics, the
DMI enters the equations of motion like an effective magnetic
field along the x axis, which stabilizes the wall structure by
minimizing deviations in the wall angle φ0(t).

III. VORTICES AND SKYRMIONS

The focus of this section is on the dissipative dynamics
of two-dimensional topological solitons such as vortices and
skyrmions. The equilibrium magnetization profile for these
micromagnetic objects is described by a nonlinear differential
equation similar to the sine-Gordon equation, where the
dispersive exchange interaction is compensated by dipolar
interactions for vortices [38,39] and an additional uniaxial
anisotropy for skyrmions [40]. The topology of vortices and
skyrmions can be characterized by the skyrmion winding
number Q:

Q = 1

4π

∫∫
dx dy m · (∂xm × ∂ym). (17)
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FIG. 3. (Color online) In-plane magnetization fields for vortices
and skyrmions. (a) Vector fields given by φ(x,y) in (18) for different
values of q and c. (b) Vortex and (c) skyrmion for spin structure with
c = 1, q = 1, where the arrows indicate the in-plane components
(mx,y) and the color code gives the perpendicular component of the
magnetization (mz).

While the skyrmion number for vortices (Q = ± 1
2 ) and

skyrmions (Q = ±1) are different, their dynamics are qualita-
tively similar and can be described using the same formalism.
For this reason, vortices and skyrmions will be treated on
equal footing in what follows and distinctions between the
two will only be drawn on the numerical values of the damping
parameters.

A key approximation used for describing vortex or
skyrmion dynamics is the rigid core assumption, where it
is assumed that the spin structure of the soliton remains
unperturbed from its equilibrium state during motion. Within
this approximation, the dynamics is given entirely by the
position of the core in the film plane X0(t) = [X0(t),Y0(t)],
which allows the unit magnetization vector to be parametrized
as

θ (x,y,t) = θ0[‖x − X0(t)‖],
(18)

φ(x,y,t) = q tan−1

[
y − Y0(t)

x − X0(t)

]
+ c

π

2
,

where q is a topological charge and c is the chirality. An
illustration of the magnetization field given by the azimuthal
angle φ(x,y) is presented in Fig. 3. q = 1 corresponds to a
vortex or skyrmion, while q = −1 represents the antivortex or
antiskyrmion.

The dynamics of a vortex or skyrmion in the rigid core
approximation is given by the Thiele equation

G × Ẋ0 + DT · Ẋ0 = − ∂U

∂X0
, (19)

where

G = Msd

γ

∫∫
dx dy sin(θ )(∇θ × ∇φ) (20)

is the gyrovector and U (X0) is the effective potential that is
obtained from the magnetic Hamiltonian by integrating out the
spatial dependence of the magnetization. The damping dyadic
in the Thiele equation DT can be obtained from the dissipation
function in the rigid core approximation W (Ẋ0), which is
defined in the same way as in Eq. (5) but with the ansatz given
in Eq. (18). For this system, it is more convenient to evaluate the
dyadic by performing the integration over all space after taking
derivatives with respect to the core velocity. In other words,
the dyadic can be obtained using the Lagrangian formulation
by recognizing that

DT · Ẋ0 = Msd

2γ

∫∫
dx dy

∂

∂Ẋ0

[
ṁi Dij

LL(m) ṁj

]
. (21)

By using polar coordinates for the spatial coordinates,
(x,y) = (r cos ϕ,r sin ϕ), assuming translational invariance in
the film plane, and integrating over ϕ, the damping dyadic is
found to be

DT = Msd

γ

(
(α0D0 + α1D1 + α3D3)I

+α2D2

[
a11 0
0 a22

])
, (22)

where I is the 2 × 2 identity matrix and the dimensionless
damping constants are defined as α1 ≡ η/r2

c , α2 ≡ η α̃R/rc,
and α3 ≡ η α̃2

R, in analogy with the domain-wall case where
the core radius rc plays the role here as the characteristic length
scale. The coefficients Di depend on the core profile and are
given by

D0 = π

∫ ∞

0
dr

(
r(∂rθ0)2 + sin2 θ0

r

)
, (23)

D1 = 2πr2
c

∫ ∞

0
dr

1

r
(∂rθ0)2 sin2 θ0, (24)

D2 = 2πrc

∫ ∞

0
dr

1

r
(∂rθ0) sin θ0[r(∂rθ0) cos θ0 + sin θ0],

(25)

D3 = π

∫ ∞

0
dr

(
r(∂rθ0)2 cos2 θ0 + sin2 θ0

r

)
, (26)

where the expression for D0 is a known result but D1, D2,
and D3 are new terms that arise from the nonlinear anisotropic
damping due to RSOC.

