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We use the recently developed typical medium dynamical cluster (TMDCA) approach [Ekuma et al., Phys.
Rev. B 89, 081107 (2014)] to perform a detailed study of the Anderson localization transition in three dimensions
for the box, Gaussian, Lorentzian, and binary disorder distributions, and benchmark them with exact numerical
results. Utilizing the nonlocal hybridization function and the momentum resolved typical spectra to characterize
the localization transition in three dimensions, we demonstrate the importance of both spatial correlations and a
typical environment for the proper characterization of the localization transition in all the disorder distributions
studied. As a function of increasing cluster size, the TMDCA systematically recovers the re-entrance behavior of
the mobility edge for disorder distributions with finite variance, obtaining the correct critical disorder strengths,
and shows that the order parameter critical exponent for the Anderson localization transition is universal. The
TMDCA is computationally efficient, requiring only a small cluster to obtain qualitative and quantitative data in
good agreement with numerical exact results at a fraction of the computational cost. Our results demonstrate that
the TMDCA provides a consistent and systematic description of the Anderson localization transition.
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I. INTRODUCTION

Disorder is ubiquitous in materials and can drastically
alter their properties, in particular, their electronic structure
and transport properties, and even may induce electron
localization. This phenomenon is known as the Anderson
metal-insulator transition [1–5]. Here, the transition from a
metal to an insulator is not characterized by the vanishing
of the charge carrier density but by the cancellation of the
hybridization paths accompanying the quantum localization
of the wave functions due to coherent backscattering from
random impurities, deep-trapped states, etc. As a result,
electrons that occupy such exponentially localized states
are restricted to finite regions of space, and hence cannot
contribute to transport. The Anderson insulator is gapless
indicating that the single-particle excitations are essential in
determining its physical properties especially at low energies.
While there has been significant progress in the quest to
understand this phenomenon, a proper effective mean-field
treatment is not yet fully developed.

There have been numerous theoretical studies of disordered
electron systems employing computational techniques of
varying complexity not limited to numerically exact methods
including exact diagonalization, transfer matrix, and kernel
polynomial methods [4,6–15], various renormalization group
techniques [16–18], and mean-field theories [19–25]. While
numerical exact methods have been successfully used to study
the Anderson localization, they generally require the treatment
of large clusters and the use of powerful computers. As a result,
they are difficult to extend to the treatment of interacting sys-
tems or chemically specific models. An alternative approach is
offered by mean-field theories such as the coherent potential
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approximation and its extensions [23,24,26]. They map the
lattice onto relatively small self-consistently embedded clus-
ters. These methods have been successfully extended to the
treatment of interacting disordered systems and to chemically
realistic models. Unfortunately, these methods have been
woeful in the treatment of the Anderson localization due
mainly to the averaging procedure utilized and improvements
in the environment describing the effective medium have been
limited to single sites.

Due to the central role a mean-field theory that properly
describes the Anderson localization transition (ALT) may play
for further progress in the study of electron localization, there
is a need to formulate such theory. Furthermore, a well-known
long historical dichotomy exists between the mean-field results
and the numerical data for the Anderson localization transition.
Here, we demonstrate that the dichotomy can be reconciled
by incorporating spatial fluctuations in a typical environment
into the mean-field theory thereby offering a solution to this
long-standing problem and providing a systematic framework
in the mean-field theory of the Anderson localization.

The most commonly used self-consistent mean-field theory,
in the study of disordered electron systems, is the coherent
potential approximation (CPA) [23,24]. In the CPA, the orig-
inal disordered lattice is replaced by an impurity placed in an
averaged local (momentum-independent) effective medium.
While the CPA successfully describes some one-particle
properties, such as the density of states (DOS) in substitutional
disordered alloys [23,27], it fails to describe the Anderson
localization transition. This failure stems, in part, from the
single-site nature of the CPA, as it is unable to capture
crucial multiple backscattering interference effects that lead
to electron localization. Cluster extensions of the CPA, like
the dynamical cluster approximation (DCA) [26,28,29] and
molecular CPA [30], allow for the incorporation of such
nonlocal spatial correlations; however, they still fail to describe
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the Anderson localization transition. The arithmetic averages
of random one-particle quantities (e.g., density of states)
calculated within such mean-field theories cannot distinguish
between extended and localized states and are not critical at the
Anderson transition [1,31–33]. Hence such average quantities
cannot be used as an order parameter. This is the reason that
most mean-field theories like the CPA [34] and its cluster
extensions including the DCA [28,29,35], fail to provide a
proper description of the Anderson localization in disordered
systems. This failure is intrinsic to these theories as the
algebraically averaged quantities, i.e., the averaged density of
states, always favor the metallic state. This can be understood
from the fact that in an infinite system of localized states, the
average density of states is nothing but the global density of
states, which is a smooth function of the disorder strength near
the critical point, while the local density of states becomes
discrete with a nontrivial system size dependence (see, e.g.,
Refs. [25,31,32,36–40] for a detailed discussion). Further,
due to the large fluctuations in the local Green function, its
typical value is far removed from the average one [41] as
such, the local average Green function, which characterizes
these mean-field environments, does not have any information
about the typical nature of the local order parameter needed to
signal a phase transition. In Sec. III 1, we will demonstrate the
failures of finite cluster extensions of the CPA in characterizing
the Anderson localization transition using the DCA.

Finding a proper single-particle order parameter for the
Anderson localization transition capable of distinguishing
between the localized and extended states is a major challenge
in the study of disordered electronic systems. In contrast to the
arithmetic average, the geometrical average [25,37,39,42,43]
gives a better approximation to the most probable value
of the local density of states. Dobrosavljević et al. [25]
developed the typical medium theory (TMT) to study dis-
ordered systems, where the typical density of states (TDOS),
approximated using the geometrical averaging over disorder
configurations, is used instead of the arithmetically averaged
local density of states. They demonstrated that the TDOS
vanishes continuously as the strength of the disorder increases
towards the critical point and it can be used as an effective
mean-field order parameter for the Anderson localization
transition.

While the single-site TMT has been shown to be successful
in describing localized electron states, it still has several draw-
backs. In particular, it does not provide a proper description
of the critical behavior of the Anderson localization transition
in three dimensions (3D). As a local approximation, the TMT
neglects the effects of coherent backscattering and, as a result,
the critical disorder strength obtained is WTMT

c = 1.65 instead
of the numerically exact value Wc ≈ 2.1 [5,10,44–49] for
the box distribution (in our units). Also, the universal order
parameter critical exponent (which has also been called the
typical order parameter exponent) [42] β obtained in the local
TMT is βTMT ≈ 1.0, whereas its recently reported value is
β ≈ 1.67 [46,50]. Another crucial drawback of the single
site TMT in 3D is its inability to capture the re-entrance
behavior of the mobility edge (energy separating extended
and localized electron states) demonstrated in exact numerical
studies [47,51,52] for the disorder distributions with finite
variance: the box and Gaussian disorder distributions. The

TMT also underestimates the extended state regions in all the
disorder distributions studied in this paper.

The inadequacies of the single-site TMT can be remedied by
incorporating spatial (nonlocal) correlations by constructing
its cluster extension. This can be achieved by using the DCA
or molecular CPA schemes, which systematically incorporate
the missing nonlocal effects.

In this paper, we show in detail a successful extension of the
local TMT to its cluster version using ideas from the DCA. We
demonstrate how the finite cluster extension of the local TMT
is able to systematically solve all the crucial drawbacks of the
single-site TMT, indicating the necessity to include the missing
nonlocal effects. One of the features of the Anderson localiza-
tion transition in three dimensions is the non-self-averaging
nature of the local quantities close to the localization transition,
which obtain a highly skewed (log-normal) distribution. Hence
special care must be taken in constructing a cluster extension
of the TMT. To avoid such self-averaging issues in the
TDOS, we developed the typical medium dynamical cluster
approximation (TMDCA) [1], which properly characterizes
the Anderson localization transition in 3D and does not suffer
from the self-averaging, by explicitly separating the local part
of the TDOS and treating it with a geometric average over
disorder configurations. Hence we are able to obtain a proper
TDOS that characterizes the Anderson localization in 3D. We
demonstrate the versatility of our method by applying it to the
box, Gaussian, Lorentzian, and binary disorder distributions
and benchmark it with numerically exact methods.

The typical medium dynamical cluster approximation
scheme is demonstrated to be a systematic, self-consistent
effective medium theory for characterizing electron localiza-
tion. As a function of increasing cluster size, we demonstrate
that the TMDCA achieves convergence of both the critical
disorder strength and the trajectories of the mobility edge
as a function of the cluster size. Furthermore, the TMDCA
fulfills all the essential requirements expected of a “successful”
cluster theory [28,53]. We find that the TMDCA scheme is a
systematic self-consistent effective medium theory to study the
Anderson localization transition in three dimensions, which
(i) recovers the original single-site TMT scheme at cluster
size Nc = 1; (ii) recovers the DCA results at small disorder
strength (when most states are metallic); (iii) provides a proper
way to separate the energy scales such that the characteristic
mobility edge behavior (for the disorder distributions with
finite variance) is recovered; (iv) captures the critical behavior
of the Anderson localization transition with correct critical
disorder strength Wc and order parameter critical exponent β,
and provides the correct description of the Anderson insulator
at large disorder strength (when all states are localized); and
(v) fulfills all the essential requirements expected of a
“successful” cluster theory [28,53].

The main problem addressed in this paper is how the mobil-
ity edge energies vary with disorder strength, their trajectories,
and what happens to these trajectories in the proximity of
the Anderson localization transition. Furthermore, since the
DCA always becomes exact when Nc → ∞, the main role
of the effective medium in approaches based on the DCA,
or its extensions, is to accelerate this convergence. For the
ALT, we find that the effective medium formed from the
average Green function does not converge as Nc becomes large,
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rather it is only able to describe the precursors to localization
(cf. Sec. III 1). However, we find that a number of effective
media based upon the geometrically averaged density of states
provide convergent results, i.e., an order parameter. So far, we
find that the fastest convergence is provided by the TMDCA.

