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The isolated one-dimensional Heisenberg model with static random magnetic fields has become paradigmatic
for the analysis of many-body localization. Here, we study the dynamics of this system initially prepared in
a highly-excited nonstationary state. Our focus is on the probability for finding the initial state later in time,
the so-called survival probability. Two distinct behaviors are identified before equilibration. At short times, the
decay is very fast and equivalent to that of clean systems. It subsequently slows down and develops a power-law
behavior with an exponent that coincides with the multifractal dimension of the eigenstates.
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I. INTRODUCTION

The metal-insulator transition has been at the forefront
of physics research since Anderson’s seminal paper [1]. As
a result of quantum interference, the wave functions of a
disordered noninteracting system can become exponentially
localized in configuration space. The phenomenon has been
experimentally observed in different setups, more recently
with Bose-Einstein condensates [2,3]. A proposal for an
experiment with ultracold atoms in a two-dimensional ge-
ometry also exists [4]. Lattice models, such as the Ander-
son tight-binding and the power-law random banded matrix
(PRBM) models [5,6], have been extensively employed in
the analysis of the Anderson metal-insulator transition. At
criticality, it was found that the eigenstates exhibit multifractal
features [5].

The inverse participation ratios, IPRα
q = ∑

n |Cα
n |2q , con-

tain information about the structure of the eigenstates |ψα〉 =∑
n Cα

n |φn〉 written in the basis vectors |φn〉 of the con-
figuration space. In particular, IPRα

2 measures the level of
delocalization of the eigenstates in the chosen basis [7]. At the
Anderson transition, the probability amplitudes Cα

n display
large fluctuations and IPRα

q shows anomalous multifractal
scaling with respect to the system size [5,8–12],〈

IPRα
q

〉 ∼ N−(q−1)Dq , (1)

where 〈.〉 denotes the average over an ensemble of realizations
and eigenstates, N is the dimension of the Hamiltonian
matrix [13], and Dq represents the generalized dimension.
Multifractality is reflected by the nonlinear dependence of
the generalized dimension on q. In contrast, Dq = d in the
metallic phase, where d is the system dimension, and Dq = 0
in the insulating phase. Experimentally, multifractality has
been observed in disordered conductors [14] and in systems
with cold atoms [15,16]. Recently, new studies have led to
the conclusion that multifractal correlations are not exclusive
to the critical point of the Anderson transition. In disordered
systems, they are present away from criticality [17] and even in
extended states [18]. They are also found in the ground states
of clean systems [19].

Studies of the dynamics of noninteracting systems at the
metal-insulator transition have shown that the Loschmidt
echo [20], the survival probability [21–23], and the spreading

of wave packets [23,24] at the mobility edge exhibit a
power-law behavior, where the exponent coincides with the
generalized dimension for q = 2. The generalized dimension
of the eigenstates, D2, is extracted from Eq. (1) by performing
a scaling analysis of 〈IPRα

2 〉. However, in studies of dynamics
the main interest is on the generalized dimension associated
with the initial state |φn0〉 and denoted by D̃2. The latter is
obtained from a scaling analysis of the level of delocalization
of the initial state with respect to the energy eigenbasis, that
is, the analysis of 〈

IPRn0
2

〉 ∼ N−D̃2 , (2)

where |φn0〉 = ∑
α Cα

n0
|ψα〉 and IPRn0

2 = ∑
α |Cα

n0
|4. When

investigating localization in real space, the initial state usually
corresponds to a basis vector of the configuration space. We
also note that the two generalized dimensions above have been
shown [25] to be related through the expression D2 = dD̃2.

