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Instability of a domain wall in electric current: Role of topological charge
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We theoretically show that the electric current applied in the plane of a Bloch domain wall introduces a
mechanism of its stability or instability that is strongly connected to its topological charge. In the case of a wall in
an infinite ferromagnet, applying a current in one direction leads to the instability, while a current in the opposite
direction the wall is stable. This property is caused by the toroidal moment of the system and appears to be due
to the magnetostatic energy of the domain wall. A more complicated case of a ferromagnetic slab is considered.
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I. INTRODUCTION

The influence of an electric current on the magnetic state
of natural or artificial ferromagnets attracts a lot of attention
[1–9]. Indeed, the possibility to change the magnetization of
a ferromagnetic layer in a tunnel junction by applying an
electric current is very promising for practical use, such as
in creating magnetic memory [10]. The magnetic moment
manipulation by electric current is used in different prototypes
of magnetoresistive random access memory [11,12] and logic
devices [13,14]. The phenomenon exploited here is called
the spin torque effect [1,2]. The development of these new
devices requires the investigation of domain-wall dynamics in
electric current in artificial structures such as a ferromagnetic
wire [13] and under the influence of additional parameters
(e.g., the Dzyaloshinskii-Moriya interaction strongly affects
the domain-wall motion and structure [15]).

In the simplest way, if we take a Bloch domain wall in
a ferromagnet with the “easy axis” anisotropy and apply the
electric current perpendicular to its surface, the wall will move
[7,9]. However, the behavior of such a wall if the electric
current is applied in its plane needs additional investigation.
It is well known that a domain wall in an infinite ferromagnet
remains stable due to the surface tension [16,17], while in
a slab the magnetostatic energy at the surfaces appears and
the wall becomes unstable [18]. In this paper we show that
an electric current applied in the plane of the domain wall
introduces a new mechanism of its stability or instability that
is strongly connected to its topological charge [19].

In Sec. II we write out general assumptions and describe a
mathematical approach to the highlighted problem. Section III
is devoted to the results for a domain wall in an infinite
ferromagnet and in a ferromagnetic slab. We show that total
stability or instability of a domain wall is determined by
the concurrency of three mechanisms related to the surface
tension, to the magnetostatic energy at the slab interfaces,
and to the electric current. The latter strongly depends on
direction of the toroidal moment of the system with respect
to the electric current vector. Discussion and estimations for
typical parameters of Co ferromagnet (that is supposed to be
magnetized perpendicularly to the slab plane) are collected in
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Sec. IV. A summary of our results is outlined in Sec. V. The
Appendix contains calculation details.

II. THE EQUATIONS AND MAIN ASSUMPTIONS

We start from the Landau-Lifshitz-Gilbert (LLG) equation
[4] in the form

∂M
∂t

= −γ [M × Heff] + α

[
M × ∂M

∂t

]

+ b(j · ∇)M − c[M × (j · ∇)M], (1)

where M is the magnetization vector normalized by Ms (thus
being a unit vector), j is the density of applied electric current,
Heff = H − δw

δM is the effective magnetic field vector (w is the
energy density functional), Heff is in the units of the saturation
magnetization Ms here, while w is normalized by M2

s . All
the constants γ, α, b, c in (1) are positive; b describes the
adiabatic contribution of the current, while c determines the
nonadiabatic one [4]. H in the definition of Heff is a “true”
magnetic field that is bound to the magnetic moment M via
the Maxwell equations:

rotH = 0; div(H + 4πM) = 0. (2)

Note that we have excluded the magnetostatic energy asso-
ciated with H from the energy density w for the sake of
convenience, adding H to Heff directly instead.