The rest of this paper is organized as follows: following
the introduction in Sec. I, we present the model and describe
the details of the formalism in Sec. II. We present the results
of our calculations in Sec. III. The absence of localization in
the DCA (shows only precursor to localization) is described
in Sec. III 1. Detailed analysis of how we avoid self-averaging
as the size of the cluster is increased is discussed in Sec. III 2.
Then, in Sec. III 3, we describe how to treat the states close to
criticality where the hybridization function vanishes leading to
the development of poles (delta functions) in the imaginary part
of the cluster-excluded Green function, G(K,ω). A detailed
analysis of our results for the box disorder distribution is
presented in Sec. III A. Section III B presents our results for
the binary disorder distribution. In Sec. III C, we present our
results for the Gaussian disorder distribution while Sec. III D
shows the results of our computations for the Lorentzian
distribution. In Sec. III E, we discuss in detail the procedure for
obtaining the critical parameters especially the order parameter
critical exponent β for the various disorder distributions, while
in Sec. III F, we address the discrepancy observed in the trajec-
tories of the mobility edge energies at higher disorder strength.
We summarize and discuss future directions in Sec. IV. In
Appendices A and B, we present a concise description of
the developed transfer matrix and kernel polynomial methods,
respectively, used in benchmarking the TMDCA.

II. METHOD

We consider the Anderson model of noninteracting elec-
trons subjected to a random potential. The Hamiltonian (for
spinless fermions) is given by

H = −
∑
〈ij〉

tij (c†i cj + H.c.) +
∑

i

(Vi − μ)ni. (1)

The first term is the kinetic energy operator due to hopping of
electrons on a lattice. The operators c

†
i (ci) create (annihilate)

a quasiparticle on site i, and tij is the hopping matrix
element between nearest neighbors 〈i,j 〉. The second term
is the disordered part parameterized by a local potential Vi ,
which is a random quantity distributed according to some
specified probability distribution, P (Vi), ni = c

†
i ci is the

number operator, and μ is the chemical potential. We set
4t = 1 as the energy unit. In our analysis, we use different
disorder distributions. In particular, we consider the box (Bo),
Gaussian (Ga), Lorentzian (Lo), and binary (Bi) distributions,
respectively, with the corresponding distribution functions
P (Vi):

PBo(Vi) = 1

2WBo
�(WBo − |Vi |), (2a)

PGa(Vi) =
√

3

2πW 2
Ga

e−3V 2
i /(2W 2

Ga), (2b)

PLo(Vi) = WLo

π
(
V 2

i + W 2
Lo

) , (2c)

PBi(Vi) = caδ(Vi − WA) + cbδ(Vi − WB), (2d)

where �(x) is the step function, ca is the concentration of the
host A atom, cb = 1 − ca is the concentration of the impurity
B atom, and the strength of the disorder in units of 4t is
parameterized by W (WA and WB for the binary alloy model).
We have scaled WGa such that the second moments of the PBo

and PGa agree with each other (i.e., we set the variance of the
Gaussian distribution equal to that of the box distribution: σ 2 =
W 2/3) in the event that WBo = WGa to enable comparison.
Since the Lorentzian distribution lacks a second moment, the
disorder values cannot be directly compared with that of either
the box or Gaussian distributions. We introduce a shorthand
notation for disorder averaging: 〈. . . 〉 = ∫

dViP (Vi)(. . . ).
To solve the Hamiltonian (1), different methods will be

used including the DCA [28], the cluster typical medium the-
ory [33], and the recently developed typical medium dynamical
cluster approximation (TMDCA) [1]. We will compare these
results to those obtained from numerical methods like the
kernel polynomial method (KPM) [9,12–14] and the transfer
matrix method (TMM) [4,10–14].

The TMDCA utilizes the self-consistent framework of
the standard dynamical cluster approximation [28] with the
important usage of an environment defined by a typical
nonlocal hybridization function. In particular, the TMDCA
maps the given disordered lattice system onto a finite cluster
which is embedded in an effective self-consistent typical
medium. Note that unlike the usual DCA scheme, where the
effective medium is constructed via algebraic averaging over
disorder configurations, the TMDCA scheme uses geometric
averaging. By mapping a d-dimensional lattice to a finite small
cluster containing Nc = Ld

c sites, where Lc is the linear dimen-
sion of the cluster, we dramatically reduce the computation
effort [35]. Unlike the single-site methods commonly used
to study disordered systems, such as the coherent potential
approximation (CPA) [23,34] or the local TMT [25], the
TMDCA ensures that nonlocal spatial fluctuations, neglected
in single-site approaches, are systematically incorporated as
the cluster size Nc increases. Short length scale correlations
are treated exactly inside the cluster, while the long length
scale correlations are treated within the typical medium.

Algorithm. The details of the TMDCA formalism are
described below. The nonlocal (K-dependent) disorder average
cluster density of states is given as

ρc
avg(K,ω) = 〈ρc(K,ω,V )〉 = − 1

π
〈�Gc(K,K,ω,V )〉, (3)

where the superscript “c” denotes cluster and 〈. . . 〉 is the
disorder average. For a single site Nc = 1, we recover the
CPA. The K-dependent cluster Green function is obtained from
the site dependent Green function Gc(i,j,ω) via the Fourier
transform:

Gc(K,K,ω) = 1

Nc

∑
i,j

eiK·(Ri−Rj )Gc(i,j,ω). (4)

Within the TMDCA, for each cluster configuration, we first
obtain ρc(K,ω) = −�Gc(K,K,ω)/π . It can be shown via the
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FIG. 1. (Color online) The self-consistent loop of the TMDCA.

Lehmann representation [54,55] that ρc(K,ω) � 0 for each K,
ω, and disorder configuration.

As mentioned above, in the TMDCA, the local part of
the cluster-momentum-resolved typical density of states is
separated and treated with geometrical averaging over the
disorder configurations, to avoid self-averaging as the cluster
size increases. The obtained cluster typical spectra are given
by

ρc
typ(K,ω) =

local TDOS︷ ︸︸ ︷
exp

(
1

Nc

Nc∑
i=1

〈
ln ρc

i (ω,V )
〉)

×
〈

ρc(K,ω,V )
1
Nc

∑
i ρ

c
i (ω,V )

〉
︸ ︷︷ ︸

nonlocal

. (5)

From Eq. (5), the disorder averaged typical cluster Green
function is obtained using the Hilbert transform

Gc
typ(K,ω) =

∫
dω′ ρ

c
typ(K,ω′)

ω − ω′ . (6)

A schematic TMDCA self-consistency is shown in Fig. 1.
The TMDCA iterative procedure is outlined below.

(1) The TMDCA iterative procedure begins by proposing an
initial guess for the hybridization function 	o(K,ω), where the
subscript “o” denotes old. The choice of the starting guess for
the hybridization function may be based on a priori knowledge,
i.e., having information about the self-energy 
(K,ω) and
cluster Green function Gc(K,ω), 	o(K,ω) can be calculated
as

	o(K,ω) = ω − ε(K) + μ − 
(K,ω) − 1/Gc(K,ω), (7)

where ε(K) = Nc/N
∑

k̃ ε(K + k̃) is the coarse-grained bare
dispersion with k̃ summed over N/Nc momenta inside the cell
centered at the cluster momentum K [29]. However, if nothing
is known a priori, 	o(K,ω) set to a small imaginary number
may serve as the starting point.

(2) After setting up the cluster problem, we calculate the
cluster-excluded Green function G(K,ω) as

G(K,ω) = (ω − 	o(K,ω) − ε(K) + μ)−1. (8)

Since the cluster problem is solved in real space, we then
Fourier transform G(K,ω): Gn,m = ∑

K G(K) exp(iK (rn −
rm)).

(3) Next, to solve the cluster problem, we stochastically
generate random configurations of the disorder potential V ,
and calculate the corresponding cluster Green function as

Gc(V ) = (G−1 − V )−1. (9)

This is Fourier transformed to Gc(K,K,ω) to obtain the cluster
density of states ρc(K,ω) = − 1

π
�Gc(K,K,ω). The typical

cluster spectra is then calculated via geometric averaging using
Eq. (5). Then, we calculate the disorder averaged, typical
cluster Green function Gc

typ(K,ω) via the Hilbert transform
using Eq. (6). We note the advantage of the stochastic sampling
of the disorder configurations. Here, each of the disorder
configurations is statistically independent of the others. Thus,
for example, for the binary disorder distribution, instead of
enumerating all configurations, which scales as 2Nc , we do
a stochastic sampling of the disorder configurations. This
greatly reduces the computational cost, at the expense of a
small sampling error, enabling us to study larger clusters. We
also enforce all of the cluster translational and point group
symmetries, effectively generating more configurations. With
this, the number of disorder realizations needed to obtain a
converged solution falls with increasing cluster size. For a
typical 64-site cluster, with box disorder, about 500 disorder
realizations are enough to produce high-quality data. The code
scales like A(Nc)N3

c due to the matrix inversion in Eq. (9),
but the prefactor A(Nc), also depends on Nc since fewer
self-consistency iterations and disorder configurations are
needed for larger clusters. Hence A(Nc) falls with increasing
cluster size.

(4) After solving the cluster problem, we use the typical
cluster Green function, Gc

typ(K,ω), to calculate the coarse-

grained cluster Green function of the lattice G(K,ω) as

G(K,ω) =
∫

Nc
0 (K,ε)dε(

Gc
typ(K,ω)

)−1 + 	(K,ω) − ε + ε(K)
, (10)

where Nc
0 (K,ε) is the bare partial density of states.

