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Physical states and finite-size effects in Kitaev’s honeycomb model:
Bond disorder, spin excitations, and NMR line shape
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Kitaev’s compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are
dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for
finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi,
and D. Loss [Phys. Rev. B 84, 165414 (2011)]. Certain physical observables acquire large finite-size effects, in
particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless
phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic
spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the
solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also
predict a transition to a random-flux state with increasing disorder.
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I. INTRODUCTION

Frustrated magnetism is an exciting field of research
in condensed matter physics. Particular attention has been
devoted to so-called spin-liquid states [1]: In a stringent
definition, these are zero-temperature states of local-moment
systems with half-odd-integer spin per crystallographic unit
cell which are characterized by the absence of any spontaneous
symmetry breaking. Typically, the low-energy description of
such states involves nontrivial elementary excitations with
fractional quantum numbers which are coupled to an emergent
gauge field.

In a seminal paper [2], Kitaev proposed a model of quantum
spins 1/2 on a two-dimensional honeycomb lattice, subject to
a particular type of anisotropic exchange interaction, often
dubbed “compass” interactions [3]. This model is exactly
solvable, thanks to an infinite set of conserved quantities.
It realizes a nontrivial spin-liquid state which, depending
on the interaction parameters, can be gapless or gapped.
Its elementary excitations are dispersing spinless “matter”
fermions which are coupled to a frozen Z2 gauge field. By
now, many properties of the Kitaev model have been studied,
including static [2] and dynamic [4,5] spin correlations as well
as the physics of isolated defects [6–8]. In addition, variants
of the Kitaev model on other lattices, both in two [9–13]
and three [14–16] space dimensions, have been discussed.
In all cases, the most popular analytical treatment of the
compass interactions utilizes a Majorana representation of
spins. Subtleties in dealing with the corresponding enlarged
Hilbert space have been pointed out [2,9,17].

On the materials side, oxides of the family A2IrO3, with
magnetic iridium ions subject to strong spin-orbit coupling,
have been proposed [18] to realize an exchange Hamiltonian
of Kitaev type, supplemented by additional spin-symmetric
Heisenberg interactions. The resulting Heisenberg-Kitaev
model has been investigated extensively [18–24]: While the
spin liquid is stable to small admixtures of Heisenberg
interactions, larger perturbations destroy it in favor of a variety
of magnetically ordered phases. Experimentally, both Na2IrO3

and Li2IrO3 have been found to display magnetic order at low
temperatures [25–27], and it has been speculated that pressure

might be used to tune them towards the spin-liquid regime.
However, the precise microscopic Hamiltonian describing the
magnetism in A2IrO3 is under debate [22,28–33].

In this paper, we consider the honeycomb-lattice Kitaev
model with random-magnitude exchange interactions, i.e.,
bond randomness. The model remains exactly solvable and
thus belongs to the rare cases of exactly solvable random spin
models in dimensions d � 2. (Brief discussions of disorder in
the Kitaev model have been given in Refs. [7] and [34], and
a Kitaev-style chiral spin-liquid model with random exchange
was considered in Ref. [35].) We shall utilize the Majorana-
fermion representation to investigate the magnetic response of
the bond-disordered Kitaev spin liquid, in particular the NMR
line shape. Disorder is treated exactly via finite-size exact
diagonalization.

Particular attention is paid to the proper selection of physi-
cal states in the Majorana representation [17], which results in
a condition on the parity of matter fermion excitations. While
this condition generally depends on both the flux configuration
and the system geometry, we are able to prove that, for clean
systems with periodic boundary conditions and interaction
parameters in the gapless phase, this parity must always be
odd in the flux-free sector. Hence, the physical ground state is
not fermion-free, but contains one matter fermion excitation.
As we will show, this implies large finite-size effects for many
observables. As an aside, we point out that the ground state
of the clean Kitaev model for certain small systems is not in
the flux-free sector of the Z2 gauge field. For large systems,
we predict a quantum phase transition, upon increasing bond
randomness, from a flux-free to a random-flux ground state.

The body of the paper is organized as follows: In Sec. II
we introduce the random-bond Kitaev model together with its
Majorana representation and the numerical solution in terms
of free canonical fermions. The required projection to the
physical Hilbert space is the subject of Sec. III. Section IV
outlines the numerical calculation of the susceptibility. In
Sec. V we briefly show numerical results for observables
in the clean system, with focus on their finite-size behavior.
General aspects of quenched bond disorder in the Kitaev model
are discussed in Sec. VI, while concrete numerical results

1098-0121/2015/92(1)/014403(12) 014403-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.165414
http://dx.doi.org/10.1103/PhysRevB.84.165414
http://dx.doi.org/10.1103/PhysRevB.84.165414
http://dx.doi.org/10.1103/PhysRevB.84.165414
http://dx.doi.org/10.1103/PhysRevB.92.014403


FABIAN ZSCHOCKE AND MATTHIAS VOJTA PHYSICAL REVIEW B 92, 014403 (2015)

are presented in Sec. VII. The transition to the random-flux
state is discussed in Sec. VIII. A summary closes the paper.
Technical aspects of the physical-state selection are relegated
to an appendix, as is the comparison of the Majorana and exact
solutions for a small system of four unit cells.

II. MODEL AND MAJORANA REPRESENTATION

A. Random-bond Kitaev model

The Kitaev model [2] describes spin-1/2 degrees of
freedom at sites i of a honeycomb lattice which interact
via Ising-like nearest-neighbor exchange interactions J α . The
anisotropy direction in spin space, α = x,y,z, is coupled to the
bond direction in real space, reflecting a strong spin anisotropy
from spin-orbit coupling. We generalize the model to spatially
varying, i.e., random, couplings, such that the Hamiltonian
reads

HK = −
∑
〈ij〉x

J x
ij σ̂

x
i σ̂ x

j −
∑
〈ij〉y

J
y

ij σ̂
y

i σ̂
y

j −
∑
〈ij〉z

J z
ij σ̂

z
i σ̂ z

j , (1)

where σ̂ α
j are Pauli matrices, and 〈ij 〉α denotes an α = x,y,z

bond as in Fig. 1. In the clean case J x
ij = J x , J

y

ij = J y , J z
ij =

J z. For isotropic couplings, J x = J y = J z ≡ J , the model
possesses a Z3 symmetry of combined real-space and spin
rotations.