The considered system is depicted in Fig. 1. The magneti-
zation is supposed to have the form

M = (n sin θ cos φ,n sin θ sin φ,m cos θ ) (3)

in the Cartesian coordinate system where the y axis is
perpendicular to the domain wall and the x axis parallel to
it, as shown in Fig. 1. The n and m constants in (3) take the ±1
values; the former determines the direction of magnetization
rotation in the domain wall (domain-wall chirality), and the
latter stands for the direction of the toroidal moment [20] T =
1
V

∫
[r × M]dV = (Tx,0,0) of the system: m = 1 corresponds

to Tx < 0; m = −1 corresponds to Tx > 0. In an unperturbed
domain wall, φ = φ0 = 0, while θ = θ0 is determined as

θ0 = 2 arctan[exp(y/	)], (4)

where 	 is the domain-wall thickness. We add a small
perturbation to the shape of the domain wall as follows (the
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FIG. 1. (Color online) The geometry of the system.

Slonczewski parametrization [17]):

φ = φ(x,t); θ = 2 arctan

{
exp

[
y − q(x,t)

	

]}
. (5)

An electric current flows in the direction of the x axis, being
parallel to the unperturbed domain-wall plane.

In order to find φ and q, we write the energy density
supposing “easy axis” anisotropy of a ferromagnet [16],

w = λ[(∇θ )2 + sin2 θ (∇φ)2] − K cos2 θ, (6)

where λ is the exchange constant (it is normalized by M2
s

and has the dimension cm2 in our parametrization) and K is
the anisotropy constant. The domain-wall thickness 	 may be
defined via these constants as 	 = √

λ/K . First, two terms of
the right-hand side of (6) are often interpreted as the surface
tension energy density [16,17] after integrating over the y

coordinate that is perpendicular to the domain wall.
Restricting ourselves to the linear in φ and q approximation,

we find H(kx,y,z) from (2), where kx is the x component of
the wave vector; the magnetic field is thus small (linear in
φ and q), excluding the zero-order part of the z component
associated with the edges of the slab that obviously exists for
a straight domain wall. In order to simplify the equations,
we also average H over the z coordinate. Indeed, we are not
interested in the nonuniform solution of (1) that may appear
only due to the dependence of the magnetic field H on the z

coordinate and is important for a thick slab. Since φ and q do
not depend on the y coordinate perpendicular to the wall, we
may also integrate Eq. (1) over it. Next, we apply the Fourier
transform over the x coordinate and over t to (1), introducing
the frequency ω. After simplification, we get a system of two
linear equations for q̃(kx,ω) = ∫

q(x,t)exp(ikxx − iωt)dxdt

and p̃(kx,ω) = φ̃(kx,ω)	 = ∫
φ(x,t)exp(ikxx − iωt)dxdt	

that describes the behavior of the system. Further details
regarding these equations are found in the Appendix.

In next sections we analyze the growth rate (i.e., the
imaginary part of frequency ω) depending on the wave vector

kx for different parameters of the system. It could be calculated
by placing a condition that the system of Eqs. (A1) and (A2)
has a nontrivial solution. A positive sign of the growth
rate means that the system is unstable with respect to the
perturbation of the selected wave vector kx and frequency ω

associated with it. We find the parameter region of system
instability for the case of an infinite ferromagnet and a
ferromagnetic slab.

III. THE CONDITION OF DOMAIN-WALL INSTABILITY

A. Infinite ferromagnet

First of all, let us analyze the case when the slab thickness
is infinite (d → ∞). In this case we find the dispersion law
and get the condition of positive imaginary part of ω,

k2
x

[
1

2π
l2
j − (λ1 + λ2)	mlj

− 2αl2
ex

(
λ1 + k2

x	
2λ2 + k2

xl
2
ex

π

)]
> 0, (7)

where λ1,λ2,λ3 are the integrals defined by (A3). Here we
introduced the length associated with the electric current,

lj = αb − c

γ
jx, (8)

that, however, may change its sign when the component jx

changes sign. Its physical meaning is related to spin transfer
by electric current. Besides, the exchange length [16] usually
written as

√
λ/M2

s up to a constant multiplier takes the form
lex = √

λ in our parametrization. We see from (7) that the
growth rate tends to zero when kx → 0. Next, we should note
that if there is no electric current the condition (7) is never
satisfied. Indeed, the integrals λ1 and λ2 are not negative.
Taking lj = 0, we see that the left-hand side of (7) is less
than or equal to zero for all kx . This is consistent with the
well-known fact that a domain wall is stable in an infinite
ferromagnet due to the surface tension.

