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Applicability of the position-dependent diffusion approach to localized
transport through disordered waveguides
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In this work we show analytically and numerically that the localized regime of wave transport can be modeled
as position-dependent diffusion with a diffusion coefficient that retains the memory of the source location. The
dependence on the source diminishes when absorption is introduced.
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I. INTRODUCTION

The diffusive description of wave transport in random
media has a long history [1]. This macroscopic approach
describes the ensemble-averaged intensity of the wave on
scales longer than the transport mean free path �. As such,
the diffusive description has a practical advantage compared
to the direct solution of the wave equation for each statistical
realization of disorder and subsequent averaging over the
ensemble of solutions.

The diffusion coefficient can become renormalized [2] due
to the wave localization phenomenon [3]. In three dimensions,
for sufficiently strong disorder, diffusion vanishes for an
infinitely large system [4]. In practice, however, one deals
with transport through finite systems. Both the self-consistent
theory (SCT) of localization [2,5] and supersymmetric (SUSY)
theory [6] have predicted [7,8] that the diffusive-like descrip-
tion can also be applied to the finite systems that exhibit
localized transport, in particular, to low-dimensional systems.
In such a description, the diffusion coefficient becomes
dependent on position, system size [9–11], and geometry [12].
In quasi-one-dimensional (quasi-1D) or 1D lossless media
both SCT and SUSY lead to the following equation for the
ensemble-averaged intensity 〈I (z,z′)〉 in the presence of a point
source J0 at z′:

− ∂

∂z

[
D(z)

∂

∂z
〈I (z,z′)〉

]
= J0δ(z − z′). (1)

Diffusion of this kind leads to highly unusual macroscopic
transport [13]. We stress that the medium itself, i.e., the
density of scatterers, is statistically uniform and that the
position-dependent diffusion is brought about by nonlocal
wave-interference effects.

To date, the studies of position-dependent diffusion have
concentrated on the geometry in which a wave is incident
upon the random medium from an outside (free-space)
region [7–12,14–17]. The position-dependent diffusion de-
scription was successful in describing light intensity under
various measurement conditions (see Ref. [13] for a review).
The ensemble-averaged intensity, however, is only the first step
in characterizing the wave transport in random media. Indeed,
the second-order statistical quantities, such as fluctuations
or correlations, become important at the onset of Anderson
localization [18,19]; they require the knowledge of the Green’s
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function of the diffusion equation, e.g., 〈I (z,z′)〉 with an
arbitrary z′ [20–22].

In this work, we test the applicability of Eq. (1) with an
arbitrary position of the source. We show analytically that
for z′ �= 0, the diffusion equation is applicable; however,
the position-dependent diffusion coefficient (PDDC) D(z)
acquires a dependence on the position of the source z′. We
derive a closed-form analytic expression for D(z,z′) and verify
it with ab initio numerical simulations. We show that D(z,z′)
is reduced to the known result [11] for z′ → 0, i.e., for the
wave incident from the outside region. We demonstrate that
when an absorption, unavoidable in experiment, is present
in the system, the dependence of D(z,z′) on the position of
the source is diminished so that PDDC can be adequately
determined using the self-consistent theory [9,10]. Although
in this work we make references to the transport of light (i.e.,
the electromagnetic waves) in random media, our results are
also applicable to other types of waves such as acoustic waves
and matter waves.

This paper is organized as follows. In Sec. II, we obtain
an analytic expression for PDDC describing wave transport in
a single-mode waveguide with an external source. We verify
the applicability of the result with numerical simulations. In
Sec. III, we demonstrate analytically and confirm numerically
that PDDC depends on the position of the source inside the
random medium. The effect of absorption on the position
dependence of PDDC is studied in Sec. IV.