(5) We then close our self-consistency loop by updating the
new hybridization function using linear mixing

	n(K,ω) = 	o(K,ω) + ξ
[(

Gc
typ(K,ω)

)−1 − (G(K,ω))−1
]
,

(11)
where the subscripts “n” and “o” denote new and old,
respectively. The mixing parameter ξ > 0 controls the ratio
of the new and old 	(K,ω) entering the next iteration. For
very small ξ , convergence may be slowed down unnecessarily,
while for very large ξ , oscillations about the self-consistent
solution may occur. Instead of linear mixing, the convergence
of the computations can be improved by using the Broyden
method [56].

(6) We repeat the above procedure until the hybridiza-
tion function converges to the desired accuracy, 	o(K,ω) =
	n(K,ω). When this happens, the Green functions are also
converged, G(K,ω) = Gc

typ(K,ω), within the computational
error.

We note that our formalism preserves causality just as the
DCA [28], since all the Green functions are causal, both the
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TABLE I. Three-dimensional (3D) cluster geometries utilized in
our calculations. The ai denote the cluster lattice vectors and C is the
cubicity.

Nc 	a1 	a2 	a3 C

1 (1, 0, 0) (0, 1, 0) (0, 0, 1) 1.000
38 (1, 2, 3) (3, −1, −2) (2, −2, 2) 1.087
64 (4, 0, 0) (0, 4, 0) (0, 0, 4) 1.000
125 (5, 0, 0) (0, 5, 0) (0, 0, 5) 1.000
216 (6, 0, 0) (0, 6, 0) (0, 0, 6) 1.000

average density of states (ADOS) and the TDOS calculated
from them are positive definite. Also, we observe that as Nc

increases, our method systematically interpolates between the
local TMT and the exact result.

For reproducibility, we specify in Table I the cluster
geometries and other important parameters of the clusters
used in our computations. The parameters of Table I include
the lattice vectors (	a1,	a2,	a3), and the cubicity (C) [57]. The
cubicity is given as C = max(c1,c

−1
1 ) × max(c2,c

−1
2 ), where

c1 = 31/2l/d and c2 = 21/2l/f are cluster parameters defined
by the geometric mean of the lengths of the four body diagonals
of the cluster, d = (d1d2d3d4)1/4, the six-face diagonals, f =
(f1f2f3f4f5f6)1/6, and the edges, l = (l1l2l3)1/3 [57]. C = 1
is for a perfect cube, and C > 1 otherwise. Following this
criterion, clusters Nc = 1, 64, 125, and 216 are perfect cubes.

III. RESULTS AND DISCUSSION

Before presenting our main results in detail, we will first
review the characteristics of the DCA. Despite its advantage
over the CPA, it shares the same behavior with the CPA in that
it is unable to detect the localization transition in a disordered
electron system [26]. We will also elaborate on the details of
how self-averaging is avoided in the TMDCA as the cluster
size is increased. This becomes imperative since in the cluster,
self-averaging will ultimately destroy our ability to detect the
Anderson localization transition. Both the inability of the DCA
to capture the Anderson localization transition and how self-
averaging is avoided in the TMDCA will be demonstrated
using the box disorder distribution.

1. Absence of localization in the DCA

The dynamical cluster approximation (DCA), unlike the
coherent potential approximation (CPA), incorporates non-
local spatial correlations systematically as the size of the
cluster is increased. While spatial correlations are an important
ingredient in the localization transition in disordered electron
systems, the DCA effective medium is characterized by
arithmetic averaging over the disorder configurations. As
explained above and will be demonstrated below, even a
typically defined medium without a proper treatment of the
typical density of states (the local part of the typical density
of states needs to be separated and treated explicitly using
geometrical averaging), reduces to the DCA for large clusters.
In Fig. 2 (left panel), we show the ADOS at small and large
disorder strengths for the single-site (Nc = 1) and finite cluster
(Nc = 64) calculations. We also show in Fig. 2 (right panel)
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FIG. 2. (Color online) (Left) The average density of states cal-
culated using the DCA for small and large disorder strengths [26].
(Right) The probability of an electron remaining on a site after time t ,
P (t) = 〈|G(l,l,t)|2〉. The insets in the plots on the right are the prob-
ability of an electron remaining on a site for all time P (t → ∞,η) =
limt→∞ 〈|G(l,l,t)|2〉 = limη→0

η

π

∫ ∞
−∞ dε〈|G(l,l,ε + iη)|2〉 for the

Nc = 1 (black) and 64 (red), respectively. The ADOS is not critical at
the Anderson transition. The noncritical behavior in the DCA can also
be inferred from P (t), which decays rather fast instead of remaining
constant, and in that P (t,η) extrapolates to zero instead of a finite
value when many of the states are localized. The DCA only shows a
precursor to the Anderson localization as manifested in P (t) for large
disorder strength for the finite cluster sizes.

the probability P (t) = 〈|G(l,l,t)|2〉 of an electron remaining at
a site l at long time t calculated within the single-site and finite
cluster DCA [26] scheme while the insets depict the probability
of an electron remaining on a site l for all time: P (t → ∞,η) =
limt→∞〈|G(l,l,t)|2〉 = limη→0

η

π

∫ ∞
−∞ dε〈|G(l,l,ε + iη)|2〉.

P (∞,η) is expected [26] to be nonzero for any fraction
of the localized states in the spectrum of the eigenstates of
the disordered system [28,53,58,59]. As is evident from the
inset of the right panel of Fig. 2, the plot of P (∞,η) versus
η, P (∞,η) extrapolates to zero even very close to the critical
disorder strength for both Nc = 1 and 64, respectively.

Also observe from Fig. 2 (left panel), the ADOS is not
critical at the Anderson transition. This is manifested in the
P (t) plot since for a localized state, P (t) is expected to be
finite. For Nc = 1, P (t) falls quickly with time regardless of the
disorder strength. However, for Nc = 64, the electrons remain
localized for longer times as the disorder strength is increased.
This can be understood by noting that each site on the cluster is
coupled to a noninteracting translationally invariant host into
which electrons can escape. Hence, if a finite density of states
exists at some energy, the corresponding states are guaranteed
to be extended unless the hybridization rate between the host
and the cluster vanishes. Indeed, this is the case in the DCA.
The imaginary part of the integrated hybridization (escape)
rate −� ∫

	(K,ω)dKdω between the cluster and the host as
a function of disorder strength W remains constant regardless
of the strength of the disorder (cf. insets of Figs. 6, 14, and 16,
for different disorder distributions). It does not go to zero
as needed for a localization transition in the typical medium
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context. Thus the DCA is only able to capture the precursor
to the Anderson localization as the cluster size, but not the
disorder strength increases.

2. Avoiding self-averaging

The averaging procedure used to calculate the typical
spectra is not unique. As noted above, our initial attempt
to formulate a cluster version of the TMT reproduced the
expected behavior in one and two dimensions as Nc is
increased [33]. However, in three dimensions, applying the
algorithm directly will lead to an effective self-averaging for
large clusters. This is due to the fact that close to criticality,
there exist distinct localized and extended states above and
below the localization edge given by the TDOS with an energy
scale difference that can span an order of magnitude. These
energy scales need to be treated differently. This can be seen
by investigating the spectra where the local part of the TDOS is
not explicitly separated and treated with a geometric averaging
over disorder realizations:

ρc
typ(K,ω) = exp〈ln ρc(K,ω,Vi)〉. (12)

In forming the Fourier transform

ρc(K,ω,Vi) = − 1

π
�
[

1

Nc

∑
X,X′

eiK·(X−X′)Gc(X,X′,ω,Vi)

]
,

(13)

we average over the cluster coordinates X and X′, including
the local part, X = X′. So, the local DOS is first averaged over
the cluster sites and then Fourier transformed making the local
part of ρc(K,ω). Hence, for large clusters, this reduces to linear
averaging of the local part instead of geometrical averaging.
As a consequence, the host Green function constructed from
ρc

typ(K,ω) of Eq. (12) is unaware of the TDOS and, thus, it is
unable to distinguish between the energies above and below the
localization edge. To avoid such self-averaging in the TDOS,
we proposed the typical medium DCA (TMDCA) method [1].
Here, the cluster-momentum-resolved typical density of states
(TDOS) for each K is split into local and nonlocal parts.
The local part is treated with geometrical averaging over
disorder configurations, while the nonlocal part is treated
with an algebraic or geometric averaging over the disorder
configuration.

To do this, we have utilized two schemes. The first scheme is
what we call linear-log procedure, which is used in this study.
Here, we treat the local part with a geometrical averaging
while the nonlocal part is approximated algebraically using
linear averaging as

ρc
typ(K,ω) = exp

(
1

Nc

Nc∑
i=1

〈
ln ρc

i (ω,Vi)
〉)

×
〈

ρc(K,ω,Vi)
1
Nc

∑
i ρ

c
i (ω,Vi)

〉
. (14)

The second scheme is what we call the log-log procedure,
which again involves the treatment of the local part with
geometrical averaging; however, the nonlocal part is treated
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FIG. 3. (Color online) A comparison of the phase diagrams of the
Anderson localization transition in 3D obtained from different cluster
approximations with Nc = 38 using the CTMT and the TMDCA
(linear-log and log-log) schemes. Observe that in the CTMT, as a
consequence of self-averaging, the higher disorder behaviors that are
captured in our TMDCA are totally missed and the critical disorder
strength is also severely overestimated.

with a log averaging as

ρc
typ(K,ω) = exp

(
1

Nc

Nc∑
i=1

〈
ln ρc

i (ω,Vi)
〉)

× exp

(〈
ln

ρc(K,ω,Vi)
1
Nc

∑
i ρ

c
i (ω,Vi)

〉)
. (15)

It is imperative to note that while there are different
behaviors of the two methods around the re-entrance region
(cf. Fig. 3), both procedures systematically converge to the
same critical disorder strength, e.g., WNc�12

c ≈ 2.1 ± 0.01 for
the box disorder distribution. However, the former (linear-log
procedure) is generally more robust than the log-log method.
The latter is characterized by slower convergence around the
re-entrance region, requiring far larger cluster sizes before
the convergence of the re-entrance region is achieved in
comparison to, e.g., the transfer matrix method (TMM) results.
It may also not be adequate to study localization phenomena
in realistic material applications, since it is not obviously clear
how a geometrical averaging of the off-diagonal components
of the spectral density, which are not positive definite, will be
done. The comparison of the phase diagram obtained using the
two procedures: log-log and linear-log formalisms is shown in
Fig. 3. As is evident from the figure, the two new schemes
converge to the same critical disorder strength but behave
differently around the re-entrance region. While our original
formulation (cluster typical medium theory (CTMT)) will
eventually converge to a disorder strength far greater than Wc, a
further remark is that the re-entrance trajectory of the mobility
edge is totally missed as a consequence of self-averaging in
the cluster.