A natural question following this brief summary of the
Anderson localization is what happens to the above find-
ings when interaction is included. It had been conjectured
already in Refs. [1,26] and then confirmed with perturbative
arguments [27,28] and rigorously [29] that localization may
persist. Studies about many-body localization (MBL) have
recently boomed [30–52]. The interest in the subject is in
part motivated by the access to new experimental tools, such
as cold atoms in optical lattices [53], that can be used to
corroborate theoretical predictions. Among the latter, we find
works about the location of the critical point in disordered
spin-1/2 chains [31–34], analysis of the relation between the
distribution of the wave-function coefficients and the onset
of localization [32], various efforts to identify the quasi-local
integrals of motion in the MBL phase [47–50], and descriptions
of the evolution of the entanglement entropy [36,37], few-body
observables [39–43], and the Loschmidt echo [44].

Our goal in this work is to characterize the evolution of
isolated disordered systems with interaction from very short
to very long times. Since MBL is a dynamical transition,
identifying general features of the dynamics of interacting
systems is essential for the further developments of the field.
Motivated by the results for noninteracting systems, our focus
is on the decay of the survival probability and its relationship
with the onset of multifractal states.
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We consider a one-dimensional (1D) disordered spin-1/2
system and analyze the evolution at different time scales of
both the survival probability and the time-averaged survival
probability. At short times, the decay is very fast and similar
to that of clean systems. Afterwards, the decay slows down
and shows an anomalous power-law behavior. The exponent
of this algebraic decay coincides with D̃2. At very long-times,
the decay eventually saturates to 〈IPRn0

2 〉.

II. MODEL AND BASIS

We investigate the 1D isotropic Heisenberg spin-1/2 system
with two-body nearest-neighbor interaction, L sites, and
periodic boundary conditions. The Hamiltonian is

Ĥ =
L∑

k=1

[
hkŜ

z
k + J

(
Ŝx

k Ŝx
k+1 + Ŝ

y

k Ŝ
y

k+1 + Ŝz
k Ŝ

z
k+1

)]
. (3)

Above � = 1, Ŝ
x,y,z

k are spin operators, and J = 1 sets the
energy scale. Random static magnetic fields act on each
site k, the amplitudes hk being random numbers from a
uniform distribution [−h,h]. The total spin in the z direction,
Ŝz = ∑

k Ŝz
k , is conserved. We work with the largest sub-

space, Sz = 0, of dimension N = L!/(L/2)!2. Localization
in this symmetry sector guarantees localization in smaller
sectors.

The dependence on h of the level statistics and of the level
of delocalization of the eigenstates of Ĥ (3) has been studied
for at least a decade [30–33,54]. When h = 0, the system is
analytically solvable with the Bethe ansatz. If all the trivial
symmetries of the Hamiltonian are taken into account, one
verifies that the level spacing distribution of neighboring levels
is Poisson. In addition to the total spin in the z direction,
the other symmetries of the isotropic model at Sz = 0 are
translational invariance, parity, spin reversal, and conservation
of total spin.

As h increases from zero, the level spacing distribution
eventually becomes Wigner-Dyson, indicating a transition to
the chaotic regime. The value of h at which level repulsion
becomes evident decreases as the system size increases. In
parallel, the level of delocalization of the eigenstates in real
space increases substantially. The presence of disorder breaks
the additional symmetries mentioned above and if the disorder
is weak the states can spread out significantly.

As h further increases and becomes larger than the coupling
strength, h > 1, the spreading of the eigenstates recedes and
they become more localized in real space. The critical point
for the transition to the MBL phase has been identified as
hc

∼= 3.5 ± 1.0 in Ref. [31] and hc
∼= 2.7 ± 0.3 in Ref. [32].

In any study of the structure of the eigenstates, the choice
of basis is essential. Since here the goal is to investigate
localization in real space, that is, the level of confinement
of the spin excitations in the lattice, the natural basis is that
of the configuration space, which we refer to as the site basis
and is also known as the computational basis. The site-basis
vectors |φn〉 correspond to states where the spin on each site
either points up or down along the z axis, such as | ↑↓↑↓ . . .〉.

