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Spin-wave localization in disordered magnets
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The effect of disorder on magnonic transport in low-dimensional magnetic materials is studied in the framework
of a classical spin model. Numerical investigations give insight into scattering properties of the systems and show
the existence of Anderson localization in one dimension and weak localization in two dimensions, potentially
affecting the functionality of magnonic devices.
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The propagation of spin waves [1] is in the focus of
modern research because of its importance for spin caloritronic
applications [2–6], and for future information processing
devices which might either rely on magnonic [7] instead
of electronic transport or combine electronic with magnonic
transport. The dynamics of spin waves is mostly described by
the Landau-Lifshitz-Gilbert equation, a nonlinear equation of
motion that describes wave propagation as well as some degree
of dissipation, included phenomenologically either following
Landau and Lifshitz [8] or Gilbert [9]. This dissipation limits
the coherent wave propagation to a spatial scale set by the
propagation length ζ that depends on the material properties,
especially the damping constant [10,11]. The microscopic
origin of the damping is inelastic scattering with, e.g., phonons
[12]. Static imperfections of the magnetic crystal, on the other
hand, induce elastic scattering, which has two effects. First,
it turns ballistic into diffusive transport, and second, it might
suppress transport completely, as first shown by Anderson in
1958 for spin diffusion in disordered lattices [13].

Meanwhile, it has been established for many different kinds
of waves that quenched disorder in combination with phase
coherence can lead to a complete suppression of transport,
confining eigenmodes to spatial regions of a finite extent given
by the localization length ξloc [14]. In addition, there is also
the weak-localization regime where diffusive transport still
prevails, but mesoscopic effects of phase-coherent scattering
can be observed [15]. Arguably, the most famous phenomenon
of that kind is coherent backscattering (CBS), an effect that
relies on long-range phase coherence and can therefore be seen
as a gauge of the microscopic processes that eventually entail
Anderson localization. CBS produces an enhanced intensity
for the elastic scattering of an excitation with wave vector
k0 into the opposite direction −k0, and has been directly
observed with, e.g., light [16–19], acoustic [20,21], seismic
[22], as well as matter waves [23]. In contrast, localization
phenomena for spin waves have been studied rather scarcely,
mostly in amorphous materials with random anisotropy
[24–26] and by analogy with hard-core boson excitations
on disordered lattices [27–30]. But since different types of
defects are very common in magnetic crystals, it is important
to study their consequences for magnonic transport. Indeed,
a localization-induced breakdown of regular transport would
severely hamper the functionality of real-world devices. It is
the purpose of this paper to study localization phenomena with
spin waves on the basis of numerical calculations. In particular,
it is important to determine the length scale of Anderson

localization and compare it with dissipative mechanisms
which also limit magnonic transport [10,11]. Localization
effects are known to be most relevant in low-dimensional
systems. We therefore investigate strong localization in one
dimension and CBS in two dimensions. Also, experimental
setups include often thin films or nanowires, which might be
treated as low-dimensional materials as soon as their extent is
of the order of or lower than the wavelength of the magnons.

We study transport of magnons modeled as classical spin
waves within the framework of an atomistic spin model
[31]. The model comprises dimensionless magnetic moments
(called “spins”) Sl = μl/μS on a lattice of sites rl , l =
1, . . . ,N , with μl the local magnetic moment and μS the
reference value for the magnetic moment in the clean material.
Each spin Sl has Nnb neighbors Sm, m = 1,...,Nnb at positions
am relative to site l. The Hamiltonian of the system realizes a
Heisenberg-type spin model

H=
N∑

n=1

[
−J

2

Nnb∑
m=1

εnεmSn·Sm−dzεn

(
Sn

z

)2−μSεnBn·Sn

]
, (1)

with ferromagnetic exchange interaction J > 0, a uniaxial
anisotropy constant dz, and an external magnetic field Bl .
εl = 0,1 states the occupation of a site, which will be needed
for defects. The spins evolve in time according to a torque
equation,

∂Sl

∂t
= − γ

μS
Sl × Hl , Hl = −∂H

∂Sl
, (2)

where γ is the magnitude of the gyromagnetic ratio. This
equation of motion corresponds to the Landau-Lifshitz (LL)
equation in the limit of vanishing damping, where the total
energy is conserved. The microscopic time scale of this
model is tJ = μS/γ J (≈50 fs for iron). The natural order
of magnitude for distances is the lattice constant a ≈ 1 Å, and
for local magnetic fields J/μS ≈ 100 T.