In our simulations of bond disorder, the exchange couplings
J α

ij will be drawn from uncorrelated box distributions with
mean value J α > 0, J α

ij ∈ [J α − �α,J α + �α]. In a possible
experimental realization in an insulating solid, disorder in
the Jij arises from random lattice distortions and/or chemical
disorder on nonmagnetic sites, both of which locally modify
individual exchange paths.

FIG. 1. Honeycomb lattice with basis vectors e1,2 and an illus-
tration of the periodic boundary conditions, characterized by the
cluster size L1,2 and the twist parameter M . The figure corresponds
to L1 = L2 = 3 and M = 2.

B. Majorana representation

Following Kitaev’s solution [2], we introduce four (real)
Majorana fermions b̂x , b̂y , b̂z, and ĉ. Defining σ̂ α

i = ib̂α
i ĉi , the

original Hamiltonian in Eq. (1) can be mapped to

Hû = i
∑
〈ij〉

J α
ij ûij ĉi ĉj , (2)

where ûij ≡ ib̂
αij

i b̂
αij

j and ûij = −ûj i . We follow the conven-
tion that, when specifying ûij , i is located on sublattice A. The
operators ûij , with eigenvalues uij = ±1, commute with each
other and with the Hamiltonian Hu; i.e., the {uij } are constants
of motion. A given set {uij } reduces the Hamiltonian to a
bilinear in the ĉ Majorana operators:

Hu = i

2

(
ĉT
A ĉT

B

)( 0 M

−MT 0

)(
ĉA

ĉB

)
. (3)

Here M is an N × N matrix with elements Mij = J α
ijuij ,

and ĉA(B) is a vector of N Majorana operators on the A(B)
sublattice. Hence the problem takes the form of noninteracting
Majorana fermions coupled to a static Z2 gauge field.

The eigenmodes of Hu can be found via singular-value
decomposition of M , M = USV T , where U and V are N ×
N orthogonal matrices, and S is an N × N diagonal matrix
containing the nonnegative singular values of M . We define
new Majorana operators according to

(b̂′
1, . . . ,b̂

′
N ) = (ĉA,1, . . . ,ĉA,N )U,

(b̂′′
1, . . . ,b̂

′′
N ) = (ĉB,1, . . . ,ĉB,N )V.

(4)

We may combine the transformation matrices U and V into a
matrix Qu,

Qu =
(

0 U

V 0

)
, (5)

which is equivalent to Qu defined in Eq. (4) of Ref. [17] after
reordering of both rows and columns.

For a given set of {uij } the Hamiltonian now has the form
Hu = i

∑N
m=1 εmb̂′

mb̂′′
m, where εm � 0 are the singular values

of M . It is convenient to combine the Majorana operators b̂′,
b̂′′ into canonical fermions according to

âm = 1
2 (b̂′

m + ib̂′′
m). (6)

This eventually gives

Hu =
N∑

m=1

εm(2â†
mâm − 1) (7)

with the ground-state energy E0 = −∑
m εm. Eigenstates of

the Hamiltonian (2) can thus be understood as a direct product
of “gauge” (u) and “matter” (a) degrees of freedom.

C. Boundary conditions

To avoid edge effects, the analytical discussion as well as
the numerical calculations will be performed for finite-size
systems with periodic boundary conditions. We will comment
on open boundary conditions in Sec. III C below.

As in Ref. [17], we will restrict our attention to “rectangu-
lar” clusters of size N = L1 × L2 unit cells, with 2N spins, but
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allow for a geometric “twist” characterized by an integer M

when imposing periodicity. Here, the torus is defined through
the basis vectors L1e1 and L2e2 + Me1; see Fig. 1. In the
isotropic case this represents the most general set of periodic
boundary conditions for rectangular clusters.

D. Flux degrees of freedom

For every closed loop C of the lattice, the Kitaev model (1)
features a conserved quantity ŴC [2,36]. For a loop C

containing L sites labeled {1,2, . . . ,L}, the corresponding
operator is

ŴC = σ̂
α1,2

1 σ̂
α1,2

2 σ̂
α2,3

2 σ̂
α2,3

3 . . . σ̂
αL,1

L σ̂
αL,1

1 , (8)

where αi,j = x,y, or z corresponds to the type of the bond
connecting sites i and j . The eigenvalues of the ŴC are
WC = ±1, each corresponding to a Z2 flux. It is convenient to
introduce loop operators for the flux through each elementary
plaquette of the lattice,

Ŵp = σ̂ x
1 σ̂

y

2 σ̂ z
3 σ̂ x

4 σ̂
y

5 σ̂ z
6 , (9)

with 1, . . . ,6 labeling the sites of the plaquette under con-
sideration. For periodic boundary conditions, there are two
additional (“topological”) loop operators Ŵ1,2 that wrap
around the torus in the direction of the unit vectors e1,2 and are
related to the flux through the torus holes.

A system with N unit cells and periodic boundary condi-
tions is characterized by (N − 1) independent plaquette fluxes
Wp, due to the constraint [2]

∏
p Wp = 1. Together with the

torus fluxes W1,2 the total number of flux degrees of freedom
is (N + 1). Given that the dimension of the physical Hilbert
space ofHK is 22N , this implies that each individual flux sector
consists of 2N−1 many-body states.

In the Majorana representation, the loop (or flux) operators
Ŵ can be expressed through the bond variables ûij ; the same
holds for their eigenvalues. For instance, the plaquette fluxes
take the form

Wp = u21u23u43u45u65u61. (10)

As a consequence of gauge invariance, the fermion spectrum
{εm} and the ground-state energy E0 depend on the uij only
through the values of the fluxes, {Wp} and W1,2.

For a translation-invariant system of sufficiently large
size, the ground state is located [2] in the flux-free sector,
corresponding to all W = 1 (i.e., all uij = 1). In this sector,
the excitation spectrum of the hopping Hamiltonian Hu can
be found using a Fourier transformation. Depending on the
anisotropy of the couplings, the system is either gapped or
gapless, with the latter case including the isotropic point,
J x = J y = J z. Here, the low-energy part of the spectrum
consists of two Dirac cones similar to graphene. It is worth
noting that the ground state of certain small systems is not in
the flux-free sector; this will be further discussed in Sec. V B.