III. SURVIVAL PROBABILITY

To study the dynamics of the disordered chain (3), we take
as initial state a single site-basis vector, |�(0)〉 = |φn0〉. This
is equivalent to a quench, where the initial Hamiltonian is
the Ising part of the Hamiltonian

∑L
k=1 Ŝz

k Ŝ
z
k+1 and the final

Hamiltonian is Ĥ (3). To quantify how fast the initial state
changes in time, we concentrate on the behavior of the survival
probability,

F (t) = |〈�(0)|e−iĤ t |�(0)〉|2 =
∣∣∣∣∣∑

α

∣∣Cα
n0

∣∣2
e−iEαt

∣∣∣∣∣
2

, (4)

where Eα are the eigenvalues of Ĥ and Cα
n0

= 〈ψα|φn0〉 is the
overlap of the initial state with the eigenstates |ψα〉 of Ĥ . F (t)
measures the probability for finding the system still in |�(0)〉
at time t .

The distribution in energy

ρn0 (E) =
∑

α

∣∣Cα
n0

∣∣2
δ(E − Eα) (5)

of the components |Cα
n0

|2 of the initial state is often re-
ferred to as local density of states (LDOS). If the envelope
of this distribution is known, an analytical expression for
F (t) can be obtained from the Fourier transform, F (t) �∫

ρn0 (E)e−iEtdE.
For strong quenches, that is, when the initial and final

Hamiltonians are very different, the envelope of ρn0 (E) is a
Gaussian with mean corresponding to the energy of the initial
state,

εn0 =
∑

α

∣∣Cα
n0

∣∣2
Eα = 〈φn0 |Ĥ |φn0〉, (6)

and width

σ 2
n0

=
∑

α

∣∣Cα
n0

∣∣2
E2

α − ε2
n0

=
∑
n�=n0

|〈φn|Ĥ |φn0〉|2. (7)

Notice that the width depends only on the off-diagonal
elements of the Hamiltonian matrix written in the site basis and
is therefore independent of the diagonal disorder. The Gaussian
shape of the LDOS reflects the density of states, which for
systems with two-body interaction is also Gaussian [55].

In the absence of disorder, the envelope ρn0 (E) is particu-
larly well filled for initial states with energy εn0 near the center
of the spectrum of Ĥ [56,57]. Its Gaussian shape leads to
the Gaussian decay F (t) ∼ exp(−σ 2

n0
t2). This behavior may

persist until saturation or be followed by an exponential (see
Refs. [57,58], and references therein).

In Fig. 1, we analyze the survival probability and the LDOS
in the presence of disorder. The average of F (t) over different
disorder realizations and different initial states is denoted by
〈F (t)〉. For each system size and each realization, we select as
initial states only 10% of all the N site-basis vectors. They are
the ones with energy εn0 closest to the middle of the spectrum
of Ĥ . Since the density of states is Gaussian, the center of the
spectrum contains the most delocalized states. Localization in
this region assures localization in other parts of the spectrum.
For each L, the total number of data points for the average,
including initial states and realizations, adds up to 105.
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FIG. 1. (Color online) Survival probability averaged over 105

data points for h = 0.5,1.0,1.5,2.0,2.7,4.0 from bottom to top (a)
and LDOS for a single realization for the bottom panel h = 0.5 (d),
the middle h = 1.5 (c), and the top h = 2.7 (b); L = 16. In (a),
the dashed line indicates exp(−〈σ 2

n0
〉t2) for h = 0.5 and horizontal

lines correspond to the saturation point, 〈IPRn0
2 〉. The envelopes (solid

lines) of the distributions in (b), (c), and (d) are Gaussians with center
εn0 [Eq. (6)] and width σn0 [Eq. (7)].

Figure 1(a) displays 〈F (t)〉 for different values of h. The
initial decay is very fast until t ∼ 2. For small disorder,
the initial evolution is purely Gaussian. As h increases, the
interval of the Gaussian decay shrinks until only the quadratic
part persists, 〈F (t)〉 ∼ 1 − 〈σ 2

n0
〉t2. This is followed by a

possible exponential behavior, the time interval being too
short for certainty. After the initial fast evolution, oscillations
appear. The time interval of these oscillations as well as their
amplitudes increase with the disorder strength.