In the following we take the system to be globally mag-
netized along z by choosing a small anisotropy 0 < dz � J .
Small-amplitude linear excitations, known as spin waves or
magnons, are then confined to the xy plane, S l = Sl

x − iSl
y ,

such that the local wave intensity |S l|2 measures the in-plane
magnetization. It will also prove fruitful to analyze the
momentum-space density |Sk|2, where Sk denotes the Fourier
transform of S l . In the clean, simple cubic, d-dimensional
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lattice under consideration, the magnon dispersion reads

ωk = t−1
J

[
2dz

J
+

2d∑
m=1

[1 − cos(k · am)]

]
. (3)

For infinitesimal anisotropy dz � J , these spin waves are the
gapless Goldstone modes of the ferromagnetic phase.

The discrete translation symmetry of the lattice is broken by
the presence of defects. We consider two kinds of uncorrelated
defects, distributed with number density � on randomly chosen
sites rj . One kind is a local magnetic field Bj = (0,0,B) along
the easy axis, with Bl = 0 everywhere else. (So here εl =
1 ∀l.) The other kind is nonmagnetic substitutional disorder
with missing magnetic moments, εj = 0 at defects sites
and with εl = 1 everywhere else. Since we investigate finite
systems, calculated quantities usually depend on the defect
configuration, and all results presented below will include an
ensemble average, noted 〈...〉.

We study the out-of-equilibrium, long-time spin-wave dy-
namics by integrating the equations of motion (1) numerically
using an implicit Adams scheme. The initial condition at time
t = 0 is a quasimonochromatic Gaussian wave packet

S l
0 = A exp

[
ik0 · rl − (rl − r0)2/4σ 2

0

]
, (4)

with amplitude A (in the range 0.01 . . . 0.1) and rms width σ0

around the initial position r0, launched with finite wave vector
k0 into the bulk disordered lattice.

In a first step, we study a one-dimensional spin chain, where
disorder should manifest as strong localization. We model
defects by a random local field along z, taking a finite value
B with probability � and vanishing with the complementary
probability 1 − �. [While the other defect model of local
missing spins is arguably more realistic in the bulk, we do
not consider it for the one-dimensional (1D) case since it
breaks the exchange coupling and thus trivially confines the
excitations to disconnected segments.] Our 1D simulation
results are summarized in Fig. 1. Initially, the rms width of
the wave-packet spreads in time, as shown in panel (a). At
longer times, the width saturates and the spreading comes to a
complete halt, which is a hallmark of localization. As a rule,
the higher the defect density, the stronger the localization effect
and the smaller the final extent. The localization scenario is

further corroborated by the asymptotic in-plane magnetization
profiles, plotted in panel (b) for different values of defect
concentration and defect strength on a log-linear scale. All
profiles show the same characteristic exponential decrease,
and a fit to the expected asymptotic form exp(−|r − r0|/4ξloc)
[32–34] yields the localization length ξloc. The conventional
factor 4 here emphasizes that the ensemble-averaged intensity
decays more slowly than the typical (i.e., most probable)
intensity, which is approximately log-normal distributed and
decreases as exp(−|r − r0|/ξloc) [32,35]. Note that the local-
ization lengths found in our simulations are at the order of
102–103 a (≈ 0.01–0.1 μm) for the chosen parameters and are
therefore far below magnon propagation lengths ζ limited by
dissipation, which can be in the range of 104 a (≈1 μm) for
small damping constants α = 10−3 . . . 10−4 [10].

The height of the wings depends on the distribution details
near the center, which are found to deviate from the simple
exponential cusp predicted in Ref. [33]. This is not surprising,
given that our simulations do not match the assumptions of the
analytical calculations. Notably, the wave packet starts with
finite initial velocity and covers a certain range of momenta
and energies. Moreover, the disorder parameters situate the
simulation far from the perturbative regime. In particular, ξloc

cannot be expected to be given by the lowest-order term of
an expansion in the defect strength of independent scatterers.
Interestingly, deviations from the profile predicted by Ref. [33]
have also been observed in numerical simulations of matter
waves in uncorrelated on-site disorder [36]. In any case,
the strong disorder prevents the system from reaching its
equilibrium configuration (all spins aligned along z). Instead,
an in-plane magnetization remains forever written into the spin
chain, thus highlighting the lack of ergodicity, one of the chief
manifestations of localization [37–40].