III. PHYSICAL MANY-BODY STATES IN THE MAJORANA
DESCRIPTION

The Majorana representation of spins 1/2 is overcomplete:
The total Hilbert space of Hû has 42N states, as compared to
22N states forming the Hilbert space of HK. First, the 2N+1

physical flux sectors are represented by 23N link variables uij ,
such that different configurations of {uij } correspond to the
same flux sector. Second, within each flux sector there are 2N

states of the c Majorana fermions, to be compared to 2N−1

physical states. This implies that the possible fermion + flux
states can be grouped into “physical” and “unphysical”
states [9,17], with not all physical fermion + flux states
corresponding to different spin states of the model (1).

A. Projection

We first summarize the Majorana state projection as
outlined in Refs. [2,17] and then present our extended results
in the following subsections.

An eigenstate of HK, |ξ 〉, satisfies the condition D̂j |ξ 〉 =
|ξ 〉, where D̂j ≡ −iσ̂ x

j σ̂
y

j σ̂ z
j = 1. Written in terms of Majo-

rana operators, we have D̂j = b̂x
j b̂

y

j b̂
z
j ĉj , with eigenvalues ±1.

Now, a physical eigenstate must satisfy D̂j |ξ 〉 = +|ξ 〉 for all
j . One can therefore define a projection P̂ to the physical
subspace of the Majorana Hilbert space according to

P̂ =
2N∏
j=1

(
1 + D̂j

2

)
. (11)

In this subspace the original spin Hamiltonian, HK, and
Kitaev’s Majorana Hamiltonian for the honeycomb lattice,
Hû, are equivalent. The operator D̂j can be thought of as
an Ising gauge transformation. Since the spin operators are
gauge-invariant, their matrix elements in any gauge-fixed
sector are identical to that in the physical gauge-invariant
subspace [4].

The effect of the projection (11) to annihilate an unphysical
state is easily seen by rewriting it as [10]

P̂ = Ŝ
(

1 + ∏2N
j=1 D̂j

2

)
= ŜP̂0, (12)

where Ŝ symmetrizes over all gauge-equivalent subspaces
while P̂0 projects out unphysical states.

The operator D̂ = ∏
j D̂j can be expressed in the Majorana

representation. After reordering the fermion operators—see
Appendix B of Ref. [17]—it can be brought into the form

D̂ = (−1)θ
∏
j

ĉj

∏
〈ij〉α

b̂α
i b̂α

j = (−1)θ π̂c

∏
〈ij〉

uij . (13)

Here, π̂c = iN
∏

j ĉj is the parity of the c (matter) Majorana
fermions, and we followed the convention that sites labeled
with odd (even) numbers belong to the A (B) sublattice (this
differs from Ref. [17]). The exponent θ is a consequence of
the anticommutation relation of the Majorana fermions and
depends on the lattice geometry. For the boundary conditions
in Fig. 1 it reads [17]

θ = L1 + L2 + M(L1 − M). (14)

An alternative representation of the Majorana states uses
local complex fermions. For each unit cell r one can construct
one complex matter fermion

f̂r = 1
2 [ĉA,r − iĉB,r ] (15)
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and three complex gauge fermions defined on the bonds
emanating from site i on sublattice A:

χ̂α
r = 1

2

[
b̂

αij

i − ib̂
αij

j

]
. (16)

Then we have iĉA,r ĉB,r = 1 − 2f̂
†
r f̂r such that we can express

the parity πc as πc = (−1)Nf with Nf = ∑
r f̂

†
r f̂r. Simi-

larly, ib̂α
i b̂α

j = ûij = 1 − 2(χ̂α
r )†χ̂α

r which yields
∏

〈ij〉 uij =
(−1)Nχ . This allows one to rewrite the operator D̂ (13) using
the fermion numbers Nf and Nχ :

D̂ = (−1)θ (−1)Nf (−1)Nχ . (17)

The condition for a state being physical, D̂ = 2P̂0 − 1
!= 1,

selects states with either even or odd total fermion number,
depending on the geometry factor (−1)θ . For fixed {uij } this
eliminates half of the many-body states from the Hilbert space
of Hu, as anticipated, and implies that fermions can only be
excited pairwise. We note that the factor (−1)θ , derived in
Ref. [17], does not seem to appear in earlier works [37].

To convert Eq. (17) into a more useful form, it is important
to distinguish the parity π̂c of the ĉ fermions from the parity
π̂ = ∏N

m(1 − 2â
†
mâm) of the eigenmodes âm (6). Given that the

ĉ and â fermions are related via the canonical transformation
Qu, Eq. (5), one finds [17]

π̂c = det(Qu)π̂ . (18)

Combining Eqs. (17) and (18) the operator D̂ reads

D̂ = (−1)θ det(Qu)(−1)Na (−1)Nχ (19)

with Na = ∑
m â

†
mâm being the number of matter fermion

excitations.

B. Fermion parity for periodic boundary conditions

In general, the value of D̂ (19) depends in a combined
fashion on the flux configuration, the boundary conditions, and
the distribution of the coupling constants; concrete examples
were given in Ref. [17].

Here we go one step further: For a translation-invariant
system in the gapless phase, we are able to prove that in the
flux-free sector we have (−1)θ det(Qu) = −1 independently
of the system geometry. Details of this proof are given in
Appendix A. Since the flux-free sector is characterized by

Nχ = 0, the condition D̂
!= 1 translates into π̂ = (−1)Na

!=
−1; i.e., all physical states in the flux-free sector must
have an odd number of â fermion excitations. Hence, the
naive fermion-free state is not a physical state. This has
consequences for the calculation of observables, as will be
discussed below.

On general grounds, we expect that a single fermion in
an extended system of size N can cause only 1/N effects
on observables. Hence, the proper selection of physical
states discussed here, albeit important for finite-size systems,
is not expected to influence typical observables in the
thermodynamic limit. Indeed, in our calculations we find
strong differences in the finite-size behavior of observables
calculated with either physical or unphysical states, but these
differences diminish with increasing system size. However, for
observables where 1/N corrections are crucial—this applies

to quantum impurity problems—the state of affairs might be
different; this will be investigated in future work.