The oscillations eventually fade away and give place to a
power-law decay with exponent �1. The initial state finds
new channels that give continuation to its evolution. The
couplings at higher order in perturbation theory become
gradually effective.

The long-time power-law behavior reflects the onset of
multifractal states [21–23]. Our results indicate that multi-
fractal many-body states can occur even at small h. As the
disorder increases and the eigenstates become less extended,
the power-law exponent naturally decreases. For L = 16, the
decay after the oscillations is hardly noticeable for h � 4.

At very long times, the decay eventually saturates. The
saturation point is derived from the infinite time average of
Eq. (4),

〈F (t → ∞)〉 ∼
〈∑

α

∣∣Cα
n0

∣∣4

〉
= 〈

IPRn0
2

〉
.

The value of this infinite time average naturally increases with
the disorder strength.

Figures 1(b), 1(c), and 1(d) display representative LDOS
for three values of h. The widths of the three distributions are
equivalent, because according to Eq. (7), σn0 does not depend
on the disorder strength. This explains the indistinguishable
initial decay for all curves in Fig. 1(a).
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FIG. 2. (Color online) Survival probability averaged over 105

data points for h = 1.0 (a), 1.5 (b), 2.5 (c), and 2.7 (b) for L =
10,12,14,16 from top to bottom. Dashed lines give t−D̃2 , where
D̃2 = 0.99 (a), 0.84 (b), 0.36 (c), and 0.30 (d).

At small h [Fig. 1(d)], the Gaussian envelope of the
distribution is still well filled, indicating a very delocalized
initial state. This is independent of the realization, provided
εn0 be near the center of the spectrum. As the disorder
increases, the multifractal structures of the eigenstates spread
to larger scales and the coefficients Cα

n0
fluctuate strongly.

As a result, the LDOS becomes more sparse [Figs. 1(b)
and 1(c)], justifying the oscillations and subsequent power-law
decay in Fig. 1(a). The oscillations are due to the small
number of states energetically accessible to the initial state
in low-order perturbation theory; a number that decreases as
h increases. These oscillations are not random fluctuations
that can be averaged out with enough realizations, as those
at very long times. They are connected with the approach
to the MBL phase and the onset of quasi-integrals of
motion [47–50].

In Fig. 2, we analyze the survival probability for different
system sizes and four values of h. The strengths of the disorder
are small in Figs. 2(a) and 2(b), while in Figs. 2(c) and 2(d),
they coincide, within errors, with the critical point hc obtained
in Refs. [31,32]. The fast evolution for t < 2 is separated from
the later power-law decay either by a small plateau (a) or by
visible oscillations (c) and (d). The scope of the power-law
behavior increases with system size and with disorder strength
[compare the time where saturation takes place in (a) with the
time in (c), for example]. This suggests that for very large L

the algebraic decay may persist for h > hc.
The dashed lines in Fig. 2 correspond to an algebraic decay

described by the generalized dimension, 〈F (t)〉 ∝ t−D̃2 . As
shown in Fig. 3, D̃2 is extracted from the best linear fit to
ln〈IPRn0

2 〉 vs lnN for L = 8,10,12,14,16. The error bars are
standard deviations over 105 different values of IPRn0

2 for each
L. At small disorder, the error bars are small. As h approaches
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FIG. 3. (Color online) ln〈IPRn0
2 〉 vs lnN (dark circle) and

ln IPRtyp
2 vs lnN (light square) for h = 1 (a), 1.5 (b), 2.0 (c), 2.7 (d),

3.2 (e), and 4.0 (f). Error bars are standard deviations over 105 values
of IPRn0

2 (dark color) or of ln IPRn0
2 (light color).

hc, the dispersion of the values of IPRn0
2 and therefore the

uncertainty in the value of D̃2 increases. At very large disorder,
the error bars decrease again.