Application of a large electric current of any sign leads to
the instability of the system due to the first term in the left-hand
side of (7) that is proportional to l2

j . However, for all known
materials the b and c constants are very small [4,5]; hence, lj is
very small, too, compared to other length scales for the realistic
values of current (up to 108A/cm2). So we may neglect the
term proportional to l2

j with good accuracy.
The second term in the left-hand side of (7) appears to

be due to the magnetostatic energy and is linear in lj and
in the toroidal moment of the system. If mlj > 0, this term
contributes to the stability of the system, while for mlj < 0 it
may lead to its instability, depending on the kx value. For small
kx (kx � 1/	) we use approximate calculations of λ1,λ2,λ3

(A7) and (7) and get a simple condition of instability:

|kx |mlj + 2αl2
exk

2
x < 0. (9)

The first term in the left-hand side of (9) tends to zero slower
than the second one as kx → 0. Hence, even a very small
electric current causes the domain-wall instability for small-
enough values of |kx |.
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The sign of mlj is determined by the direction of the electric
current with respect to the vector of the toroidal moment and
by the sign of the constant (αb − c). Although c � b and
α � 1, we suppose, for the sake of simplicity, that this constant
is positive. Taking this speculation into account, the electric
current applied to the domain wall in an infinite ferromagnet
leads to its instability if it is parallel to the toroidal moment of
the system. If the current is antiparallel to the toroidal moment,
it adds to the stability of the domain wall.

B. Ferromagnetic slab

In the case of a ferromagnetic slab we should add the
magnetostatic energy that appears due to the edges of the slab.
This leads to additional terms in the condition for domain-wall
instability (7):

k2
x

[
1

2π
l2
j − (λ1+λ2)	mlj −2αl2

ex

(
λ1+k2

x	
2λ2+ k2

xl
2
ex

π

)]

− 4α

(
λ1 + k2

xl
2
ex

π

)
[λ3(kx) − λ3(0)]

	

d
> 0. (10)

As earlier, the condition depends on mlj and does not depend
on n. So the chirality of the domain wall does not affect
its stability or instability, while the toroidal moment exerts
influence on it only together with the electric current.

It can be shown that λ3(kx) < λ3(0) for nonzero kx . Thus,
the additional term in (10) contributes to the instability of the
domain wall. In the absence of an electric current domain-
wall stability is determined by the concurrence between the
magnetostatic energy that appears due to the z component
of the magnetic field and the surface tension. Using the
approximations (A7) we get

2
	

d
[� + K0(2|kx |d) + ln (|kx |d)] − k2

xl
2
ex > 0, (11)

which corresponds to known results [18]. According to
this condition, the domain wall is unstable for small kx

(excluding kx = 0), while for large kx it becomes stable.
In order to visualize this result, one may use approx-
imations for the modified Bessel function K0(2|kx |d) ≈
−[� + ln (|kx |d)](1 + |kx |2d2) + |kx |2d2 for |kx |d � 1 and
K0(2|kx |d) ≈ exp (−2|kx |d)√

2|kx |d for |kx |d � 1 [21].
The addition of an electric current modifies (11) to

4α
	

d
[� + K0(2|kx |d) + ln (|kx |d)]

− 2αk2
xl

2
ex − |kx |mlj > 0, (12)

where we used the approximation (A7) again. We see from (12)
that if the electric current is parallel to the toroidal moment of
the system it adds to the instability of the domain wall, while
if it is antiparallel to the toroidal moment it contributes to the
stability of the wall (e.g., for small |kx | the wall becomes stable)
and may, in theory, lead to its stability for all kx . However, in
practice it just slightly changes the range of values of kx where

the domain wall is unstable due to the very small constants b

and c that determine the influence of the current, as discussed
in Sec. IV.