We note that in both the linear-log and the log-log
procedures, at small Nc, about 100 self-consistent iterations
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are required to achieve convergence, while, for relatively large
Nc, far fewer iterations are required. The convergence criterion
in both limits is achieved when the TDOS (ω = 0) does not
fluctuate anymore with iteration number within the error bars.

Finally, we note that many other definitions of the typical
medium which avoid self-averaging are possible, including the
use of only the local part of Eq. (14), i.e.,

ρc
typ(K,ω) = exp

(
1

Nc

Nc∑
i=1

〈
ln ρc

i (ω,Vi)
〉)

. (16)

However, this method was rejected since it does not meet most
of the criteria discussed in the introduction. In this case, this
formalism does not recover the DCA in the weak disorder
limit.

3. The pole procedure

Close to criticality, the hybridization rate of the states at
the top and bottom ((0,0,0) and (π,π,π )) of the bands tends to
zero leading to the development of poles in the cluster excluded
Green function. Here, we present in detail how to deal with
such poles that emerge on the real frequency axis as the critical
disorder strength is approached.

When �	typ(K,ω) becomes very small (i.e., �	typ(K,ω) →
0), the imaginary part of the cluster-excluded Green function,
G(K,ω), becomes a series of delta functions. To see this, we
note that

G(K,ω) = (ω − 	typ(K,ω) − ε(K) + μ)−1

= P(ω − ω′)−1 − iπδ(ω − ω′), (17)

where ω′ = ε(K) − μ + 
	typ(K,ω) and “P” denotes the
principle value. Evidently, from Eq. (17), the poles cannot
be represented in the conventional way as a list of frequencies
on the computer with a finite frequency resolution dω. Such
difficulty can be avoided by replacing G(K,ω) for each of the
K cells where �	typ(K,ω) is vanishing with

G(K,ω) =
{−iπ/dω : ω = ω′

1
ω−ω′ : ω �= ω′ . (18)

We refer to this formulation as the explicit “pole procedure.”
With this procedure, the singularity in G(K,ω) can be properly
captured. An added difficulty is that for a given Nc, as the Wc

is approached, �	typ(K,ω) for individual cells goes to zero at
different rates. Hence we have to determine which of these cells
need to be treated with the explicit pole procedure. We choose
the criterion that for any cell, if (−1/π ) × �	typ(K,ω′) < a ×
dω′, then, we apply the pole procedure to such cells. Here, a �
1 is a parameter that measures the minimum number of pixels
needed to represent a pole approaching the real frequency axis.
Our numerical experience shows that such a criterion works
nicely, while spurious results are obtained otherwise.

A. Box disorder distribution

To demonstrate that the typical and not the average DOS
can serve as a proper order parameter for the Anderson
localization transition, we start the discussion of our results by
comparing the algebraically averaged DOS (ADOS) calculated
using DCA and the TDOS obtained from a single site TMT
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W=1.65

FIG. 4. (Color online) The evolution of the ADOS and TDOS at
various disorder strengths W for the single-site TMT and the TMDCA
with cluster size Nc = 64 and 125. At low disorder, where all the states
are metallic, the shape of TDOS is the same as that of the ADOS. As W

increases, in the case of single-site TMT, the TDOS gets suppressed
and the mobility edge moves towards ω = 0 monotonically. In the
TMDCA, the TDOS is also suppressed, but the mobility edge first
moves to higher energy,and only with a further increase of W > 1.8,
it starts moving towards the band center, indicating that the TMDCA
can successfully capture the re-entrance behavior. Arrows indicate the
position of the mobility edge, which separates the extended electronic
states from the localized ones and the colored region indicates the
TDOS.

(Nc = 1) and finite clusters TMDCA (Nc = 64 and 125) at
various disorder strengths W for the box disorder distribution
[Eq. (2a)]. As shown in Fig. 4, the ADOS remains finite
while the TDOS for both TMT and TMDCA continually
gets suppressed as the critical disorder strength is approached.
Moreover, one observes a crucial difference between the single
site TMT (Nc = 1) and TMDCA finite clusters of Nc = 64
and 125. In the former, the mobility edge (for extended
states TDOS is finite) defined by the boundary of the TDOS
(indicated by arrows) always gets narrower with increasing
disorder strength W , while in the latter, as a function of
disorder strength, the mobility edge first expands and then
decreases, hence giving rise to the re-entrance behavior, which
is completely missing in the single-site TMT. Observe also the
quick convergence with the clusters size at ω = 0 for the finite
clusters Nc = 64 and 125. The implications of this will be
discussed further below and explored with respect to what
happens to the trajectories of the mobility edge as the size of
the cluster increases.

To benchmark our TMDCA formalism with another numer-
ical technique, we utilize the kernel polynomial method [8,9].
We show in Fig. 5 a plot of the TDOS (ADOS) (Nc = 64)
calculated using the TMDCA (DCA) as compared to the
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FIG. 5. (Color online) Comparison of the average (typical) den-
sity of states calculated with the DCA (TMDCA) and the kernel
polynomial method (KPM) for the box disorder distribution at various
strengths for the cluster size Nc = 64. The kernel polynomial method
used 4096 moments on a 483 cubic lattice, and 1000 independent
realizations generated with 32 sites randomly sampled from each
realization.

TDOS (ADOS) obtained using the kernel polynomial method
(KPM). As it is evident from the plots, even though there
is a qualitative agreement between the two methods, there
are subtle deviations especially in the TDOS. This deviation
can be attributed to finite lattice effects and the effective
broadening due to the finite order expansion used in the KPM.
Overall, the agreement is a manifestation of the ability of
our TMDCA formalism [1] to accurately characterize the
Anderson localization transition in systems with a uniform
disorder distribution even with relatively small system sizes, as
compared to the large lattice systems that need to be simulated
in the kernel polynomial method for accurate results to be
obtained.

Next, we consider the evolution of the critical disorder
strength Wc with the cluster size. Figure 6 shows the local
TDOS (ω = 0) at the band center as a function of disorder
strength W for several cluster sizes: Nc = 1,64, and 125.
The critical disorder strength Wc is defined by the vanishing
of the TDOS (ω = 0). The inset is the imaginary part of
the integrated hybridization function which shares the same
property as the TDOS since both vanish at the same disorder
strength, while the DCA result remains finite, independent
of the disorder strength, indicating no tendency towards
localization with increasing disorder. Our results show that as
Nc increases, the critical disorder strength Wc in the TMDCA
systematically increases until it converges to the exact value
Wc ≈ 2.10 [10,44–46,50–52,60] at cluster size Nc � 12. The
cluster Nc = 12 is the first cluster with a complete nearest-
neighbor shell based on Betts cluster classification [61]. From
this cluster onward, Wc converges to ≈2.10, but the trajectory
of the mobility edge in the re-entrance regime continues to
change until it also converges to the exact results at larger
Nc. This effect is due to the systematic incorporation of
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FIG. 6. (Color online) The TDOS (ω = 0) vs disorder strength
W at different cluster sizes Nc = 1,64, and 125 for the uniform
(box) disorder distribution. The TDOS (R = 0,ω = 0) vanishes
at the critical disorder strength Wc. At Nc = 1, WNc=1

c ≈ 1.65.
As the cluster size increases, Wc systematically increases with
WNc�12

c ≈ 2.10 ± 0.10, showing a quick convergence with the
cluster size. The inset shows the integrated hybridization function
[−� ∫

	(K,ω)dKdω] as a function of disorder strength W . Observe
that −� ∫

	(K,ω)dKdω vanishes at the same disorder strength
as the TDOS. The dashed lines are the −� ∫

	(K,ω)dKdω from
the DCA. Observe that it is a constant regardless of the disorder
strength and cluster size. This shows that the DCA, even though
it incorporates spatial correlations, does not describe the Anderson
localization transition. Moreover, near the critical region the TDOS
(R = 0,ω = 0) data can be fitted to a power law, with TDOS
(R = 0,ω = 0) = a0|W − W fit

c |β . The obtained critical exponent for
large enough clusters β ≈ 1.62 ± 0.10 is in good agreement with
exact results. Note that the −� ∫

	(K,ω)dKdω data for Nc = 64 and
125 has been normalized with that of Nc = 1.

coherent backscattering as the cluster size increases and will
be elaborated in more detail later.

To extract the order parameter critical exponent (β), we fit
our data in Fig. 6 for the largest system size considered here
(Nc = 125) using the power law: TDOS (ω = 0) = a0|W −
W fit

c |β . Following the procedure as explained in Sec. III E, we
obtain β ∼ 1.62 ± 0.10 with a corresponding critical disorder
strength from the fit W fit

c ∼ 2.23 ± 0.10. The fit overestimates
the critical disorder strength, as compared to the computed
one, due to the difficulty in determining the scaling regime, as
discussed below. This also causes the error bars to be larger
than obtained from other methods. Nevertheless, the critical
parameters from the fit are in good agreement with the recently
reported value of β ≈ 1.67 [46]. It is also in general agreement
with the values listed in Table III.