The coefficients a11 and a22 are configuration dependent
and represent the chiral component of the Rashba-induced
damping. For vortex-type spin textures (c = 1,3 and q = 1),
a11 = a22 = 0, which indicates that the α2 term plays no
role for such configurations. This is consistent with the
result for Bloch domain walls discussed previously since the
vortex-type texture [Fig. 3(b)], particularly the vortex-type
skyrmion [Fig. 3(c)], can be thought of as being analogous
to a spin structure generated by a 2π revolution of a Bloch
wall about an axis perpendicular to the film plane. The rigid
core approximation implies that fluctuations about the ground
state are neglected, which is akin to setting δφ(t) = 0 in
Eq. (8). As such, no contribution from α2 is expected for
vortex-type textures. On the other hand, a finite contribution
appears for hedgehog-type vortices and skyrmions (q = 1),
where a11 = a22 = 1 for c = 0 and a11 = a22 = −1 for c = 2.
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TABLE I. Coefficients a11 and a22 of the chiral damping term in
Eq. (22) for different vortex/skyrmion charges q and chirality c.

q = 1 q = −1

c 0 1 2 3 0 1 2 3
a11 1 0 −1 0 −1 −1 1 1
a22 1 0 −1 0 1 −1 −1 1

This can be understood with the same argument by noting
that hedgehog-type textures can be generated by revolving
Néel-type domain walls. A summary of these coefficients is
given in Table I.

For antivortices (q = −1), it is found that the coefficients
aii are nonzero for all winding numbers considered. We can
understand this qualitatively by examining how the magneti-
zation varies across the core along two orthogonal directions.
For example, for c = 0, the variation along the x and y axes
across the core are akin to two Néel-type walls of different
chiralities, which results in nonvanishing contributions to a11

and a22 but with opposite sign. The sign of these coefficients
depends on how these axes are oriented in the film plane,
as witnessed by the different chiralities c in Fig. 3. Such
damping dynamics is therefore strongly anisotropic, which
may have interesting consequences on the rotational motion
of vortex-antivortex dipoles, for example, where the antivortex
configuration oscillates between the different c values in time
[41].

For vortex structures, we can provide numerical estimates
of the different damping contributions αiDi by using the Usov
ansatz for the vortex core magnetization

cos θ0 =
r2
c −r2

r2
c +r2 , r � rc

0, r > rc.
(27)

Let L represent the lateral system size. The coefficients Di are
then found to be D0 = π [2 + ln (L/rc)], D1 = D2 = 14π/3,
and D3 = π [4/3 + ln (L/rc)]. We note that for D0 and D3,
the system size L and core radius rc appear as cutoffs for the
divergent 1/r term in the integral. By assuming parameters
of α0 = 0.1, η = 0.05 nm2, and αR = 0.1 eV nm, along with
typical scales of rc = 10 nm and L = 1 μm, the damping
terms can be evaluated numerically to be α0D0 ≈ 2.1, α1D1 ≈
0.0073, α2D2 ≈ 0.19, and α3D3 ≈ 6.4. As for the domain
walls, the Rashba term α3D3 is the dominant contribution and
is of the same order of magnitude as the linear damping term,
while the chiral term α2D2 is an order of magnitude smaller
and the nonlinear term α1D1 is negligible in comparison.

For skyrmion configurations, a similar ansatz can be used
for the core magnetization

cos

(
θ0

2

)
=

r2
c −r2

r2
c +r2 , r � rc

0, r > rc.
(28)

We note that this differs from the “linear” profiles discussed
elsewhere [40], but the numerical differences are small and
do not influence the qualitative features of the dynamics. The
advantage of the ansatz in Eq. (28) is that the integrals for Di

have simple analytical expressions. Because spatial variations
in the magnetization for a skyrmion are localized only to the
core, in contrast to the circulating in-plane moments of vortices

that extend across the entire system, the damping constants Di

have no explicit dependence on the system size. By using
Eq. (28), we find D0 = D3 = 16π/3, D1 = 496π/15, and
D2 = 52π/5. By using the same values of α0, η, and αR as for
the vortices in the preceding paragraph, we find α0D0 ≈ 1.7,
α1D1 ≈ 0.052, α2D2 ≈ 0.43, and α3D3 ≈ 3.3.