C. Fermion parity for open boundary conditions:
Dangling gauge fermions

The considerations in Ref. [17] and the present section
show that, for a Kitaev model with periodic boundary condi-
tions, half of the Majorana many-body states are unphysical.
Formally, the unphysical states do not obey the condition on
total fermion parity imposed by the projector.

Although not the main focus of this work, it is interesting
to repeat the analysis with open boundary conditions. More
generally, we may consider a lattice with formally periodic
boundary conditions, but allow for an arbitrary number of
“missing” bonds with zero bond strength Jij ; this includes the
cases of both open and cylindric boundary conditions.

A missing α bond, connecting sites i and j , induces two
dangling gauge Majorana fermions, bα

i and bα
j . These can

be combined into a canonical fermion, Eq. (16), which is
decoupled (for zero external field), hence represents a zero-
energy mode. Occupying this zero mode obviously changes the
total fermion parity without changing observable properties of
the many-body state. As a result, a given Majorana many-body
state can always be turned from physical to unphysical or
vice versa by changing the zero-mode occupation. Phrased
differently, all matter Majorana states in any flux sector are
physical if there is at least one missing bond which can
“absorb” the fermion-parity condition. In Appendix B we
demonstrate this for a small 2 × 2 system. A consequence
is that the number of fermion zero modes of a Kitaev model
with missing bonds is smaller by one compared to the number
of zero modes suggested by its Majorana representation.

IV. SPIN CORRELATIONS AND MAGNETIC
SUSCEPTIBILITY

Dynamical spin correlations in the Kitaev model have been
calculated in Ref. [5]. In this section we summarize and extend
the required formalism.

Consider the zero-temperature spin correlation function

S
αβ

ij (t) = 〈0|σ̂ α
i (t)σ̂ β

j (0)|0〉, (20)

where |0〉 is the many-body ground state. Given that the fluxes
are constants of motion, the correlator can be calculated by
decomposing the ground state |0〉 as a direct product of the
ground states in the gauge and matter sector. Specifically, the
application of a σ̂ α

i operator changes the two flux variables
which involve the α bond emanating from site i. This leads to
the dynamical rearrangement of matter fermions in the modi-
fied gauge field. The spin correlator can therefore be expressed
purely in terms of matter fermions in the ground-state flux
sector, subject to a perturbation V̂α = −2iJ αcicj [4,5]:

S
αβ

ij (t) = −i
〈
M

p
0

∣∣eiH0t ĉie
−i(H0+V̂α )t ĉj

∣∣Mp
0

〉
δαβδ〈ij〉α , (21)

where H0 is the Majorana hopping Hamiltonian in the
zero-flux sector and |Mp

0 〉 its physical ground state. Site-off-
diagonal contributions vanish beyond nearest-neighbor pairs
indicated by 〈ij 〉a . Site-diagonal terms are calculated similarly.
H0 + V̂α and H0 differ in the sign of the Majorana hopping
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on the α bond, representing the insertion of the flux pair. A
suitable Lehmann representation of Eq. (21) is in terms of
the matter Majorana eigenstates of the Hamiltonian H0 + V̂α ,
denoted by |λ〉:

S
αβ

ij (ω) = −i
∑

λ

〈
M

p
0

∣∣ĉi |λ〉〈λ|ĉj

∣∣Mp
0

〉
× δ

[
ω − (

Eλ − E
p
0

)]
δ〈ij〉α δαβ . (22)

Here, Ep
0 and Eλ are the energies of the initial and intermediate

states. In the following, the complete sum over excited states
|λ〉 will be approximately evaluated using states with a fixed
(small) number of matter excitations of H0 + V̂α; this is a
suitable strategy provided that no orthogonality catastrophe
occurs [5].

In order to evaluate the matrix elements 〈Mp
0 |ĉi |λ〉, involv-

ing eigenstates of both H0 + V̂α and H0, we need a conversion
for the excitation operators. In the following we denote the
operators for matter eigenmodes in the zero-flux and two-flux
sectors with â and b̂, respectively. As in Eq. (4), these are
constructed from the matter Majorana operators according to

(â1, . . . ,âN ) = 1
2

[(
ĉT
A

)
U + i(ĉT

B )V
]
,

(23)
(b̂1, . . . ,b̂N ) = 1

2

[(
ĉT
A

)
U ′ + i(ĉT

B )V ′].
Using a Bogoliubov transformation, one can express the one
kind of operators in terms of the other:

b̂λ =
∑
m

X∗
λmâm + Y ∗

λmâ†
m, (24)

where X,Y are the transformation matrices

X∗ = 1
2 (U ′†U + V ′†V ), Y ∗ = 1

2 (U ′†U − V ′†V ),

(25)

which obey the conditions [38]

XX† + YY † = 1, XY T + YXT = 0,

X†X + Y T Y ∗ = 1, XT Y ∗ + Y †X = 0.
(26)

This allows one to rewrite the fermion-free state of the two-flux
sector, |λ0〉, in terms of â fermions and the fermion-free state
in the zero-flux sector, |M0〉:

|λ0〉 = [X†X]1/4e− 1
2 â†X∗−1Y ∗â† |M0〉, (27)

with the overlap |〈M0|λ0〉| = √|det X| [5].
However, as we have pointed out in Sec. III, in the gapless

phase the physical states in the flux-free sector must have
an odd number of â fermions. Hence, |Mp

0 〉 = â
†
1|M0〉 and

E
p
0 = E

(0)
0 + 2ε

(0)
1 where E

(0)
0 and ε

(0)
1 are the energies of the

ground state and the lowest excitation of Hu in the flux-free
sector. Using Eq. (19) we find that |λ〉 must contain an
even number of matter fermion excitations; see Appendix A.
These multiparticle eigenstates of H0 + V̂α are given by
|λ〉 = b̂

†
λn

. . . b̂
†
λ1

|λ0〉, with n even. The simplest contribution
to 〈Mp

0 |ĉi |λ〉 is the zero-particle contribution:

〈M0|â1ĉA,i |λ0〉 =
√

|det X|[Ui0 − (UX−1Y )i0], (28)

written for i on the A sublattice. The two-particle contributions
can be obtained by straightforward algebra as

〈M0|â1ĉA,i b̂
†
λ2

b̂
†
λ1

|λ0〉
=

√
|det X|[Ui0(YX−1)λ1λ2 + (UX−1)iλ1Xλ20

− (UX−1)iλ2Xλ10 + (UXT )iλ1

[
X−1

0λ2
− Xλ20

]
− (UXT )iλ2

[
X−1

0λ1
− Xλ10

] − (UX−1Y )i0(YXT )λ1λ2

× (UX−1Y )i0(XYT )λ1λ2+Yλ20(UYT )iλ2−Yλ10(UYT )iλ1

]
.