Apart from the typical density of states, the localization
transition in the gapless single-particle excitations of the
Anderson insulator can be studied using the return probability
of an electron to a site [58]. The probability of quantum
diffusion (or the return probability) describes the probability
of a quantum particle (or a wave) to go from site l to l′ in a time
t . After disorder averaging, the return probability has basically
three key contributions: (a) the probability of going from site
l to l′ without any scattering, (b) the probability of going from
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FIG. 7. (Color online) (Right) The probability that an electron
remains localized at all times P (∞,η) for the Anderson model
for Nc = 1 and 64 at varying disorder strengths. We used the fact
that P (t → ∞,η) = limη→0

−2iη

Nc

∑
l

∫ ∞
−∞ dωdω′〈 Ā(l,ω)Ā(l,ω)

ω−ω′−2iη
〉, where

Ā(l,ω) =−1/π�Ḡ(l,l,ω) is the local coarse-grained (but not disorder
averaged) spectral function. As η → 0, P (∞,η) extrapolates to
zero for small disorder strength indicating metallic behavior but
does not extrapolate to zero anymore as the disorder strength is
systematically increased towards the critical disorder strength leading
to the transition (see the inset where this is manifestly illustrated).
(Left) The probability of an electron on a site thereby remaining
trapped at finite time t for Nc = 1 and 64 for the same parameter as
P (∞,η) on a semilogarithmic plot.

site l to l′ by an incoherent sequence of multiple scattering
(known as diffusion), and (c) the probability to go from site l

to l′ via a coherent (or enhanced) multiple scattering processes
(e.g., the cooperon).

In the DCA or TMDCA, it is more convenient to mea-
sure the probability of an electron remaining on a given
site l for all time P (t → ∞,η) = limt→∞ 〈|G(l,l,t)|2〉 =
limη→0

η

π

∫ ∞
−∞ dε〈|G(l,l,ε + iη)|2〉 [28]. This will depend on

the localization length, but if a significant fraction of the eigen-
states of the disordered thermodynamic spectrum are localized
states, P (∞,η) is expected to be nonzero [28,53,58,59].
Since the cluster is formed by coarse-graining the real lattice
problem in K space, there is a one-to-one correspondence
between local quantities on the cluster and real space [28].
In Fig. 7 right panel, we show the P (∞,η) for the cluster
sizes Nc = 1 and 64 for various disorder strengths. As it is
evident from the plot, for relatively small disorder strength
W ∼ 0.5, P (∞,η) extrapolates to zero and becomes nonzero
as the localization transition is approached. Just like the
P (∞,η), the finite time probability that an electron on a site l

remains after some time t denoted as: P (t) = 〈|G(l,l,t)|2〉 is
a vital parameter for detecting the localization of electrons.
As shown in Fig. 7 for Nc = 1 and 64 clusters, P (∞,η)
and P (t) contains the same information of the excitation
spectra. In Fig. 7 left panel, we show the P (t) for the same
parameters as P (∞,η). Hence a characteristic finite long
time P (t) denotes localized eigenstates. Again, systematic
transition from a metallic regime (for small disorder) to an
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FIG. 8. (Color online) The evolution with disorder strength of the
probability distribution of the density of states at different cluster cells
for Nc = 38. Utilizing the irreducible wedge property and particle-
hole symmetry, the original 38 cells are reduced to four cells. For small
disorder strength, the cells show Gaussian distributions whereas close
to the critical disorder strength �2.0, all the cells show log-normal
distributions.

insulating regime (for a disorder strengths close to the critical
value of the Anderson localization transition in Nc = 1 and
64 size clusters, respectively) is observed. Unlike in the DCA,
the localization transition manifests clearly in the P (∞,η)
and P (t) calculated in the TMDCA since, even though the
density of states (ADOS) calculated within the TMDCA is
finite as in the DCA (the ADOS is a conserving quantity), the
hybridization rate at the same energy depends highly on the
strength of the disorder (cf. inset of Fig. 6). In fact, it vanishes
continuously with the disorder strength and goes to zero at
the same point where the typical density of states vanishes.
Hence, since the hybridization rate between the cluster and
the host vanishes continuously as the critical disorder strength
is approached, the TMDCA method is able to capture the
localization transition even when the ADOS calculated with
the TMDCA is finite.

The probability distribution function (PDF) is another
natural quantity to characterize the 3D Anderson localization
transition due to the fact that the “typical” value of a
“random” variable corresponds to the most probable value of
the PDF [33,50]. A proper description of electron localization
in disordered systems requires consideration of the distribution
functions for the quantities of interest [2], so we calculate the
PDF of the cluster-momentum-resolved DOS ρ(K,ω = ε̄K )
(at different momenta cells K and energy ω = ε̄K ) sampled
over a large number of disorder configurations.

In Fig. 8, we show the evolution of the PDF[ρ(K,ω =
ε̄K )] with W . As is evident from the plot, for a relatively
small disorder, the cells show a Gaussian distribution, which
gradually becomes log-normal and highly skewed as the
critical disorder strength is approached.

The analysis of the spectral properties of the Anderson
model [39,62] shows that for relatively small disorder strengths
the states are still delocalized, and the amplitude of the wave
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FIG. 9. (Color online) The phase diagram of the Anderson local-
ization transition in 3D for the box disorder distribution obtained from
TMDCA simulations. A systematic improvement of the trajectories
of the mobility edge is achieved as the cluster size increases. At
large enough Nc and within computation error, our results converge
to those determined by the transfer matrix method (TMM). The
TMM data is for system sizes of length L = 1 × 106 (number of
multiplications), the range of system widths used is M = [2,16] and
reorthogonalization is done every 5 transfer matrix multiplications
(see Appendix A for details). The error was determined in a point in
the region of most discrepancy between the methods (upper bound of
re-entrance) by a finite size scaling analysis (see Appendix A). The
black line with filled circles denotes the Lifshitz boundaries (extracted
from the ADOS calculated within the DCA).

functions associated with them is more or less the same on
every site. The distribution of the local DOS with respect to
disorder configurations is Gaussian with the most probable
value coinciding with the arithmetic mean average value.
However, for sufficiently large disorder strength or in the
proximity of the band tails, the spectrum consists mainly of
discrete eigenvalues, and the associated eigenfunctions are
exponentially localized with substantial weight only on a
few sites. The distribution is therefore extremely asymmetric
(log-normal), with a most probable value much smaller than
the arithmetic mean value. At this point, most of the weight is
concentrated around zero. As is evident from Fig. 8, we indeed
observe such behavior in our results.

We show in Fig. 9, the phase diagram of the Anderson
localization transition in the disorder-frequency (W -ω) plane
constructed from our TMDCA procedure for the box disorder
distribution. Here, we show the mobility edge trajectories
given by the frequencies where the TDOS vanishes at a given
disorder strength W , and the band edge determined by the
vanishing of the ADOS calculated within the DCA.

As is evident from Fig. 9, at Nc = 64 the Wc at ω = 0
is the same as that for Nc = 125 but different from the
Nc = 1 case. This shows that the Wc converges to ∼2.10,
while, the trajectory of the mobility edge continues to
change with Nc. This may be understood from the different
localization mechanisms for states at the band center and the
edge [51,63,64]. Hence, for large enough clusters, we are able
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FIG. 10. (Color online) The scaling of the imaginary typical
hybridization function [−�	(K,ω)] for the 64 site cluster at disorder
strengths of W = 1.8 and 2.0 on a semi-logarithmic scale. The labels
A–F and their associated momenta K correspond to each of the
six distinct cells obtained using the point-group and particle-hole
symmetry (ρ(K,ω) = ρ(Q − K, −ω), with Q = (π,π,π )) of the
cluster). Observe that the mobility edges may be collapsed on top
of each other by multiplying each of the hybridization functions with
a constant such that −�	(K,ω) = −α(K) × �	(K,ω), where α(K) is
a scaling constant, in agreement with Mott’s idea of energy selective
Anderson localization transition.

to converge to the exact result. In particular, as the cluster size
Nc increases, the mobility edge trajectories are systematically
reproduced, with the re-entrance behavior gradually captured
with large cluster sizes. As we increase the cluster size the DOS
systematically acquires states in the band tails, which are zero
in the Nc = 1 case (it is well known that single-site theories
like CPA or TMT do not capture such states). According to
Bulka et al., [47,51] deep trapped states dictate the physics at
large energies. Hence, by making Nc > 1, we systematically
inject additional states that tend to push the localization edge
outward. States at the band center become localized mainly
due to coherent backscattering while those above and below
the bare band edges are initially localized in deeply trapped
states. They become delocalized with increasing W due to
the increasing DOS at these energies and hence increasing
quantum tunneling between the deeply trapped states. They
finally become localized again with increasing disorder, which
explains the re-entrant behavior. Since coherent backscattering
requires a retracing of the electronic path, the effective length
scales captured by the cluster are doubled, such that Wc

converges very quickly at the band center. On the other hand,
the quantum tunneling mechanism has no path doubling and
requires multiple deeply trapped states in the cluster and,
therefore, converges more slowly with Nc.