II. POSITION-DEPENDENT DIFFUSION IN PASSIVE
RANDOM MEDIA WITH AN EXTERNAL SOURCE

We consider a one-dimensional random medium occupying
the 0 � z � L region. Propagation of a scalar wave E(z) is
described by

d2E(z)

dz2
+ k2[1 + ε(z)]E(z) = 0, (2)

where k = 2π/λ is the wave number and ε(z) is a random
process. For a wave with unit amplitude incident from the left,
the boundary conditions can be expressed in terms of reflection
r and transmission t coefficients as

E(z) = eikz + r e−ikz, z < 0,

E(z) = teikz, z > L. (3)

We are interested in obtaining a closed-form expression for
the intensity 〈I (z)〉 ≡ 〈|E(z)|2〉 averaged over an ensemble
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of random processes ε(z). Indeed, the position-dependent
diffusion coefficient D(z) can be found with Fick’s law

〈J (z)〉 = −D(z)d〈I (z)〉/dz, (4)

where 〈J (z)〉 is the flux. In a passive random medium the
flux is conserved during propagation and thus can be found
from the boundary conditions. Indeed, the fraction of the flux
propagating in the positive (+) or negative (−) direction can
be expressed as [1]

〈J (±)(z)〉 = (v/2)〈I (z)〉 ∓ [D(z)/2] d〈I (z)〉/dz, (5)

where v is the wave speed. The right boundary 〈J (−)(z)〉
vanishes, so 〈J (z)〉 = 〈J (+)(L)〉 = v〈I (L)〉. Substituting this
expression into Eq. (4), we obtain

D(z) = −v〈I (L)〉/[d〈I (z)〉/dz]. (6)

Therefore, finding PDDC requires the knowledge of (only)
〈I (z)〉 for the problem defined by Eqs. (2) and (3). Such a
solution has been obtained in Refs. [23–25]. The common
theme in these studies is to relate the statistical property of
the wave field inside the medium to those at the boundary
[see Eq. (3)], where it can be obtained using the limiting
theorems (see Ref. [26] for a review). Such an approach is in
the spirit of the well-known self-embedding method [27]. We
will assume that ε(z) is a δ-correlated Gaussian process with
〈ε(z)〉 and 〈ε(z)ε(z′)〉 = aδ(z − z′). Under these conditions,
the solution for the ensemble-averaged intensity is obtained in
the form [23–25]

〈I (z)〉 = 1 −
√

ξ

πL

∫ ∞

−∞
exp

[
− [ζ − (z − L/2)/ξ ]2

L/ξ

]

×
(

tanh(ζ ) + ζ

cosh(ζ )2

)
dζ, (7)

where we introduced the localization length as ξ−1 = ak2/2.
Substitution of Eq. (7) into Eq. (6) gives us the analytical
expression for PDDC.

A compact expressions for both 〈I (z)〉 and D(z) can
be obtained when L 
 ξ . In this limit, the expression in
parentheses in the integrand of Eq. (7) can be approximated
with the step function h(ζ ), and the integral can be computed
in terms of the error function erf(x):

〈I (z)〉 � 1 − erf[z̃c], (8)

with a scaling parameter z̃c = (z − L/2)/
√

Lξ as the argu-
ment. In Fig. 1(a), 〈I (z)〉 is plotted for L/ξ = 5, 10, 20, 50, and
100 with and without the scaling z coordinate. We confirm that
Eq. (8) approximates the exact expression (7) well. We note
that such a distribution has been observed in the numerical
simulations of energy deposition in wave-front shaping in a
random medium [28,29].

The asymptotic expression for PDDC in the limit L 
 ξ is
obtained by substituting Eq. (8) into Eq. (6):

D(z) � D0 exp
[
z̃2
c − L/4ξ

]
. (9)

Here D0 = v� is the unrenormalized value of the diffusion
coefficient in terms of the transport mean free path � = ξ .
Figure 1(b) confirms the universality of PDDC inside a 1D
passive random medium in terms of the scaling parameter z̃c.
Equation (9) agrees with the one derived in the framework of
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FIG. 1. (Color online) (a) Spatial distribution of the ensemble-
averaged intensity 〈I (z)〉 from Eq. (7) (blue lines) without scaling
(inset) for systems with L/ξ = 5,10,20,50,100 (left to right). The
main panel presents the same data in terms of the scaled coordinate
z̃c = (z − L/2)/

√
Lξ ; the approximate expression given by Eq. (8)

is shown as a thick dashed line. (b) The position-dependent diffusion
coefficient found from Eq. (6) for systems with L/ξ = 5,10,20,50
without (inset) and with (main panel) scaling. The thick dashed line
is found with the asymptotic L 
 ξ expression in Eq. (9).

the supersymmetric theory of Ref. [11] for quasi-1D geometry
(a multimode waveguide), where it also applies in the crossover
regime between diffusion and localization.