In a second step we analyze magnon scattering in a two-
dimensional (2D) disordered lattice with the aim of assessing
weak localization effects. Since in magnetic materials non-
magnetic defects are rather common, we place zero spins on
randomly chosen lattice sites. The only parameter describing
the degree of disorder is therefore the defect density, or
percentage of defect sites, which we take to be � = 0.1 for the
data presented below. In order to gain a better understanding
of the microscopic scattering processes at work for this type

FIG. 1. (Color online) Strong localization of a spin-wave packet, launched with initial wave vector k0 = 0.3/a (in units of lattice spacing
a) and initial width σ0 = 50/

√
2 a in a disordered 1D chain with a local field B present on a fraction � of random sites. (a) rms wave-packet

spread σr = [〈r2〉 − 〈r〉2]1/2 as function of time for a defect field strength of B = 0.4 J/μS. At long times, magnonic transport comes to a halt.
(b) Asymptotic in-plane magnetization profiles show exponential localization over the localization length ξloc.
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FIG. 2. (Color online) Clean dispersion relation ωk [Eq. (3)] and
elastic scattering rate 1/ωkτs for a particular set of wave vectors
inside the first Brillouin zone of a simple cubic lattice. Data points are
obtained for a missing-spin defect density of � = 0.1 and are averaged
over 20 disorder configurations. The scattering rate τ−1

s vanishes at
the central � point. Strong scattering occurs for intermediate wave
vectors.

of disorder, we study the magnon dynamics in k space by
evaluating Ik(t) = 〈|Sk(t)|2〉. The initial wave packet, Eq. (4),
is a peak of width σ−1

0 centered at k0. Due to elastic scattering
of the defects, the initial wave packet is depleted and the
peak height decreases as exp(−t/τs), where τs is the elastic
scattering mean free time. This characteristic time can be
measured by a fit to the observed exponential decay, thus
revealing whether scattering can be qualified weak (ωkτs � 1)
or must be considered strong (ωkτs ∼ 1).

Figure 2 plots the dispersion, Eq. (3), together with the
reduced scattering rate 1/ωkτs for selected wave vectors in the
first Brillouin zone. Near the symmetry point � in the band
center, the scattering amplitude from k to k′ is proportional
to k · k′, as characteristic of p-wave scattering. According
to Fermi’s golden rule [15], considering that the density of
states in 2D is constant at low energy, one should expect the
scattering rate to vanish like |k|4. And indeed, a quadratic
behavior of 1/ωkτs around the origin is consistent with the
data. For comparison, we also determined the scattering rate
for the local magnetic field defects, which produce an isotropic
s-wave scattering amplitude. Consequently, the scattering rate
decreases more slowly with |k|, but vanishes nonetheless.

At first sight, this is at odds with Ref. [24] when translated
from a three-dimensional (3D) to our 2D case with its
constant density of states. But, as k → 0, the independent-
scatterer approximation used in Ref. [24] breaks down, and
collective scattering from impurity clusters eventually leads to
a vanishing scattering rate, as expected from general principles
for Goldstone modes at low energy [41]. The local maxima of
the scattering rate roughly halfway through the band, signaling
strong scattering, may be traced back to a van Hove divergence
of the density of states at frequency ω = 4 t−1

J , shifted down
in energy and rounded by the disorder.

For further investigation of the strong-scattering regime, we
take σ0 = 150/

√
2 a and ak0 = (0,0.56π ) where τs ≈ 1.59 tJ

(see highlighted point in Fig. 2), such that the elastic scattering
mean-free path ls = |vk|τs ≈ 3.1 a (vk = ∂kωk is the group
velocity). Due to multiple elastic scattering, partial wave
amplitudes appear in modes k with the same frequency
ωk = ωk0 , up to a disorder broadening of order τ−1

s . Thus
we can follow the progressive, diffusive redistribution of wave
vectors over the energy shell. For a classical random-walk
model, i.e., phase-incoherent propagation, one would expect
a homogeneous distribution over all accessible modes as a
consequence of ergodicity. A failure of ergodicity, instead,
should show up as distinctive features in the wave-vector
distribution Ik.