IV. DISCUSSION

The new mechanism of domain-wall stability or instability
may be qualitatively understood in the following way. The
magnetization distribution in a plane domain wall has two
components: Mx and Mz. If we perturb the domain wall and
take into account only its surface tension it still has two
components (neglecting magnetization precession). Adding
the magnetostatic energy leads to local turn of magnetization of
the domain wall to the direction tangential to its surface. Thus,
all three components of the magnetization are nonzero, which,
in turn, leads to the appearance of topological charge [19,22]
Q ∼ (M · [ dM

dx
× dM

dy
]), which has the form Q ∼ −2mφ′

x for
the magnetization distribution described by (3)–(5). In the
considered case the topological charge has different sign for
areas with different directions of deviation from initial plane
(see Fig. 2). We may further associate this topological charge to
small pieces of virtual skyrmions. If a current is applied to the
system the skyrmions will move [22]; we are interested in the
component of their velocity that is perpendicular to the domain
wall. The direction of this component does not depend on the
chirality of domain wall (i.e., on the n constant), but depends on
the direction of skyrmion core (i.e., on the m constant) and on
the direction of current [compare Figs. 2(a) and 2(b)]. For one
direction of current virtual skyrmions move away from each
other; so do the topological charges of domain-wall areas, and
the perturbation of the domain wall becomes smaller, which
leads to its stability [Fig. 2(a)]. For another direction of current
the direction of perpendicular movement is opposite and the
perturbation increases [Fig. 2(b)].

FIG. 2. (Color online) The mechanism of (a) domain-wall stabil-
ity and (b) domain-wall instability in electric current. The solid line
stands for the domain wall; dashed lines show its range. Areas of the
domain wall that have topological charge of different sign are hatched
in different directions (red and blue online); the density of hatches
corresponds to the magnitude of the charge. Dotted lines show virtual
skyrmions that approximate parts of the domain wall. Arrows show
the perpendicular movement when the current is applied.
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As has been mentioned, our results agree to the known
results for domain-wall stability without the electric current.
In order to analyze these results, we may further find the typical
length scale of appearing deviations. For rough estimations, we
may suppose that this scale corresponds to the maximum of
the growth rate since the deviation of this scale rises faster than
of any other. For an infinite ferromagnet we get the absolute
value of k∗

x under approximations (A7),

k∗
x = − 1

4αlex

mlj

lex
, (13)

where we suppose that for negative k∗
x there is no instability,

and for a slab we arrive at

k∗
x = 1

d
exp

(
1 − 2�

2

)
exp

(
− l2

ex

2d	

)
− mlj

8αd	
, (14)

supposing that the electric current adds a small correction
to the scale. The first term in the right-hand side of (14),
again, corresponds to known results without the electric current
[23,24], while the second term is a small correction driven by
the current. Importantly, the conditions of instability (7) and
(10) are even with kx , which means that the waves running in
both directions of x have the same growth rate. The formula
(14) works for d � lex when the second term in its right-hand

FIG. 3. (Color online) Dependence of typical length scale
D = 1/k∗ on the layer half thickness d . The solid (black) line stands
for zero current; dashed (red) and dotted (blue) lines correspond to
jx = 108 A/cm2 and jx = −108 A/cm2. The dot-dashed line deter-
mines the asymptote defined by (13). The A point on the dashed (red)
line is the point where the domain wall becomes stable due to the
applied current. The B point on the dotted (blue) line corresponds to
the d/	 value at which D is two times smaller if the current is applied
than that without the current.

side is much smaller than the first one. However, we see that
for small d (d � lex) the first term decreases exponentially,
while the second one increases as 1/d. For ultrathin layers
(d → 0) and appropriate sign of current the typical scale k∗

x

tends to the value determined by (13).
The perpendicular-to-plane magnetization is observed in

Co/Pt multilayer structures [25,26], including the case of one
Co layer. We perform estimations for the parameters of Co
ferromagnet: Ms = 1446Oe, γ =2.7×1010 s−1, α=0.1,b =
1.4×10−5 cm3

A·s , c=2.8×10−7 cm3

A·s , 	=24.3 nm, lex = 9.8 nm
[4,5]. The electric current affects the region of domain-wall
instability and the maximum of the growth rate. The
calculation of typical length scale D = 1/k∗

x versus d

for ultrathin layers is represented in Fig. 3. We see that
the influence of current is essential for ultrathin layers
with d/	 � 1: Applying current of one direction leads to
stability of the domain wall (for d less than d of the A
point in Fig. 3). For another direction of current the scale
of instability differs from the value obtained in the absence
of current (for instance, the scale is two times smaller than
that without the current for d/	 ≈ 0.028; see point B in
Fig. 3).