III. POSITION-DEPENDENT DIFFUSION IN PASSIVE
RANDOM MEDIA WITH AN INTERNAL SOURCE

For the source located inside the random medium, Eq. (2)
is modified to include a point source at z′:

d2E(z,z′)
dz2

+ k2[1 + ε(z)]E(z,z′) = δ(z − z′), (10)

whereas the boundary conditions in Eq. (3) are replaced with
the outgoing wave conditions at both ends of the waveguide,

E(z) = t1 e−ikz, z < 0,

E(z) = t2 eikz, z > L. (11)
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Under these conditions, the flux inside the medium is a
piecewise constant function with a jump at the position
of the source z′. The values of 〈J (z,z′)〉 for z < z′ and
z > z′ can be determined by applying Eq. (5) at z = 0 and
z = L, respectively. We find 〈J (z < z′)〉 = −v〈I (0,z′)〉 and
〈J (z > z′)〉 = v〈I (L,z′)〉, where 〈I (z,z′)〉 = 〈|E(z,z′)|2〉 and
E(z,z′) is the solution of Eq. (10) with boundary conditions in
Eq. (11). Therefore, PDDC can be written based on Fick’s law
Eq. (4) as

D(z,z′) = −v[d〈I (z)〉/dz]−1

{−〈I (0,z′)〉, z < z′;
〈I (L,z′)〉, z > z′.

(12)

As in Sec. II, the above expression for PDDC requires
knowledge of the ensemble-averaged intensity 〈I (z,z′)〉. The
latter has been obtained in Refs. [25,30] in the form

〈I (z,z′)〉 = π exp

[
3L

4ξ
− |z − z′|

ξ

] ∫ ∞

−∞
dμ

× exp

[
−μ2L

ξ

]
sinh(πμ)

μ cosh(πμ)2

×
[(

μ2 + 1

4

)
cos

(
2μ

(z + z′ − L)

ξ

)

+
(

μ2 − 1

4

)
cos

(
2μ

(L − |z − z′|)
ξ

)

+μ sin

(
2μ

(L − |z − z′|)
ξ

)]
. (13)

Substituting this expression into Eq. (12) gives us the final
result.

We make the following observations. First of all, in the
limit of z′ = 0, we recover the result for an external source
found in the previous section. Indeed, Eq. (13) with z′ = 0 can
be shown [26] to reduce to Eq. (7). Second, unlike Eq. (1),
PDDC D(z,z′) depends on the source position z′. In Fig. 2
we evaluated Eq. (12) for L/ξ = 7.6 and four values of z′: 0
(outside source), L/4, L/2, and 3L/4. Indeed, PDDC shows
strong dependence on the position of the source. We note that
D(z,0) is always greater than D(z,z′ > 0), with the minimum
value at the middle of the sample for z′ = L/2.

We verified the above results with the numerical simulations
for the wave with k = 1.45 propagating normally through a
stack of alternating dielectric slabs with dielectric constants
ε1 = 1 and ε2 = 1.2. The width of the stacks of the first
kind is distributed uniformly in the interval d1 ∈ (0.9,1.1),
while the width of the other slabs is kept constant at d2 = 1.
The wave propagation in the system consists of the free
propagation inside the slabs and scattering at the interfaces,
where the proper boundary conditions should be satisfied.
It can be described using the transfer-matrix formalism (cf.
Refs. [31,32]). We computed J (z) = −kcIm[E(z)dE(z)/dz]
and I (z) = (k2/2)|E(z)|2 + (1/2)|dE(z)/dz|2 in a system
with N = 8 × 103 layers numerically and then found the
average over 108 disorder realizations. PDDC was found
from Fick’s law (4). The results reported in Fig. 2
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FIG. 2. (Color online) The position-dependent diffusion coeffi-
cient inside 1D passive random media with L = 7.6ξ , computed for
four source positions: z′ = 0 (upper curves), L/4, L/2, and 3L/4.
The latter three curves have cusps at the position of the source.
Dashed lines were found by substituting the analytical result (13)
into Eq. (12). The solid lines were obtained numerically.

(solid lines) agree with the analytical expression (dashed
lines).