Figure 3(a) shows Ik(t) at a time t = 10 tJ � τs well in the
diffusive regime. Above the diffusive background of height
Ibg, it clearly features the CBS peak at −k0, whose presence
proves that the memory of the initial condition is preserved for
very long times. Starting from a pure plane-wave excitation,
the peak contrast C = (I−k0 − Ibg)/Ibg with respect to the
background should be exactly unity and constant in time. This
signal has to be convolved with the initial k-space distribution
following from Eq. (4), and therefore is expected to decrease
as [42]

C(t) = 4σ 2
0

3σ 2
0 + σ 2(t)

, (5)

where the diffusive spread σ 2(t) = σ 2
0 + |vk|2τtrt increases

linearly in time. In the case investigated here, we determine

FIG. 3. (Color online) Spin-wave intensity Ik = 〈|Sk(t)|2〉 in 2D k space (average over 800 defect configurations) at times (a) t = 10 tJ
and (b) t = 1000 tJ . The initial wave packet can still be seen in (a) as the narrow peak at ak0 = (0,0.56π ). The CBS peak at −k0 is well visible
above the diffusive background, distributed along the energy shell ωk = ωk0 . The width and contrast C of the CBS peak decrease in time.
(c) Time evolution of the contrast for different settings, evaluating the impact of a weak nonlinearity (A = 0.1) and finite damping (α > 0). The
dashed line shows the diffusive prediction [Eq. (5)] for the linear case. Whereas the damping does not affect the CBS contrast, nonlinearities
induce dephasing and reduce the CBS contrast noticeably.

014411-3



MARTIN EVERS, CORD A. MÜLLER, AND ULRICH NOWAK PHYSICAL REVIEW B 92, 014411 (2015)

the transport time τtr using a Green-Kubo relation

〈
vk · vk0

〉
(t) := 1

N
∑

k∈B.Z.

Ik(t) vk · vk0 ∝ exp(−t/τtr), (6)

where N = ∑
k Ik is the (time-independent) normalization.

For the chosen parameters we obtain τtr ≈ 1.3 tJ . Figure 3(c)
shows the observed contrast, together with the prediction
(5), for different simulation parameters. The agreement is
excellent for a small spin-wave amplitude A = 0.01. For a
larger amplitude A = 0.1, the CBS contrast decays faster,
a behavior that we attribute to the dephasing caused by the
nonlinearity (such effects are known for light [43] and matter
waves [44], for example).

The third set of parameters includes finite damping. Indeed,
more realistic dynamic models for spin waves include the
Gilbert damping via an additional term in the Landau-Lifshitz-
Gilbert (LLG) equation, proportional to the damping constant
α [31]. The observed contrast of the CBS peak, for the chosen
value of α = 1 × 10−4, remains unchanged compared to the
undamped case. This is in agreement with the reciprocity
principle, well known in optics [45], namely, that uniform
damping lowers the overall intensity but preserves the CBS
contrast compared to the background.

In summary, we have numerically studied the influence of
random defects on the propagation of classical spin waves
in low-dimensional disordered magnets. We find evidence
for strong (Anderson) localization of spin waves in a one-
dimensional spin chain. In a two-dimensional disordered lat-
tice, a clear coherent backscattering signal proves the presence

of weak localization effects—a well-known precursor for
Anderson localization. These findings underpin the importance
of defect-related effects on magnonic transport and define
limits for the propagation of spin waves in addition to the
usually assumed Gilbert damping. In dimensions higher than
1, the crossover to the strongly localized regime is hard to reach
by direct numerical integration because it typically occurs at
much longer times and for much larger system sizes. If one
tries to increase the fraction � of missing spins too much, the
lattice becomes disconnected at the percolation threshold and
the excitations become trivially confined to the percolation
clusters, which was not the regime of interest here. In order to
compute localization lengths in the linearized regime (together
with critical properties of possible localization-delocalization
transitions in higher dimensions), the method of choice
is a transfer-matrix approach combined with a finite-size
scaling analysis [46,47]. Nonlinearities, on the other hand,
generically suppress the onset of Anderson localization and
lead to subdiffusive behavior instead [48]. The quantitative
investigation of such effects in substitutionally disordered
magnets poses interesting challenges for future work.
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Germany, within the framework of the bwHPC program. Fi-
nancial support by Deutsche Forschungsgemeinschaft (DFG)
via SPP 1538, “Spin Caloric Transport,” and SFB 767,
“Controlled Nanosystems: Interaction and Interfacing to the
Macroscale,” is gratefully acknowledged.