IV. DISCUSSION AND CONCLUDING REMARKS

A clear consequence of the nonlinear anisotropic damping
introduced in Eq. (3) is that it provides a mechanism by
which the overall damping constant, as extracted from domain-
wall experiments, for example, can differ from the value
obtained using linear-response methods such as ferromagnetic
resonance [19]. However, the Rashba term can also affect the
ferromagnetic resonance linewidth in a nontrivial way. To see
this, we consider the effect of the damping by evaluating the
dissipation function associated with a spin wave propagating
in the plane of a perpendicularly magnetized system with an
amplitude b(t) and wave vector k||. The spin wave can be
expressed as m = [b(t) cos(k|| · r||),b(t) sin(k|| · r||),1], which
results in a dissipation function per unit volume of

Wsw = Ms

2γ
ḃ(t)2[α0 + α3 + η b(t)2‖k||‖2], (29)

where a term proportional to the chiral part ηα̃R spatially
averages out to zero. The Rashba contribution α3 ≡ ηα̃2

R leads
to an overall increase in the damping for linear excitations
and plays the same role as the usual Gilbert term α0 in
this approximation, which allows us to assimilate the two
terms as an effective FMR damping constant αFMR ≈ α0 + α3.
On the other hand, the nonlinear feedback term proportional
to η is only important for large spin-wave amplitudes and
depends quadratically on the wave vector. This is consistent
with recent experiments on permalloy films (in the absence of
RSOC) in which the linear Gilbert damping was recovered
in ferromagnetic resonance while nonlinear contributions
were only seen for domain-wall motion [19]. This result
also suggests that the large damping constant in ultrathin
Pt/Co/Al2O3 films as determined by similar time-resolved
magneto-optical microscopy experiments, where it is found
that αFMR = 0.1–0.3 [24], may partly be due to the RSOC
mechanism described here (although dissipation resulting
from spin pumping into the platinum underlayer is also
likely to be important [42]). Incidentally, the nonlinear term
η b(t)2 may provide a physical basis for the phenomenological
nonlinear damping model proposed in the context of spin-
torque nano-oscillators [43].

For vortices and skyrmions, the increase in the overall
damping due to the Rashba term α3 can have important
consequences for their dynamics. The gyrotropic response to
any force, as described by the Thiele equation in Eq. (19),
depends on the overall strength of the damping term. This
response can be characterized by a deflection angle θH that
describes the degree to which the resulting displacement
is noncollinear with an applied force. This is analogous
to a Hall effect. By neglecting the chiral term α2D2, the
deflection or Hall angle can be deduced from Eq. (19)
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to be

tan θH = G0

α0D0 + α1D1 + α3D3
, (30)

where G0 = 2π for vortices and G0 = 4π for skyrmions.
Consider the skyrmion profile and the magnetic parameters
discussed in Sec. III. With only the linear Gilbert damping
term (α0D0) the Hall angle is found to be θH = 82.3◦, which
underlies the largely gyrotropic nature of the dynamics. If
the full nonlinear damping is taken into account [Eq. (30)],
we find θH = 68.3◦, which represents a significant reduction
in the Hall effect and a greater Newtonian response to an
applied force. Aside from a quantitative increase in the overall
damping, the presence of the nonlinear terms can therefore
affect the dynamics qualitatively. Such considerations may be
important for interpreting current-driven skyrmion dynamics
in racetrack geometries, where the interplay between edge
repulsion and spin torques is crucial for determining skyrmion
trajectories [44,45].

Finally, we conclude by commenting on the relevance of
the chiral-dependent component of the damping term α2. It has
been shown theoretically that the Rashba spin-orbit coupling

leading to Eq. (3) also gives rise to an effective chiral interac-
tion of the Dzyaloshinskii-Moriya form [34]. This interaction
is equivalent to the interface-driven form considered earlier,
which favors monochiral Néel wall structures in ultrathin
films with perpendicular magnetic anisotropy. Within this
picture, a sufficiently strong Rashba interaction should only
favor domain-wall or skyrmion spin textures with one given
chirality as determined by the induced Dzyaloshinskii-Moriya
interaction. So, while some non-negligible differences in the
chiral damping between vortices and skyrmions of different
chiralities were found, probing the dynamics of solitons
with distinct chiralities may be very difficult to achieve
experimentally in material systems of interest.
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