Figure 10 is the scaling of the imaginary part of the typical
hybridization function [−�	(K,ω)] for Nc = 64 at W = 1.8
and 2.0, scaled by the factor α(K), so that the tails overlap.
Even though different K cells go to zero at different rates,
they each share the same unique mobility edge. Since the local
disorder potential induces elastic scattering of a state at any
momenta into any other with the same energy, there will be
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FIG. 11. (Color online) Comparison of the average (typical) den-
sity of states calculated with the DCA (TMDCA) and the kernel
polynomial method (KPM) for the binary alloy system (Wb = −Wa)
at various values of the local potential Wa and concentrations ca for
the cluster size Nc = 125. The kernel polynomial method uses 2048
moments on a 483 cubic lattice, and 200 independent realizations
generated with 32 sites randomly sampled for each realization.

mixing of the localized and the extended states at the same
energy. As a result, the localized and extended states cannot
coexist at the same energy. Then the mobility edge can only
exist at the point where all the states in each cell on the cluster
are localized. As shown in Fig. 10, the collapse of the tails for
all K such that −�	(K,ω) = −α(K)�	(K,ω), where α(K)
is a scaling constant, validates Mott’s idea of energy selective
Anderson localization [65,66].

B. Alloy model

The application of the disordered tight-binding Hamil-
tonian (1) to the alloy model represents one of the most
studied physical systems. This stems from the fact that the two
potentials energies Wa and Wb depict the potential landscape
of, e.g., a binary alloy Aca

B1−ca
, with each of the sites

occupied either by atom “A” or “B” with concentrations ca

and cb = 1 − ca , respectively.
To explore the applicability of our method for the study

of binary alloys, we start the discussion of this section by
showing in Fig. 11 the calculated typical (average) density
of states from the TMDCA (DCA) procedure as compared
to the TDOS (ADOS) calculated within the KPM [8,9,12–
14] for various concentrations and disorder strengths. The
importance of the TDOS is evident since for all the disorder
strengths and concentrations, the ADOS remains finite around
the two energies Wa and Wb, while the TDOS at a fixed
concentration vanishes continuously with the strength of
the disorder with smaller values in the sub-band with the

-3 -2 -1 0 1 2 3
ω

0

0.3

0.6

0.9

1.2

W
A

TMM 
TMT (Nc=1)

TMDCA (Nc=43)

TMDCA (Nc=63)

ExtendedLocalized Localized

FIG. 12. (Color online) Disorder-energy (Wa-ω) phase diagram
of the Anderson localization transition in 3D for the binary alloy
system Aca

B1−ca
for ca = 0.5. Observe the systematic improvement

of the trajectories of the phase diagram for the clusters (Nc = 64 and
216) in basic agreement with the numerical results from TMM. The
system widths used for TMM are M = [6,12] and the length is scaled
with the width as L = M × 104. See Appendix A for details.

lowest concentration. Fixing the strength of the disorder and
varying the concentration, the sub-bands with the smallest
concentration have fewer states. We note that there are subtle
differences between the results for Nc = 64 (finite cluster) and
single site Nc = 1 (CPA) (not shown) due to the incorporation
of spatial correlations in the finite cluster which are missing in
the local CPA. In fact, the TMT underestimates the extended
region and misses small but important nonlocal features in the
spectra [67].

To further benchmark our results for the binary alloy
model, let us focus on the comparison of the average (typical)
DOS calculated with the DCA and TMDCA (Nc = 64) with
the KPM data. As can be seen in Fig. 11, the TMDCA
and DCA results reproduced those from the KPM, showing
that our formalism offers a systematic way of studying the
Anderson localization transition in binary alloy systems. Such
a remarkable agreement is an indication of a successful
benchmarking of the TMDCA method [1].

We extract the mobility edges shown in Fig. 12 by finding
the energy where the TDOS vanishes at a given value of
the disorder potential. As can be seen in Fig. 12, the local
Nc = 1 boundaries are narrower than those obtained for the
finite cluster indicating that the TMT strongly underestimates
the extended state regime. The comparison of the mobility
edge boundaries for the TMDCA with those obtained from the
TMM calculations show quite good agreement. This again is
a confirmation of a successful benchmarking of the TMDCA
for treating the binary alloy model. At the center of the band
and for ca = 0.5, we obtain a critical disorder strength Wc of
≈0.7 for the TMDCA in good agreement with the TMM (cf.
Fig. 12).
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FIG. 13. (Color online) Comparison of the average (typical) den-
sity of states calculated with the DCA (TMDCA) and the kernel
polynomial method (KPM) for the Gaussian disorder distribution at
various values of the disorder strength for cluster size Nc = 64. The
kernel polynomial method uses 4096 moments on a 483 cubic lattice,
and 1000 independent realizations generated with 32 sites randomly
sampled from each realization.

C. Gaussian disorder distribution

The Gaussian (or normal) [Eq. (2b)] is a unique distribution
that other disorder distributions are built on and has many
physical applications including the study of molecular-doped
polymers [68,69].

To further explore the versatility of our method, we apply
it to study systems with the disorder defined by the Gaussian
distribution function [Eq. (2b)]. Again, we use the typical
density of states (TDOS) as the order parameter and the
transition to the Anderson insulator is obtained at the disorder
strength where the TDOS vanishes. The typical and average
density of states obtained from the TMDCA and DCA,
respectively, and those obtained from the kernel polynomial
method are shown in Fig. 13 for various values of the
disorder strength. As can be seen, the TDOS at all frequencies
systematically goes to zero as the disorder strength increases
while the ADOS remains finite. Again, our TMDCA formalism
reproduces accurately the results from the kernel polynomial
method. We note some subtle differences between the TDOS
calculated from the TMDCA and the KPM while there are
no noticeable differences in the average density of states from
the DCA and KPM. This may be due to the finite broadening
utilized in the KPM, which contributes additional tails to the
already exponential tails of the TDOS. We remark that aside
from the small initial broadening value (∼−0.01) used in the
initialization of the TMDCA at the very first iteration, no
broadening parameter is utilized for later iterations.

We show in Fig. 14, the evolution of the typical density
of states TDOS (ω = 0) at the band center as a function of
disorder strength for the local TMT (Nc = 1) and the TMDCA
(Nc = 64 and 125). Our results indicate that the critical
disorder strength (defined as the W where the TDOS vanishes)
systematically increases as the cluster size is increased
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FIG. 14. (Color online) The TDOS (ω = 0) vs disorder strength
W at different cluster sizes Nc = 1,64, and 125 for the Gaussian dis-
order distribution. The TDOS (ω = 0) vanishes at the critical disorder
strength Wc. At Nc = 1, the critical disorder strength WNc=1

c ≈ 4.0.
As the cluster size increases, the critical strength systematically
increases with WNc�12

c ≈ 5.30 ± 0.10, showing a quick convergence
with the cluster size. The inset shows the integrated hybridization
function (−� ∫

	(K,ω)dKdω) as a function of disorder strength
W . Observe that −� ∫

	(K,ω)dKdω vanishes at the same disorder
strength as the TDOS. The dashed lines are the −� ∫

	(K,ω)dKdω

from the DCA. Observe that it is a constant regardless of the disorder
strength. This shows that the DCA, even though it incorporates spatial
correlations does not describe the Anderson localization transition.
Moreover, near the critical region, the TDOS (ω = 0) data can
be fitted to the power-law TDOS (ω = 0) = a0|W − W fit

c |β . The
obtained critical exponent for large enough clusters β ≈ 1.57 ± 0.10
is in good agreement with the numerically exact results [46]. Note
that the −� ∫

	(K,ω)dKdω data for Nc = 64 and 125 has been
normalized with that of Nc = 1.

converging to Wc ∼ 5.30 as soon as the size of the cluster
Nc � 12. This is in good agreement with the numerically exact
values of 5.225 ± 0.125 [47–49] and 5.32 [44]. Fitting our
data for the largest system size considered here (Nc = 125)
using the power law: TDOS (ω = 0) = a0|W − W fit

c |β and
following the procedure as explained in Sec. III E, we obtain
the order parameter critical exponent β ∼ 1.57 ± 0.10 with
a corresponding critical disorder strength from the fit of
W fit

c ∼ 5.53 ± 0.10. This value of β is in good agreement with
the value we obtained for the uniform disorder distribution
(cf. Table II) and in good agreement with the recently reported

TABLE II. The calculated and fitted critical disorder strengths
W cal

c and W fit
c and the order parameter critical exponent β obtained

from our fit for the box disorder distribution. W cal
c is defined by

the vanishing of the TDOS (ω = 0). β and W fit
c are obtained by

fitting the TDOS (ω = 0) data with a power law, TDOS (ω = 0) =
a0|W − W fit

c |β .

Nc W cal
c W fit

c β

1 1.66 ± 0.01 1.65 ± 0.10 0.96 ± 0.10
64 2.10 ± 0.01 2.18 ± 0.10 1.46 ± 0.10
125 2.10 ± 0.01 2.23 ± 0.10 1.62 ± 0.10
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TABLE III. Critical parameters of the Anderson localization for the various studied disorder distributions in 3D obtained using the TMDCA
in comparison with the numerically exact results. We use 4t = 1 as our energy unit. We note that the critical exponents (β and ν) are independent
of disorder distribution (universal) as verified by the multifractal analysis [49], the analytic results of Wegner [70], and detailed finite size
scaling [15]. Abbreviations used in the Table are: transfer matrix method (TMM), multifractal finite size scaling (MFSS), level statistics (LS),
kicked rotor (KR), and experimental atomic waves (Exp-AW).