(29)

Matrix elements for ĉB,j are calculated similarly [39].
In contrast, upon ignoring the fermion parity condition one

may start with the fermion-free state |M0〉 in the zero-flux
sector. Then, the spin correlation function starts with the one-
particle contribution:

〈M0|ĉA,i b̂
†
λ1

|λ0〉 =
√

|det X|(UX−1)iλ, (30)

and the energy E0 appearing in Eq. (22) is given by E
(0)
0 .

Below we will show results for the dynamic structure factor
at momentum q = 0,

Sαα(q = 0,ω) =
∑
ij

Sαα
ij (ω), (31)

and the static susceptibility χij , obtained via the Kramers-
Kronig relation

χ
αβ

ij (ω = 0) = −P
∫

dω′ S
αβ

ij (ω′)

ω − ω′ , (32)

where P denotes the Cauchy principal value.

V. NUMERICAL RESULTS: CLEAN SYSTEM

Applying the methodology outlined so far, we now exhibit a
few numerical results for the clean Kitaev model, obtained via
singular-value decomposition of the matrix M in Eq. (3). We
have treated finite-size systems with L1,2 � 150. Unless noted
otherwise, the magnetic couplings are chosen to be isotropic,
J x = J y = J z ≡ J .

A. Finite-size behavior of the flux gap

In Fig. 2 we show the finite-size scaling of the energy
necessary to create a flux pair. Since the physical flux-free
ground state contains one matter fermion excitation, whereas
the lowest two-flux state does not, the physical energy gap is
given by

�Ep = E
(2)
0 − E

p
0 = E

(2)
0 − (

E
(0)
0 + 2ε

(0)
1

)
, (33)

where E
(0)
0 and E

(2)
0 are the ground-state energies of Hu in the

zero-flux and two-flux sectors, respectively, and ε
(0)
1 refers

to the lowest singular value of M in the flux-free sector.
Alternatively, one may consider an unphysical gap,

�Eu = (
E

(2)
0 + 2ε

(2)
1

) − E
(0)
0 , (34)

which involves states with incorrect fermion parity in both flux
sectors.
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FIG. 2. (Color online) Flux gap �E of the isotropic Kitaev model
as function of inverse system size, with L1 = L2 ≡ L, periodic
boundary conditions, and M = 0. The solid line shows the physical
result, Eq. (33), taking into account the presence of an excited matter
fermion in the flux-free sector. In contrast, the dashed line shows
the result (34) where both the states in the flux-free and two-flux
sectors are unphysical. �Ep = �Eu is realized for L mod 3 = 0
where the Dirac point is an allowed wave vector. The arrow indicates
the infinite-system result [2] �E ≈ 0.26J .

As the L = ∞ matter fermion spectrum is gapless, we
have ε

(0)
1 = ε

(2)
1 = 0 and thus �Ep = �Eu whenever the Dirac

point is included in the discrete set of momenta. For M = 0
this applies to L mod 3 = 0; these data points display weak
L dependence in Fig. 2. In contrast, the data points for
L mod 3 �= 0 are influenced by the strong L dependence of
ε

(0)
1 or ε

(2)
1 . We note that the result in Fig. 2 is qualitatively

similar to that in Fig. 4 of Ref. [17], where different boundary
conditions were employed.

Figure 2 demonstrates that observables calculated for
physical and unphysical states have rather different finite-size
behavior; in particular the finite-size convergence appears
significantly slower in the physical case. Knowing that both
�Ep and �Eu have to converge to the same value as L → ∞,
one may choose the most suitable set of states and boundary
conditions for fast convergence.

B. Ground-state flux sector

A remark is in order concerning negative values of the flux
gap for small L, Fig. 2, which imply that the ground state is not
flux-free. It has been argued [2] that a theorem of Lieb [40],
being concerned with free-particle hopping Hamiltonians,
guarantees that the ground state of the Kitaev model is always
in the flux-free sector. This assertion is apparently incorrect,
Fig. 2, and the reasons are twofold: (i) The theorem of Lieb
applies to ground states of hopping Hamiltonians, but as
established in Ref. [17] and here, the physical ground state
of the Kitaev model may contain an excited matter fermion
which changes the energetics (and in particular lowers the
energy of the lowest many-body state in the two-flux sector
relative to that in the flux-free sector). (ii) Only systems with
L2 = M obey the particular periodicity requirement needed
for Lieb’s theorem to apply. Taken together, the theorem of
Lieb ensures that the ground state of the Kitaev model is in
the flux-free sector in the limit of large system size [where the
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FIG. 3. (Color online) Dynamic structure factor for the isotropic
Kitaev model, calculated from Eq. (31) for systems with L1,2 = 40
and a broadening of δ/J = 0.04 (top) and L1,2 = 140 and δ/J =
0.02 (bottom), both with M = 0. The “physical” (solid) result takes
into account the presence of a matter fermion in the ground state; it
consists of two-particle contributions, Eq. (29), and an isolated low-
energy peak corresponding to the zero-particle contribution, Eq. (28).
In contrast, the “unphysical” result (dashed) contains one-particle
contributions, Eq. (30), only. The exact result [5] for L = ∞ is shown
for comparison.

restrictions (i) and (ii) become irrelevant], but is not decisive
for small systems.

C. Finite-size behavior of the dynamic susceptibility

Figure 3 shows the dynamical structure factor calculated
for two system sizes. Reasonable finite-size convergence is
apparent [41], and the results for L = 140 are very close to
the infinite-system result from Ref. [5]; the latter is known to
have a gap of size �E ≈ 0.26, the flux gap.