IV. EFFECT OF ABSORPTION

Absorption is inevitable in optical experiments. The ef-
fect of absorption is to suppress resonant tunneling of the
wave [11], thereby increasing PDDC [33,34]. In this section
we perform numerical analysis of the effect of absorption on
PDDC for an internal source.

Modeling an absorbing random medium is accomplished
by adding a constant imaginary part to ε(z) in Eq. (10) as
ε(z) → ε(z) + iγ . The addition of the loss results in an extra
term, ξ−2

a 〈I (z,z′)〉, in the inhomogeneous diffusion equation.
The absorption length ξa can be obtained for a given value of
γ from the continuity condition d〈J (z,z′)〉/dz = 〈I (z,z′)〉/τa ,
where τa = ξ 2

a /D0 [33].
Figure 3 shows PDDC obtained numerically for the model

in Sec. III. We choose the number of layers in a stack N =
1.6 × 104 and two values of γ , γ = 10−5 and 10−4. These
parameters give L/ξa0 = 3.2 and 10, respectively. Similar to
the passive (nonabsorbing) case in Sec. III, PDDC clearly
shows a dependence on the position of the source inside the
medium (z′ = 0, L/4, L/2, and 3L/4 are shown); it has a cusp
feature at z′. However, closer inspection of Fig. 3 shows that
the dependence on the source position is strongly suppressed
at large L/ξa; in this limit, ξa becomes comparable to the
localization length ξ .

Performing computationally expensive numerical simu-
lations is not practical, particularly in higher-dimensional
systems. Self-consistent theory [7,9,10] has been successful
in providing a good prediction for PDDC for systems with
L/ξ not too large [11], and it was shown [33] to be accurate
in the absorbing systems. In all previous works, an external
source has been considered. Here we computed the prediction
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FIG. 3. (Color online) The position-dependent diffusion coeffi-
cient in an absorbing random medium with L/ξ = 15.2. The lower
set of curves corresponds to the absorption L/ξa = 3.2 and four
positions of the source. The thick red line is the prediction of SCT
from Eqs. (14) and (15). For a stronger absorption L/ξa = 10 (upper
set of curves), SCT provides an adequate prediction for PDDC.

of the self-consistent theory for systems with different amounts
of absorption. The self-consistency condition relates PDDC to
the return probability 〈I (z,z)〉 as

− d

dz
D(SCT )(z)

d〈I (z,z′)〉
dz

+ 〈I (z,z′)〉
ξ 2
a

= J0δ(z − z′), (14)

D0/D
(SCT )(z) = 1 + v〈I (z,z)〉. (15)

These equations form a closed set, sufficient for finding
D(SCT )(z). The solution of Eqs. (14) and (15) is shown with
a thick solid line in Fig. 3. We find that in the presence
of sufficiently strong absorption, SCT makes an adequate
prediction for PDDC even for the internal source.

V. CONCLUSION

In this work, we investigated the applicability of the
position-dependent diffusion approach to describing the lo-
calized wave transport in random media. We have shown
analytically and numerically that even for L > ξ , the position-
dependent diffusion coefficient can be defined through Fick’s
law. The benefit of such an approach is that it allows one to
obtain the ensemble-averaged value of intensity without the
need to perform statistical averaging.

Our analysis shows that the position-dependent diffusion
coefficient exhibits significant dependence on the source posi-
tion z′. Such a dependence has not been discussed before. That
is because previous studies have concentrated on the common
experimental arrangement: the incident wave impinging on
the sample from the outside. Our study of PDDC with an
internal source is of practical interest for a number of reasons.
First of all, the solution 〈I (z,z′)〉 of the diffusion equation
with PDDC and an internal source z′ is the Green’s function,
which can be used to define the second-order statistics (e.g.,
fluctuation, correlations) of wave transport. Second, Fick’s
law with PDDC in the form of D(z,z′) points to a highly
unconventional type of diffusion in the localized systems. The
spatial dependence of PDDC has been shown [13] to exhibit an
unusual macroscopic transport behavior. The additional depen-
dence on the source position found in our work may necessitate
a completely new nonlocal approach to transport. An accurate
description of the wave transport through random media would
inform studies of the limitations of wave-front shaping [35]
with applications, in particular, in the field of biological
imaging [36].
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