For small disorder, h � 1, the system is still close to the
metallic phase and the decay is diffusive, D̃2 ∼ 1. In this
case, the exponent of the numerical power-law decay agrees
extremely well with D̃2 when the system size is large [see
Fig. 2(a)]. As h increases, D̃2 decreases, but not as fast as the
numerical exponent. For h = 1.5 [Fig. 2(b)], the agreement
between the numerical curve and 〈F (t)〉 ∝ t−D̃2 is not very
good anymore.

In the vicinity of the critical point, Figs. 2(c) and 2(d),
oscillations are seen approximately in the same time interval
of the algebraic decay of Fig. 2(a). The generalized dimension
is now D̃2 < 1/2 and it agrees well with the rate of the
damping of those oscillations, while the power-law decay
appears now latter in time. As L increases, the amplitudes
of the oscillations decrease and the slope of the subsequent
power-law decay becomes more pronounced and closer to
t−D̃2 . It is thus plausible to expect that for very large system
sizes, D̃2 might be able to capture the algebraic decay also
for large disorder. This expectation is further supported by the
results below for the time-averaged survival probability.

IV. TIME-AVERAGED SURVIVAL PROBABILITY

In the analysis of the dynamics of noninteracting systems at
the mobility edge [20–23], the commonly employed quantity
is the time-averaged survival probability, which smoothes the
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FIG. 4. (Color online) Time-averaged survival probability for
h = 1.0 (a), 1.7 (b), 2.0 (c), and 2.7 (d) for L = 10,12,14,16 from top
to bottom. Dashed lines give t−D̃

typ
2 , where D̃

typ
2 = 0.99 (a), 0.87 (b),

0.72 (c), and 0.42 (d).

fluctuations in 〈F (t)〉. It is defined as

C(t) ≡ 1

t

∫ t

0
〈F (τ )〉dτ. (8)

To reduce also the fluctuations in the values of IPRn0
2 , one

often deals with the so-called typical inverse participation
ratio, IPRtyp

2 ≡ exp(〈ln IPRn0
2 〉). The scaling analysis of IPRtyp

2

gives D̃
typ
2 , as shown in Fig. 3. The error bars for IPRtyp

2 in
that figure are, of course, smaller than those for the regular
IPRn0

2 , since now we deal with the dispersions in the values of
ln IPRn0

2 .

In Fig. 4, we compare C(t) with t−D̃
typ
2 . When the system

is still close to the metallic phase, as in Fig. 4(a), the decay
of C(t) is smooth all the way to saturation and in excellent
agreement with t−D̃

typ
2 , especially for L = 16.

As the disorder increases, the power-law exponent de-
creases, but the short-time dynamics does not change much.
This creates an abrupt contrast between the two time scales,
resulting in a visible elbow [see Figs. 4(c) and 4(d)]. As
h increases, we also notice that the time interval for the
agreement between the algebraic decay of C(t) and t−D̃

typ
2

shortens and starts later in time (compare the four panels).
Yet, for a fixed disorder, the agreement also improves with
L. This indicates that for system sizes larger than available
for exact diagonalization, D̃

typ
2 should be able to describe the

power-law decay for long times, even when the disorder is
strong.

V. POWER-LAW EXPONENT AND SYSTEM SIZE

The exponent of the power-law decay of F (t) contains im-
portant information about the system: (i) because it coincides
with the generalized dimension D̃2, it indicates the level of
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FIG. 5. (Color online) D̃2 (dark circle) and D̃
typ
2 (light square)

vs disorder strength (a) and the distribution of ln(IPRn0
2 /μ) for h =

2.7 and L = 8,10,12,14,16 from highest to lowest peak (b). In (a),
solid lines are fitting curves. Only the error bars for D̃

typ
2 are shown.