[1] Magnonics. From Fundamentals to Applications, edited by
S. O. Demokritov and A. N. Slavin (Springer, Berlin, 2013).

[2] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11,
391 (2012).

[3] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda,
T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer,
S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).

[4] F. Schlickeiser, U. Ritzmann, D. Hinzke, and U. Nowak,
Phys. Rev. Lett. 113, 097201 (2014).

[5] W. Jiang, P. Upadhyaya, Y. Fan, J. Zhao, M. Wang, L.-T. Chang,
M. Lang, K. L. Wong, M. Lewis, Y.-T. Lin, J. Tang, S. Cherepov,
X. Zhou, Y. Tserkovnyak, R. N. Schwartz, and K. L. Wang, Phys.
Rev. Lett. 110, 177202 (2013).

[6] P. Yan, X. S. Wang, and X. R. Wang, Phys. Rev. Lett. 107,
177207 (2011).

[7] A. A. Serga, A. V. Chumak, and B. Hillebrands, J. Phys. D:
Appl. Phys. 43, 264002 (2010).

[8] L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
[9] T. L. Gilbert, Phys. Rev. 100, 1243 (1955).

[10] U. Ritzmann, D. Hinzke, and U. Nowak, Phys. Rev. B 89, 024409
(2014).

[11] S. Hoffman, K. Sato, and Y. Tserkovnyak, Phys. Rev. B 88,
064408 (2013).

[12] H. Ebert, S. Mankovsky, D. Ködderitzsch, and P. J. Kelly, Phys.
Rev. Lett. 107, 066603 (2011).

[13] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[14] 50 Years of Anderson Localization, edited by E. Abrahams
(World Scientific, Singapore, 2010).

[15] E. Akkermans and G. Montambaux, Mesoscopic Physics
of Electrons and Photons (Cambridge University Press,
Cambridge, UK, 2007).

[16] Y. Kuga and A. Ishimaru, J. Opt. Soc. Am. A 1, 831
(1984).

[17] M. P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692
(1985).

[18] P.-E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).
[19] M. Gurioli, F. Bogani, L. Cavigli, H. Gibbs, G. Khitrova, and

D. S. Wiersma, Phys. Rev. Lett. 94, 183901 (2005).
[20] A. Tourin, A. Derode, P. Roux, B. A. van Tiggelen, and M. Fink,

Phys. Rev. Lett. 79, 3637 (1997).
[21] R. L. Weaver and O. I. Lobkis, Phys. Rev. Lett. 84, 4942

(2000).
[22] E. Larose, L. Margerin, B. A. van Tiggelen, and M. Campillo,

Phys. Rev. Lett. 93, 048501 (2004).
[23] F. Jendrzejewski, K. Müller, J. Richard, A. Date, T. Plisson, P.

Bouyer, A. Aspect, and V. Josse, Phys. Rev. Lett. 109, 195302
(2012).

[24] R. Bruinsma and S. N. Coppersmith, Phys. Rev. B 33, 6541
(1986).

[25] R. A. Serota, Phys. Rev. B 37, 9901 (1988).
[26] V. S. Amaral, B. Barbara, J. B. Sousa, and J. Filippi, Europhys.

Lett. 22, 139 (1993).