Author Critical Disorder Critical Exponent Method

Bo Ga Lo ν β

Present study 2.10 ± 0.10 5.30 ± 0.10 0.94 ± 0.10 – 1.57 – 1.62 TMDCA
Slevin et al.d 2.067 – 1.067 1.573 – 1.577 – TMM
Slevin et al.e 2.068 – 2.073 5.32 1.066 1.58 – TMM
Slevin et al.f 2.056 ± 0.014 – – 1.59 – 1.60 – TMM
Rodriguez g 2.066 – 2.067 – – 1.59 1.65 – 1.68 MFSS
Rodriguez h 2.066 – 2.071 – – 1:58 ± 0.03 – MFSS
Markosi 2.063,2.067 – – 1.47 – 1.55 – MFSS
MacKinnonj 2.063 ± 0.05 – – 1.54 ± 0.08 – TMM
MacKinnon et al.k 2.063 ± 0.063 – – 1.2 ± 0.3 – TMM
Bulka et al.l 2.038 – 2.063 5.23 ± 0.13 0.95 ± 0.13 – – TMM
Milde et al.m – – – 1.62 ± 0:07 – TMM
Shklovskii et al.n 2.0 ± 0.063 – – 1.50 ± 0.15 LS
Zharekeshev et al.o 2.05 – – 1.4 ± 0.15 – LS
Hofstetter p 2.719 ± 0.012 – – 1.35 ± 0.15 – LS
Lopez q – – – 1.63 ± 0.05 – KR
Grussbach et al.r 2.02 5.23 – 1.32 ± 0.02 – 1.37 ± 0.02 1.32 ± 0.02 – 1.37 ± 0.02 MFSS a

Lemarié s – – – 1.58 ± 0.01 – 1.60 ± 0.03 – KR b

Lemarié s – – – 1.40 ± 0.30 – Exp-AW c

The order parameter critical exponent β and the correlation length critical exponent ν can be transformed from one to the other using the
hyperscaling relation of Ref. [46], β = (αo − d)ν, where αo is the Lipschitz-Hölder exponent, which gives the maximum value of the multifractal
spectrum. The most recent estimates (as reported in Ref. [46]) are αo = 4.048, ν = 1.59, and β = 1.67.
aThe authors obtain αo = 4.0 such that in the hyperscaling relation β = (αo − d)ν, β equals ν.
bAuthors of this paper show that their quasiperiodic kicked rotor belongs to the same (orthogonal) universality class as the “random” Anderson
model.
cAuthors of this paper reported that experiments were done on the atomic kicked rotor by a sequence of kicks to the atomic cloud and measure
its dynamics.
dReference [15].
eReferences [44,45].
fReference [71].
gReference [46].
hReference [50].
iReference [72].
jReference [73].
kReference [10].
lReferences [47,51].
mReference [74].
nReference [75].
oReference [76].
pReference [77].
qReference [78].
rReference [49].
sReferences [79,80].

value of β ≈ 1.67 [46]. It is also in general agreement with
the values listed in Table III. The good agreement between
the β we obtained from the uniform and Gaussian disorder
distribution is a manifestation of the universal nature of the
Anderson localization transition [49,70].

To explore the trajectories of the mobility edge for the
Gaussian disorder distribution, we show in Fig. 15 the phase
diagram in the energy-disorder plane for various cluster sizes
as compared to the TMM result [47]. For any given disorder

strength W , the mobility edge is defined by the frequency
where the TDOS vanishes. Unlike the critical disorder strength
which converges quickly with the cluster size Nc � 12, the
trajectory of the mobility edge continues to change with
Nc converging to almost the numerically exact results for
Nc = 125. The physical reasons for the quick convergence
of Wc and the progressive change of the mobility edge with
the cluster size are the same as those described above for the
box disorder distribution (cf. Sec. III A). As can be seen, the
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FIG. 15. (Color online) The phase diagram of the Anderson
transition in 3D for the Gaussian disorder distribution obtained from
TMDCA simulations. A systematic improvement of the trajectories
of the mobility edge is achieved as the cluster size increases. At
large enough Nc, our results converge to those determined by the
TMM which are calculated for widths M = [2,16] and for a system
length (number of transfer matrix multiplications) L = 1 × 106,
where the matrix products are reorthogonalized every five transfer
matrix multiplications (see Appendix A). The deviation between the
TMDCA and TMM results is consistent with the behavior observed
for the box and Lorentzian disorders and can be attributed to the
fact that a finite grid in energy is used for the TMDCA which tends
to cause the typical density of states to be larger, hence slightly
overemphasizing the metallic behavior and as such, the mobility edge
is slightly larger when compared to TMM in certain frequency ranges
near the band edge. The effect is most pronounced here due to the
small density of states near the band edge. In addition, near the
re-entrance regime, the TMM also has difficulties due to an increase
in finite size effects (see Appendix A).

single-site TMT underestimates the extended region just as
in the previously presented disorder distributions. There are,
however, some subtle differences between our data and the
TMM results around the re-entrance regime. The cause of this
difference will be discussed in Sec. III F.

D. Lorentzian disorder distribution

We next apply our TMDCA formalism to study systems
with the Lorentzian (or Cauchy) disorder distribution [cf.
Eq. 2(c)]. We show in Fig. 16 how the band center of
the typical density of states [TDOS (ω = 0)] changes as
the disorder strength is increased for the local TMT (Nc =
1) and the TMDCA (Nc = 64 and 125). As can be seen
from Fig. 16, our results depict that the critical disorder
strength systematically increases as the cluster size increases
converging to Wc ∼ 0.94 for Nc � 12 in good agreement with
the numerically exact values of 0.95 ± 0.125 [47–49] and
1.07 [44], respectively. Fitting our data for the largest system
size considered here (Nc = 125) using the power law: TDOS
(ω = 0) = a0|W − W fit

c |β (see Sec. III E for the description of
how the β is extracted), we can infer the order parameter
critical exponent β ∼ 1.60 ± 0.10 with a corresponding
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FIG. 16. (Color online) The TDOS (ω = 0) vs disorder strength
W at cluster sizes Nc = 1, 64, and 125 for the Lorentzian disorder
distribution. The TDOS (ω = 0) vanishes at the critical disorder
strength Wc. At Nc = 1, the critical disorder strength WNc=1

c ≈ 0.6.
As the cluster size increases, the critical strength systematically
increases until WNc�12

c ≈ 0.94 ± 0.10, showing a quick convergence
with the cluster size. The inset shows the integrated hybridization
function [−� ∫

	(K,ω)dKdω] as a function of disorder strength
W . Observe that −� ∫

	(K,ω)dKdω vanishes at the same disorder
strength as the TDOS. The dashed lines are the −� ∫

	(K,ω)dKdω

from the DCA. Observe that it is a constant regardless of the disorder
strength in agreement with the observations we have for other disorder
distributions. We can fit the TDOS (ω = 0) data near the critical
region to the power-law, with TDOS (ω = 0) = a0|W − W fit

c |β . The
obtained critical exponent for large enough clusters β ≈ 1.60 ± 0.10
is in good agreement with numerically exact results [46]. Note that the
−� ∫

	(K,ω)dKdω data for Nc = 64 and 125 have been normalized
with that of Nc = 1.

critical disorder strength from the fit, W fit
c ∼ 0.97 ± 0.10. The

obtained β from our fit is in good agreement with the values
listed in Table III and in good agreement with the recently
reported value of β ≈ 1.67 [46]. This β value of the Lorentzian
disorder distribution is also in good agreement with the values
we obtained for the box and Gaussian disorder distributions,
respectively. This further illustrates the universal nature of the
Anderson localization transition [49,70].

We conclude our study of the application of the typical
medium dynamical cluster approximation to the Lorentzian
disorder distribution by presenting in Fig. 17 the phase
diagram in the energy-disorder plane. Unlike the box and
Gaussian disorder distributions, our simulations show that
the Lorentzian distribution does not have re-entrance of the
mobility edge. The lack of re-entrance of the mobility edge in
the Lorentzian disorder distribution may be attributed to the
absence of finite variance in this form of distribution. For the
single-site CPA (Nc = 1), the critical parameters are woefully
underestimated. However, we systematically converge to the
numerically exact results as the size of the cluster is increased.
As it is obvious from Fig. 17, for as small as Nc = 64,
we converge almost to the exact TMM results [51]. We
again see remarkably good agreement between our effective
mean-field method for the Anderson localization transition and
the numerically exact calculations.
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FIG. 17. (Color online) The phase diagram of the Anderson
localization transition in 3D for the Lorentzian disorder distribution
obtained from TMDCA simulations. The TMM data were computed
for a system length of L = 8 × 105 for system widths of M = [2,16]
and re-orthogonalization is done every four multiplications (see
Appendix A for details). The discrepancy between the TMDCA and
TMM is due to the nature of the Lorentzian distribution as explained
in Sec. III F.

E. Critical parameters

The critical parameters, including the critical disorder
strength Wc and the order parameter critical exponent β are
summarized in Table II for different cluster sizes using the
box disorder distribution as a case study. W cal

c was determined
as the W where the TDOS (ω = 0) vanishes. Observe that
as Nc increases, W cal

c systematically increases with W cal
c ≈

2.10 ± 0.01, showing a quick convergence with Nc.
The order parameter critical exponent β is obtained by

fitting the power law: TDOS (ω = 0) = a0 × |W − W fit
c |β

directly to our data and systematically searching for the best
data point away from the transition where the fit still follows
the actual data (scaling regime). This becomes imperative since
away from the transition, the data are not expected to fit the
form TDOS (ω = 0) = a0 × |W − W fit

c |β and also close to
the transition, there should be a crossover to a mean-field
form since the TMDCA treats the longest length scales in
a mean-field approximation. So, the fit may only be done
between these limits. The ambiguity in the determination of
the fitting region increases our error bars on the exponent,
and causes W fit

c to be overestimated. In addition, the strong
fluctuation of the TDOS in the proximity of the critical point
also increases our error bars. We show in Fig. 18 a comparison
plot of the fit and our data for the 125 site cluster for the box,
Lorentzian, and Gaussian disorder distributions, respectively.
The fit of the power law to the scaling region of the data
gives the value of the β in an unambiguous manner. The
obtained values of β from the various cluster sizes, for instance,
for the box disorder distribution are shown in Table II. One
can see that our β systematically approaches the numerical
experimental value [44,46,50] for large enough clusters (here,
largest Nc simulated is 125) as listed in Table III for the box,
Gaussian, and Lorentzian disorder distributions, respectively,
and in comparison with other numerical values.
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FIG. 18. (Color online) The band center of the typical density
of states (TDOS(R = 0; ω = 0)) at various disorder strengths (W )
for the 125 site cluster for the Box, Gaussian, and Lorentzian
disorder distributions. The linear region of the data can be fit with
a scaling ansatz: TDOS (ω = 0) = a0 × |W − W fit

c |β , with β ∼ 1.62
for the box disorder distribution, β ∼ 1.57 for the Gaussian disorder
distribution, and β ∼ 1.60 for the Lorentzian disorder distribution in
good agreement with the recently reported value of β ≈ 1.67 [46,50].
The circles in the plot depict the data point where the fit starts to
deviate from the data.