They are smaller than those for D̃2, in accordance with the standard
deviations in Fig. 3.

delocalization of the initial state. Since D̃2 ∼ D2, as suggested
in Ref. [25] and confirmed by us for our model, the power-law
exponent also manifests the level of delocalization of the
eigenstates. (ii) It gives information about the correlations
between the components |Cα

n0
|2, because the algebraic decay

implies that [22,59,60]

〈F (t)〉 =
〈∑

α,β

∣∣Cβ
n0

∣∣2∣∣Cα
n0

∣∣2
ei(Eβ−Eα )t

〉
ω=Eβ−Eα−−−−−→

∫ ∞

−∞
dωeiωt |ω|D̃2−1 ∝ t−D̃2 . (9)

When the eigenstates, and consequently the initial state,
are extended and thus similar to random vectors, as it
happens in the chaotic domain (h � 1) for states close
to the middle of the spectrum, the components |Cα

n0
|2 are

uncorrelated random numbers. In this case, IPRn0
2 ∝ N and the

dynamics is diffusive (D̃2 ∼ 1), as obtained also in Ref. [33].
As the disorder increases, the states become multifractal;
the components |Cα

n0
|2 show large fluctuations and become

gradually more correlated, so IPRn0
2 ∝ N D̃2 with D̃2 < 1,

resulting in a subdiffusive dynamics. The limited spreading
of the initial state quantified by D̃2 reflects, as made explicit
by Eq. (9), the level of correlations between the components
|Cα

n0
|2.

Figure 5(a) shows how D̃2 and D̃
typ
2 depend on the disorder

strength. In parallel with the standard deviations in Fig. 3, the
error bars are larger for D̃2 than for D̃

typ
2 . We show only the

latter to simplify the figure. Within errors, the two generalized
dimensions coincide. As h increases, the number of states
that contribute to the evolution of the initial state shrinks and
the generalized dimensions decrease. The decay is evident
for 1 < h < 4 and it becomes extremely slow afterwards. We
avoid an analysis of what happens for h > 4, because for the
very small system sizes L = 8,10 we actually see an approach
to on-site localization.

Even though it is not clear at this point how to identify the
MBL critical point from Fig. 5 (a), a comparison with previous
studies is instructive. The values of h for the midpoint between
a metal and an insulator, that is, D̃typ

2 ∼ 1/2 (h ∼ 2.5), and for
the inflection point of the fitting curve (h ∼ 2) are not too far

from the critical points found in Refs. [31,32]. In addition,
the point of an almost halt in the decay of the values of the
generalized dimensions, h ∼ 4, is very close to the critical
point hc ∼ 3.7 obtained in Ref. [33] for states that, as in our
case, live close to the middle of the spectrum.

We expect D̃2 and D̃
typ
2 to get closer for scaling analysis

performed with larger system sizes than the very few ones
now available for exact diagonalization. As L increases, they
should also better agree with the power-law exponent of F (t).
These claims find support already in the results for L = 14 and
16. If the power-law behavior is indeed to be described by the
generalized dimension, then the algebraic decays for different
system sizes must coincide. In Figs. 2 and 4, the slopes are
visibly different for small L’s, but they get closer for L = 14
and 16. This suggests that the scaling analysis should become
more accurate for sizes L > 14.

Figure 5(b) endorses the proximity of the results for L = 14
and 16. It shows the distribution of the inverse participation
ratios. IPRn0

2 fluctuates with disorder realization and initial
state. However, the validity of Eq. (2) presupposes that D̃2

does not depend strongly on what is used on the left side
of that equation, whether it is 〈IPRn0

2 〉, IPRtyp
2 , or the most

probable value of IPRn0
2 . This implies that the distribution

of IPRn0
2 normalized to its median μ must have a scale

invariant shape [5,11]. As seen in Fig. 5(b), the distribution
P [ln(IPRn0

2 /μ)] broadens considerably from L = 8 to 12, but
the shapes are similar for L = 14 and 16.