Let us briefly discuss the difference between the physical
and unphysical results. As explained in Sec. IV, the physical
flux-free ground state comes with one matter fermion excita-
tion, such that (at the isotropic point) the excited intermediate
states in the two-flux sector have an even number of matter
fermions. In particular, there is a contribution from the zero-
fermion intermediate state; this produces an isolated δ peak
in S(ω) at low energies (clearly visible in the L = 40 data at
ω/J ≈ 0.08). The rest of the signal comes from two-fermion
intermediate states; higher excited states are ignored in our
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calculation because they only carry spectral weight of about
2.5% [5]. In contrast, the unphysical signal is obtained by
starting from a fermion-free ground state in the flux-free
sector. Then, the signal at the isotropic point arises from
single-fermion intermediate states, and the low-energy δ peak
is absent.

Remarkably, the differences between the physical and
unphysical signals diminish with increasing system size, in
accordance with the general argument from Sec. III B. Here,
the reason for this can be understood in detail: Although
the two-fermion intermediate states |λ〉 in the physical case
can have two arbitrary fermions excited, the matrix element
〈λ|ĉi |Mp

0 〉 will only be sizable if one of the fermions is the
lowest-energy one, simply to match the lowest-energy fermion
occupied in |Mp

0 〉. All other matrix elements are suppressed at
least with N−1/2, which effectively reduces the two-particle
continuum to the single-particle continuum of the unphysical
case. Similarly, the matrix element 〈λ0|ĉi |Mp

0 〉, determining
the weight on the low-energy δ peak in the physical response,
scales as N−1/2. Hence, the dynamical structure factor in the
thermodynamic limit is independent of the ground-state parity
π [42].

VI. BOND DISORDER: GENERAL CONSIDERATIONS

Before showing numerical results for the Kitaev model with
bond disorder, we quickly summarize a few general aspects,
some of which have been discussed in Refs. [6,7,35].

Provided that the ground state in the presence of disorder
remains in the flux-free sector, the low-energy behavior in
the presence of bond disorder is equivalent to that of Dirac
fermions with random hopping on the honeycomb lattice.
This is a special case of a bipartite random-hopping problem,
belonging to the symmetry class BDI in the Altland-Zirnbauer
classification [43]. The single-particle properties of such
systems have been analyzed using various techniques [44–48]:
All single-particle states at nonzero energies are exponentially
localized, and the resulting density of states at low energies
follows the form [46,47]

ρ(ω) ∝ 1

ω
exp(−c| ln ω|1/x) (35)

with x = 3/2. This immediately implies a corresponding sin-
gular behavior for the specific-heat coefficient C/T . However,
the asymptotic form (35) is only realized below an extremely
small energy scale which depends on the disorder strength [46]
and is typically not accessible in numerical simulations.

In the application to the Kitaev model, two further aspects
are important: (i) For strong disorder, the ground state may
not be located in the flux-free sector; this will be discussed in
Sec. VIII. (ii) Even if the ground state is in the flux-free sector,
the flux gap � may become small, and many-body states
in excited flux sectors become important for temperatures
T � �.

VII. NUMERICAL RESULTS: DISORDERED SYSTEM

A. Flux gap

Figure 4 shows histograms of the local flux gap, �Eij , for
Kitaev models with bond disorder. This local gap is defined
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FIG. 4. (Color online) Distribution of the local flux gap for the
isotropic Kitaev model with bond disorder, calculated for L = 40
(top) and L = 80 (bottom) and two different values of the disorder
strength �α . Shown are the results for both the “physical” (closed
symbols) and the “unphysical” (open symbols) gap, calculated
according to Eqs. (33) and (34), respectively.

as in Eqs. (33) and (34), with the specific two-flux state
obtained by flipping the (ij ) bond. We note that the selection
rules for physical states continue to apply for the moderate
disorder considered here. Comparing the L = 40 and L = 80
data, strong finite-size effects are apparent which are inherited
from the disorder-free situation; see the results in Fig. 2. The
following discussion thus mainly applies to the L = 80 data.

For weak disorder, �α/J = 0.1, the gap distribution is
essentially symmetric, with a relative width which roughly
matches that of the coupling-constant distribution. For strong
disorder, �α/J = 0.5, the gap distribution widens and be-
comes slightly asymmetric. Its mean value is shifted down-
wards relative to the clean case (there �Ep = 0.173 and
�Eu = 0.345 for L = 80). Furthermore, cases with �E < 0
appear; i.e., the ground state is not in the flux-free sector. The
significance of this finding will be discussed in Sec. VIII.

B. Static susceptibility

With an eye towards nuclear-magnetic-resonance experi-
ments, we consider the local susceptibility

χNMR(i) =
∑

j

χαα
ij , (36)
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FIG. 5. (Color online) Distribution of the local (NMR) suscepti-
bility, Eq. (36), for the isotropic Kitaev model with bond disorder,
calculated for L = 40 (top) and L = 80 (bottom) and two values
of the disorder strength �α . As before, “physical” (“unphysical”)
represent the results obtained for one (zero) matter fermions in the
flux-free ground state.

which is proportional to the resonance frequency in NMR
experiments. We recall that, in the Kitaev model, χij = 0
beyond nearest-neighbor distance; i.e., there are only on-site
and nearest-neighbor contributions to χNMR.

Results for the distribution of χNMR(i) are displayed in
Fig. 5. While weak disorder again produces an essentially
symmetric distribution with a relative width corresponding
to that of the coupling-constant distribution, strong disorder
produces a distinctly asymmetric shape with a tail at large
values of χ . The reason is in the strong fluctuations of the
flux gap, Fig. 4, considering that χ ∝ 1/�E. We note that in
evaluating χ we have assumed the ground state to be flux-free,
and consequently have discarded the rare events with �E < 0.

Interestingly, and in striking contrast to the results for the
flux gap in Fig. 4, we find that the physical and unphysical
results for the χ distribution are almost identical at L = 80.
The explanation is similar to that given in Sec. V C: Although
the physical and unphysical cases have contributions to χ with
rather different excitation energies, the corresponding matrix
elements are small for large L. For instance, the zero-particle
contribution to the physical susceptibility, with the excitation
energy being the flux gap �Ep according to Eq. (33), has a
weight scaling as N−1.
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FIG. 6. (Color online) Dynamic structure factor as in Fig. 3, but
now for the Kitaev model of size L1 = L2 = 80 with box-type bond
disorder of strength �α/J = 0.5. The artificial broadening is smaller
than in Fig. 3: δ/J = 0.01. The clean-system result [5] is shown for
comparison.