V. CONCLUSION

We have theoretically studied stability of a Bloch domain
wall in the presence of electric current applied in its plane. The
resulting stability or instability of a domain wall is determined
by the concurrency of three mechanisms: The surface tension
leads to the domain-wall stability in the case of an infinite
ferromagnet, the magnetostatic energy at the interfaces of
the slab makes the domain wall unstable, and the electric
current may either contribute to the stability or instability,
depending on its direction with respect to the vector of system
toroidal moment. According to our calculations, in the case
of a wall in an infinite ferromagnet applying a current in one
direction leads to an addition to the stability of the wall while
for the opposite direction of the current it becomes unstable.
In the case of a ferromagnetic slab the electric current leads
to a correction to the wavelength range of the domain-wall
instability and to the typical length size of inhomogeneity,
which seems to be essential in ultrathin layers.

In conclusion, we have shown that the electric current ap-
plied in the plane of the domain wall reveals a new mechanism
of its stability or instability. Although we considered only the
case of small deviations of the domain-wall shape, we suppose
that the size of domains in the resulting domain structure
would change if a current is applied, which may further
allow to control the domain structure of thin ferromagnetic
films.
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APPENDIX: THE EQUATIONS OF DOMAIN-WALL MOTION

We apply the approach described in Sec. II to the LLG equation (1) with the magnetization M defined by (3) and (5). We get
the following equations for the Fourier transform of the phase φ	 = p and thedomain-wall shift q:

[ω + jxkxb − 2πγ	kxλ1(kx)m]q̃ − {
αω + jxkxc + i2γ

[
λk2

x + πλ1(kx)
]}

p̃m = 0; (A1)

[ω + jxkxb − 2πγ	kxλ2(kx)m]p̃m +
(

αω + jxkxc + i2γ

{
λk2

x + π	2k2
xλ2(kx) + 2

	

d
[λ3(kx) − λ3(0)]

})
q̃ = 0; (A2)

λ1(kx) = 2
∫ ∞

0

v2(
v2 + π2	2k2

x

/
4
)

cosh2 v
dv; λ2(kx) = 2

∫ ∞

0

v(
v2 + π2	2k2

x

/
4
)

sinh v cosh v
dv;

λ3(kx) =
∫ ∞

0

v
[
1 − exp

( − 2d
π	

√
v2 + π2	2k2

x

/
4
)]

sinh v cosh v

√
v2 + π2	2k2

x

/
4

dv. (A3)

The integrals λ1,2,3(kx) in (A1) and (A2) that arise from the magnetostatic energy of the wall are written out in (A3) and could
not be taken exactly. However, the domain-wall thickness 	 is typically very small (10–20 nm) and in order to simplify the
equations we may consider the case of a quite thick slab and suppose that the deviation of the wall also has quite big wavelength:

	 � d, (A4)

kx	 � 1. (A5)

The integral λ3 appears at the edges of the slab and characterizes the magnetostatic energy due to nonzero z component of
magnetic field. In order to simplify this integral, we put a stronger restriction on kx ,

kxd � 1, (A6)

which means we consider the deviations of the scale that is much bigger than the slab thickness. Taking into account (A4)–(A6),
we obtain

λ1 ≈ 2, λ2 ≈ 2

	|kx | , λ3(kx) − λ3(0) ≈ −[� + K0(2|kx |d) + ln (|kx |d)], (A7)

where � ≈ 0.5772 is the Euler constant and K0 is the Macdonald function [21]. Numeric calculations show that the approximations
(A7) may be used for small kx .
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