F. Difficulties in extracting the mobility edge at higher disorder

As explained in the previous sections, the mobility edge is
obtained by locating the frequencies where the typical density
of states vanishes at a given disorder strength W . The band edge
is determined by the vanishing of the average density of states
calculated within the DCA. As it is obvious from the phase
diagrams for the various disorder distributions (Figs. 9, 15,
and 17, respectively), there are some discrepancies between the
phase diagram obtained within the typical medium dynamical
cluster approximation and the transfer matrix method. They
can be attributed in part to the form of the disorder distribution.
For example, the bare DOS for the Gaussian and Lorentzian
disorder distributions are known to have exponential tails. The
severity of the exponential nature of the tails associated with
the various disorder distributions increases as box, Gaussian,
and Lorentzian, in that order. At these higher disorder strengths
(once a mobility edge develops), the TDOS naturally develops
tails. We note that in our computations, apart from the initial
small broadening value ∼−0.01 used in the initialization of the
self-energy (needed only for the first iteration), no broadening
factor is utilized. As such, these tails that emerge as the disorder
strength is increased towards Wc are physical tails since the
top and bottom of the bands will localize first. To demonstrate
this, we show in Fig. 19 a plot of the TDOS at ω = 0.0 and 1.3
for the box, Gaussian, and Lorentzian disorder distributions,
respectively. Note that the ω = 1.3 frequency is arbitrary but
chosen such that it is close to the re-entrance region of the
mobility edge. As can be seen from the plots, for the box
disorder distribution, even though there are small tails, the
TDOS at ω = 0.0 and 1.3 behave alike and differ only in
magnitude. There are no obvious long tails in either frequency
(ω = 0.0 and 1.3) that may mask the detection of the position
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FIG. 19. (Color online) The plot of the typical density of states
(TDOS) at ω = 0.0 and 1.3 for various disorder strengths for the
(a) box, (b) Gaussian, and (c) Lorentzian disorder distributions.

of the mobility edge energies. However, for the Gaussian and
Lorentzian disorder distributions, there are exponentially long
tails especially at ω = 1.3 that make pinpointing the exact
position of the mobility edge energies highly nontrivial. This
should further be understood from the fact that unlike the
box disorder distribution, the Lorentzian disorder distribution
naturally has tails that decay very slowly at infinity, as |x|−2,
such that aside the zeroth moment (the area under the curve),
all other higher moments do not even exists.

We note that this difficulty is generic not only to the
TMDCA but also for any method where the extraction of
the trajectories of the mobility edge is based on the TDOS.
A notable example is in the kernel polynomial method, which
even shows more severe discrepancies (not shown).

This deviation between the TMDCA and TMM at higher
disorder strengths can also be attributed to the fact that the
TMDCA, just like the KPM utilizes a finite frequency grid
(which biases more towards the metallic regime) in contrast
to the TMM which calculates the transmission of electrons
at fixed energies. Even so, we note that the TMM also has its
own shortcomings away from the band center due to the strong
fluctuations in the Kramer-MacKinnon scaling parameter �

(see Appendix A for its definition) as can be seen from the
phase diagrams for the various disorder strengths around the
re-entrance regime.

IV. CONCLUSIONS

Here, we present a detailed study of the Anderson localiza-
tion transition using the recently developed typical medium
dynamical cluster approximation (TMDCA) for the box,
Gaussian, Lorentzian, and binary alloy disorder distributions
in three dimensions. For each distribution, we find the TMDCA
to be a successful, causal, numerically efficient, self-consistent
and rapidly convergent method for the study of localization in
disordered electron systems.

With our formalism, we demonstrate that the typical DOS
vanishes for localized states and is finite for extended ones.
Employing the typical DOS as an order parameter for An-
derson localization, we have constructed the disorder-energy
phase diagram, extracted the order parameter critical exponent
(β) for each disorder distribution, and benchmarked them in
good agreement with other numerically exact methods. Within
our precision, we find that β for the Anderson localization
transition is a universal parameter independent of disorder
distribution in agreement with the multifractal analysis [49].
For distributions with a finite variance (box and Gaussian),
we demonstrate that there are extended states outside the
unperturbed band.

We further show using the DCA (which includes spatial
correlations) and a variant of the typical medium theory
(which includes spatial correlations but suffers from self-
averaging), the importance of the effective medium to properly
characterize the Anderson localization transition. We also
demonstrate the inability of the single-site CPA and the TMT
methods to accurately capture the localization and disorder
effects in both the average and the typical DOS. We note
that the single-site TMT, while being able to qualitatively
capture the localization transition, strongly underestimates the
extended regions and fails to capture the critical parameters
including the mobility edge trajectories and the exponents. In
contrast, the TMDCA captures nicely the trajectories of the
mobility edge with great improvement in the critical order
parameter exponent. Most significantly, the TMDCA results
are in a quantitative agreement with exact numerical results.

The TMDCA formalism is computationally inexpensive
and straightforward to implement since it requires only the
computer time needed to invert small clusters (e.g., Nc = 1–
125), average over the disorder configurations, and iterate to
convergence. Since only a small cluster is needed to get reliable
data, material specific details may be incorporated. Once
combined with electronic structure calculations [81] and more
sophisticated many-body techniques for electron interactions,
it will open a new avenue for studying the localization
phenomenon in real materials as well as the competition
between disorder and electron correlations. To demonstrate
the high efficiency of the TMDCA, as only small clusters
are needed to get a converged result in good agreement with
the TMM data, we compare the relative CPU time needed for
the largest system size simulated in the TMDCA and the TMM.
For the largest cluster size used in the TMDCA calculations,
which is Nc = 216, the computation time is ∼4 hours (running
on a single processor). While for the TMM, which is perfectly
parallel in both disorder and frequency, each point in the
phase diagram can require significant computational effort.
For example, the system sizes in Fig. 9 used ∼20 hours on 64
processors per frequency. Since a separate TMM calculation is
needed for each frequency, achieving the energy resolution of a
typical TMDCA calculation (for a certain number of frequency
grid points) would require the product of the number of
processors used to parallelize over disorder times the number
of grid points. As a calculation of a real material would require
even larger system sizes than used here in the TMM, the
TMDCA would prove much more computationally efficient
for the purpose of studying real materials.
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APPENDIX A: DETAILS OF THE TRANSFER
MATRIX METHOD

We benchmark our TMDCA results for the mobility edge
with the transfer matrix method (TMM) [4,10–14], which is
an established numerical method for determining the mobility
edge by computing the localization length in disordered
quantum systems. TMM is based on an iterative formulation of
the Schrödinger equation where the wave function amplitude
is computed at each site in a quasi-one-dimensional “bar”
of length L and width M by successive multiplications of
the transfer matrix that describes the transmission between
each “slice” of size Md−1. Thus the Lyapunov exponent
that measures the exponential decay of the wave function
is explicitly computed, yielding the localization length. The
system length L is the total number of transfer matrix
multiplications. The numerical instability of the repeated
multiplications is avoided by periodically orthogonalizing the
transfer matrix product with a Lapack QR decomposition
after a finite number of iterations [15]. The transfer matrix
method finite size effects are larger for weak disorder where
the states decay slowly with distance and so have large values
of the localization length, which results in more pronounced

fluctuations in the data. Notice that the CPA and the DCA
(same as the TMDCA) do not suffer such finite size effects for
small disorder and are, in fact, exact in this limit.

The mobility edge is obtained by calculating the dimension-
less Kramer-MacKinnon scaling parameter �M , which is the
localization length divided by M [12]. �M scales as a constant
for M → ∞ at the transition [13]. Precise values of the critical
disorder may be measured directly from the crossing plots of
�M versus W . A finite size scaling is performed by expanding
�M near the critical point using

�M = f (M/ξ )

≈ �c + a1|W − Wc|M1/ν + a2|W − Wc|2M2/ν + · · ·
(A1)

and the data are fit using a least squares procedure [36]. The
data used in Fig. 9 were a third-order polynomial in |W −
Wc|M1/ν . The critical disorder strength Wc from the finite
size scaling is averaged over many generated data sets via a
bootstrap procedure [15]. Any errors quoted in the TMM data
are from the difference in the measured critical disorder from
the finite size scaling analysis [12] and the critical disorder
measured directly from the crossing plots of �M versus W .

APPENDIX B: DETAILS OF THE KERNEL
POLYNOMIAL METHOD

To further benchmark our results, we utilize the kernel
polynomial method to calculate the local DOS [6–9]. In the
kernel polynomial method analysis, instead of diagonalizing
the Hamiltonian directly, the local DOS is expanded in terms
of an infinite series of Chebyshev polynomials. In practice,
the truncated series leads to Gibbs oscillations. The kernel
polynomial method damps these oscillations by a modification
of the expansion coefficients. We use the Jackson kernel
following previous studies on the Anderson model [8].

[1] C. E. Ekuma, H. Terletska, K.-M. Tam, Z.-Y. Meng, J. Moreno,
and M. Jarrell, Phys. Rev. B 89, 081107 (2014).

[2] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[3] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[4] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
[5] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
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