C. Dynamic susceptibility

As a further example, we plot the dynamic structure factor
in the presence of bond disorder in Fig. 6. As disorder tends
to smear the flux gap, the gap in the structure factor is filled.
This is accompanied by a shift of weight to lower energies,
as expected from Fig. 4. Disorder-induced changes at higher
energies are minimal. Consistent with the above discussion,
there is essentially no difference between the physical and
unphysical results at L = 80 in Fig. 6.

VIII. TRANSITION OUT OF FLUX-FREE STATE

Our numerical results show that, with increasing bond
disorder, the ground state of a finite-size Kitaev model is no
longer located in the flux-free sector. Instead, the ground state
displays a finite flux density, where fluxes occur in the system
at random positions which depend on the disorder realization.
We note that such a state is trivially realized for box disorder
with �α/J > 1, as this implies the existence of bonds with
flipped sign which can be compensated by placing flux pairs
adjacent to these bonds (equivalent to choosing u = −1 on the
respective bonds). More interesting is the possible occurrence
of such a random-flux state for �α/J < 1 where all bond
strengths are positive. Notably, the numerics also indicates
that the tendency towards ground-state fluxes diminishes with
increasing L (see, e.g., Fig. 4), such that definite conclusions
about the thermodynamic limit cannot be drawn.

However, we are able to provide a general argument in
favor of a nontrivial transition to a random-flux state which
applies to the thermodynamic limit. A key ingredient is
the observation of Refs. [6,7] that a vacancy site gains a
finite amount of energy by binding a flux. Consider now
the more general situation where a single defect site is
surrounded by three bonds of strength J ′ and embedded
in an otherwise homogeneous Kitaev model with couplings
J . While J ′ = 0 corresponds to the vacancy case, this site
will also bind a flux for finite small J ′. This is shown in
Fig. 7: For all 0 < J ′ < Jmin with Jmin/J ≈ 0.04 the energy
of the state with a flux bound in one of the three plaquettes
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FIG. 7. (Color online) Flux energy Eflux(J ′) for an isotropic
Kitaev model with a single defect site which has three weak bonds
of strength J ′ to its neighbors. Eflux < 0 implies that the defect
binds a flux; Eflux(0)/J = −0.027 is the known result for a vacancy
from Ref. [6]. Eflux(J ′) has been calculated as the energy difference
between a two-flux state, with one flux in one of the three defect
plaquettes and one flux at maximum distance away from the defect,
and the flux-free state, and the energy of an isolated flux (for the
same L) has been subtracted. The inset shows the finite-size scaling
of Eflux; the error bars in the main panel arise from uncertainties in
the L → ∞ extrapolation. The dashed line is a linear fit.

adjacent to the defect is lower than that of the flux-free
state. More generally, a defect site surrounded by three bonds
of a strength in the interval [0,Jmin] will bind a flux.

Now, for box disorder with strength �α the minimum
coupling strength is J − �α; thus for any J̄ > J − �α there is
a finite probability to find local configurations which have (i)
three bonds emanating from one site with strength smaller than
J̄ and (ii) all surrounding bond strengths arbitrarily close to J .
This is exactly the condition for locally binding a flux, provided
that J̄ < Jmin. We conclude that a random-flux state must
be realized for disorder strengths with �α > J − Jmin. This
proves the existence of a transition—from zero flux to random
flux—somewhere in the interval 0 < �α/J < 1 − Jmin/J ≈
0.96.

IX. SUMMARY

Our study of Kitaev’s honeycomb model with bond disorder
has lead to twofold results: On the one hand, we have dealt with
the selection of physical states in the Majorana representation.
Extending earlier work, we have shown that the ground state
of the gapless Kitaev model with periodic boundary conditions
generically contains one matter fermion excitation. This causes
significant finite-size effects for observables, as illustrated for
the flux gap. We have also discussed the difference in state
selection between the cases with periodic and open boundary
conditions. Obviously, this state selection is of relevance
for all numerical studies of Kitaev models using Majorana
fermions. It will be interesting to extend this analysis to other
tricoordinated lattices where the Kitaev model can also be
solved exactly; work in this direction is in progress.

On the other hand, we have numerically determined the
static and dynamic spin susceptibility in the presence of bond
disorder. In particular, we have calculated the distribution of

local susceptibilities which determines the NMR line shape.
For large disorder, we predicted a transition to a random-flux
state. A detailed study of this transition is left for future work.
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APPENDIX A: PARITY OF MATTER FERMION
EXCITATIONS

1. Gapless phase

The purpose of this Appendix is to prove that all flux-free
physical states in the gapless phase of a translation-invariant
Kitaev model with periodic boundary conditions contain an
odd number of âm fermion excitations. This supersedes the
results of Ref. [17], but is consistent with their Fig. 3.

The proof is based on insights from Ref. [17] which we
lay out first. The flux-free sector is characterized by all uij =
1. Then the eigenmodes of Hu are diagonal in momentum
space [2]:

Hu =
∑

q

|f (q)|(2â†
qâq − 1) (A1)

with f (q) = J xeiq·e1 + J yeiq·e2 + J z. The spectrum |f (q)|
is gapped if J z > J x + J y or permutations, and gapless
otherwise. The reciprocal lattice is defined by the vectors
b1,2; see Fig. 1. For any finite lattice the Brillouin zone
is reduced to a finite set of wave vectors q, which can be
partitioned into three sets � and �±. We assign q ∈ � if
±q are equivalent (up to reciprocal lattice vectors); there are
at most four wave vectors in �, namely 0,b1/2,b2/2, and
(b1 + b2)/2. The remaining q are partitioned such that ±q
belong to two distinct sets �±. One can then derive the explicit
formula for the determinant of the transformation matrix [17]

det(Qu) = −1γ+N2
, (A2)

valid for the flux-free sector, where N = L1L2, and γ is the
number of reciprocal vectors q ∈ � with f (q) < 0. Together
with the geometric factor (14), we can now rewrite

(−1)θ det(Qu) = (−1)γ+L1+L2+L2
1L

2
2+L1M−M2 ≡ (−1)μ.