In noninteracting disordered systems described by the
power-law random banded matrix, numerical evidence for the
scale invariance of P [ln IPRn0

2 ] was achieved [11] already for
N � 300, in contrast with the N � 3000 needed here. The
existence of more correlations between the matrix elements of
our system when compared to random matrices may justify
such large difference. The number of nonrandom elements
in the Hamiltonian matrix of Eq. (3) is much larger than
in noninteracting systems, such as those described by the
tight-binding model or the power-law random banded matrix.

VI. CONCLUSION

We studied the dynamics of an isolated disordered 1D
Heisenberg model as it approaches the MBL phase. The
analysis was based on the entire evolution of the survival
probability F (t), from t = 0 to t → ∞, for initial states
corresponding to site-basis vectors. F (t) is one of the simplest
quantities that can reveal the multifractality of the eigenstates.
It also appears explicitly in the evolution of observables [57].

The dynamics of clean and disordered interacting systems is
comparable at short times. For both, the Gaussian decay rate of
F (t) coincides with the width of the LDOS. In the presence of
disorder, the LDOS gets sparse, reflecting the reduced number
of states participating in the dynamics and the multifractality
of the eigenstates. As a result, the behavior of F (t) at long
times becomes power-law.

The exponent of the power-law decay coincides with the
generalized dimension D2. This finding establishes a parallel
with previous works about the dynamics of noninteracting
systems at criticality and may help advance our understanding
of transport properties in interacting systems. It also implies
that from F (t), one can infer the level of delocalization of the
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initial states and eigenstates, as well as the correlations of their
components. This is advantageous, since numerical methods
other than exact diagonalization are available for studying
dynamics, which gives access to larger system sizes. The
dynamics can also be studied experimentally with quantum
simulators.
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[15] G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C.

Garreau, Phys. Rev. Lett. 105, 090601 (2010).
[16] Y. Sagi, M. Brook, I. Almog, and N. Davidson, Phys. Rev. Lett.

108, 093002 (2012).
[17] V. I. Fal’ko and K. B. Efetov, Phys. Rev. B 52, 17413 (1995).
[18] A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A. Scardicchio,

Phys. Rev. Lett. 113, 046806 (2014).
[19] Y. Y. Atas and E. Bogomolny, Phys. Rev. E 86, 021104 (2012).
[20] G. S. Ng, J. Bodyfelt, and T. Kottos, Phys. Rev. Lett. 97, 256404

(2006).
[21] R. Ketzmerick, G. Petschel, and T. Geisel, Phys. Rev. Lett. 69,

695 (1992).
[22] B. Huckestein and L. Schweitzer, Phys. Rev. Lett. 72, 713

(1994).
[23] B. Huckestein and R. Klesse, Phys. Rev. B 59, 9714 (1999).
[24] R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel, Phys. Rev.

Lett. 79, 1959 (1997).
[25] B. Huckestein and R. Klesse, Phys. Rev. B 55, R7303 (1997).
[26] L. Fleishman and P. W. Anderson, Phys. Rev. B 21, 2366 (1980).
[27] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett.

95, 206603 (2005).
[28] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. 321,

1126 (2006).

[29] J. Z. Imbrie, arXiv:1403.7837.
[30] L. F. Santos, M. I. Dykman, M. Shapiro, and F. M. Izrailev,

Phys. Rev. A 71, 012317 (2005); L. F. Santos, J. Phys. A 37,
4723 (2004); L. F. Santos, G. Rigolin, and C. O. Escobar, Phys.
Rev. A 69, 042304 (2004); F. Dukesz, M. Zilbergerts, and L. F.
Santos, New J. Phys. 11, 043026 (2009).

[31] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[32] A. D. Luca and A. Scardicchio, Europhys. Lett. 101, 37003

(2013).
[33] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91, 081103

(2015).
[34] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Phys. Rev. Lett.

113, 107204 (2014).
[35] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
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