014411-4

http://dx.doi.org/10.1038/nmat3301
http://dx.doi.org/10.1038/nmat3301
http://dx.doi.org/10.1038/nmat3301
http://dx.doi.org/10.1038/nmat3301
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1038/nmat2856
http://dx.doi.org/10.1103/PhysRevLett.113.097201
http://dx.doi.org/10.1103/PhysRevLett.113.097201
http://dx.doi.org/10.1103/PhysRevLett.113.097201
http://dx.doi.org/10.1103/PhysRevLett.113.097201
http://dx.doi.org/10.1103/PhysRevLett.110.177202
http://dx.doi.org/10.1103/PhysRevLett.110.177202
http://dx.doi.org/10.1103/PhysRevLett.110.177202
http://dx.doi.org/10.1103/PhysRevLett.110.177202
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1103/PhysRevLett.107.177207
http://dx.doi.org/10.1088/0022-3727/43/26/264002
http://dx.doi.org/10.1088/0022-3727/43/26/264002
http://dx.doi.org/10.1088/0022-3727/43/26/264002
http://dx.doi.org/10.1088/0022-3727/43/26/264002
http://dx.doi.org/10.1103/PhysRevB.89.024409
http://dx.doi.org/10.1103/PhysRevB.89.024409
http://dx.doi.org/10.1103/PhysRevB.89.024409
http://dx.doi.org/10.1103/PhysRevB.89.024409
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1103/PhysRevB.88.064408
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRevLett.107.066603
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1364/JOSAA.1.000831
http://dx.doi.org/10.1364/JOSAA.1.000831
http://dx.doi.org/10.1364/JOSAA.1.000831
http://dx.doi.org/10.1364/JOSAA.1.000831
http://dx.doi.org/10.1103/PhysRevLett.55.2692
http://dx.doi.org/10.1103/PhysRevLett.55.2692
http://dx.doi.org/10.1103/PhysRevLett.55.2692
http://dx.doi.org/10.1103/PhysRevLett.55.2692
http://dx.doi.org/10.1103/PhysRevLett.55.2696
http://dx.doi.org/10.1103/PhysRevLett.55.2696
http://dx.doi.org/10.1103/PhysRevLett.55.2696
http://dx.doi.org/10.1103/PhysRevLett.55.2696
http://dx.doi.org/10.1103/PhysRevLett.94.183901
http://dx.doi.org/10.1103/PhysRevLett.94.183901
http://dx.doi.org/10.1103/PhysRevLett.94.183901
http://dx.doi.org/10.1103/PhysRevLett.94.183901
http://dx.doi.org/10.1103/PhysRevLett.79.3637
http://dx.doi.org/10.1103/PhysRevLett.79.3637
http://dx.doi.org/10.1103/PhysRevLett.79.3637
http://dx.doi.org/10.1103/PhysRevLett.79.3637
http://dx.doi.org/10.1103/PhysRevLett.84.4942
http://dx.doi.org/10.1103/PhysRevLett.84.4942
http://dx.doi.org/10.1103/PhysRevLett.84.4942
http://dx.doi.org/10.1103/PhysRevLett.84.4942
http://dx.doi.org/10.1103/PhysRevLett.93.048501
http://dx.doi.org/10.1103/PhysRevLett.93.048501
http://dx.doi.org/10.1103/PhysRevLett.93.048501
http://dx.doi.org/10.1103/PhysRevLett.93.048501
http://dx.doi.org/10.1103/PhysRevLett.109.195302
http://dx.doi.org/10.1103/PhysRevLett.109.195302
http://dx.doi.org/10.1103/PhysRevLett.109.195302
http://dx.doi.org/10.1103/PhysRevLett.109.195302
http://dx.doi.org/10.1103/PhysRevB.33.6541
http://dx.doi.org/10.1103/PhysRevB.33.6541
http://dx.doi.org/10.1103/PhysRevB.33.6541
http://dx.doi.org/10.1103/PhysRevB.33.6541
http://dx.doi.org/10.1103/PhysRevB.37.9901
http://dx.doi.org/10.1103/PhysRevB.37.9901
http://dx.doi.org/10.1103/PhysRevB.37.9901
http://dx.doi.org/10.1103/PhysRevB.37.9901
http://dx.doi.org/10.1209/0295-5075/22/2/011
http://dx.doi.org/10.1209/0295-5075/22/2/011
http://dx.doi.org/10.1209/0295-5075/22/2/011
http://dx.doi.org/10.1209/0295-5075/22/2/011


SPIN-WAVE LOCALIZATION IN DISORDERED MAGNETS PHYSICAL REVIEW B 92, 014411 (2015)

[27] M. Ma, B. I. Halperin, and P. A. Lee, Phys. Rev. B 34, 3136
(1986).

[28] L. Zhang, Phys. Rev. B 47, 14364 (1993).
[29] X. Yu and M. Müller, Ann. Phys., 337, 55 (2013).
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