(A3)
Although γ depends in a nontrivial way on the boundary

conditions L1,2 and M as well as on the couplings Jx,y,z,
we can calculate it for any given choice of L1,2, M . Since
biej = 2πδij , it is easy to see that in the gapless phase only
f ( b1+b2

2 ) = J z − J x − J y is less then 0. Therefore γ = 1 if
(b1 + b2)/2 ∈ � and γ = 0 otherwise. The allowed q vectors
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TABLE I. This table shows (−1)θ det(Qu) ≡ (−1)μ for the
gapless phase in relation to the boundary conditions L1,2,M (where
+ and − refer to even and odd values, respectively) and the resulting
γ ; see text.

L1 L2 M γ (L1L2)2 L1M (−1)μ

+ + + 1 + + −1
+ − − 1 + + −1
+ + − 0 + + −1
+ − + 0 + + −1
− + + 0 + + −1
− − − 0 − − −1
− + − 0 + − −1
− − + 0 − + −1

are determined by the conditions

eiqL1b1 = 1, (A4)

eiq(L2b2+Mb1) = 1, (A5)

with q = q1b1 + q2b2. Therefore γ = 1 if L1 = 2n1 and L2 +
M = 2n2 (n1,2 ∈ Z). Enumerating all eight combinations of
parities of L1,2 and M yields the results in Table I, showing
that −1μ = −1 in all cases. Using Eq. (19) this implies that,
in the flux-free case where Nχ = 0, the physical Majorana
states must have an odd number of matter fermion excitations,
π = (−1)Na

!= −1.
From this result one can further deduce that Na for

states in the two-flux sector, at and near the isotropic
point, is even. This flux sector has Nχ = 1, and Eq. (19)

(−1)� det(Qu)(−1)Nχ (−1)Na
!= 1 implies that Na must be

even as long as the signs of det(Qu) in the zero-flux and
two-flux sectors are identical. The latter applies near the
isotropic point, but not in the entire gapless phase [5].

2. Gapped phase

Although a similar analysis may be performed for the
gapped phase of the Kitaev model, it turns out that the different
parity combinations of L1,2 and M come with different
signs for (−1)μ. In particular, the dependence γ (L1,L2,M)
is different from that in the gapless phase, and γ can now take
all values from 0 to 3. As a result, a unique conclusion similar
to the gapless phase cannot be reached. Moreover, the small
flux gap in combination with the large fermionic gap can lead
to the physical ground state having excited flux pairs but no
fermions; see also Fig. 5 of Ref. [17].

APPENDIX B: SPECTRUM FOR L1 = L2 = 2

In this Appendix we verify the analysis in Sec. III
by comparing the eigenenergies of HK, obtained by exact
diagonalization of the spin Hamiltonian, with the energies of
the many-body Majorana states, both physical and unphysical.

We choose a small system with L1 = L2 = 2 and M = 0.
Here the Dirac point does not belong to the discrete partitioning
of the Brillouin zone, such that all excitation energies of matter
fermions, εm, are nonzero.
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FIG. 8. (Color online) Lower half of the many-body spectrum of
an anisotropic 2 × 2 Kitaev model with J x = J y � J z as function of
J x/J z, with the system geometry shown in the inset. Lines: Eigenen-
ergies obtained by exact diagonalization of the spin Hamiltonian.
Symbols: Eigenenergies of the Majorana Hamiltonian in the flux-free
sector, uij = 1. Na is the number of matter fermion excitations. At
(and near) the isotropic point, Na = 0,2 states are unphysical (red)
while Na = 1 states are physical (blue). The vertical dashed line
indicates the boundary between the gapped and gapless phases [2].

1. Periodic boundary conditions and varying anisotropy

To illustrate the unphysical character of the zero-flux
fermion-free state, we show in Fig. 8 the many-body Majorana
energies in the zero-flux sector, together with all 28 = 256
eigenenergies of the spin Hamiltonian, for varying spin
anisotropy.

In the entire gapless phase, 1/2 � J x,y/J z � 1, the Majo-
rana states with even number Na of matter fermion excitations
do not correspond to any of the physical states, whereas the
Majorana states with odd Na match the physical spectrum.
Interestingly, this behavior is reversed in the gapped phase,
0 � J x,y/J z < 1/2, where now the states with even Na are
physical.

We have repeated this analysis in all flux sectors. As an
example, we show the flux sector containing the ground state,
here with fluxes through all plaquettes, in Fig. 9. The physical
states in this sector have an even number of excited matter
fermions in both phases.

Interestingly, in the three flux sectors without plaquette
fluxes but with a flux through at least one of the torus holes, i.e.,
W1 = −1, W2 = 1, W1 = 1, W2 = −1, and W1 = W2 = −1,
the even-Na states are found to be physical.

2. Varying a single bond

To underline the arguments concerning missing bonds and
open boundary conditions in Sec. III C we now consider an
isotropic L1 = L2 = 2 system where we vary the exchange
strength J0 on one bond keeping the other couplings fixed at
J . Figure 10 shows the Majorana energies both in the zero-flux

014403-10



PHYSICAL STATES AND FINITE-SIZE EFFECTS IN . . . PHYSICAL REVIEW B 92, 014403 (2015)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.2 0.4 0.6 0.8 1

E
[J

z]

Jx,Jy [Jz]

Na =0

Na =1

Na =2

exact

FIG. 9. (Color online) Same as Fig. 8, but for the four-flux sector
with W1 = W2 = −1. The bonds with uij = −1 are shown in light
(red) color in the inset. Here, Na = 0,2 states are physical (blue)
while Na = 1 states are unphysical (red) near the isotropic point.

and two-flux sectors, in the latter case with the flux pair located
adjacent to the J0 bond, together with the exact spectrum.

For any nonzero J0, the states with odd (even) Na

are physical in the zero-flux (two-flux) sector, respectively,
consistent with our reasoning above. However, for J0 = 0, all
matter Majorana states become physical: This is a consequence
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FIG. 10. (Color online) Same as Fig. 8, but now for an isotropic
model where a single bond has a different exchange strength J0 �= J .
Full (open) symbols correspond to the Majorana eigenenergies in the
sectors with zero flux (two fluxes, with a flux pair adjacent to the J0

bond), respectively. As before, blue (red) symbols denote physical
(unphysical) states.

of the zero mode constructed from gauge Majorana fermions in
the presence of a missing bond; see Sec. III C. Consistent with
this, the energy difference between the zero-flux and two-flux
states vanishes as the flux pair has no observable impact if it
surrounds the J0 = 0 bond.
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