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The critical behavior of quantum Hall transitions in two-dimensional disordered electronic systems can be
described by a class of complicated, nonunitary conformal field theories with logarithmic correlations. The
nature and the physical origin of these logarithmic correlation functions remain, however, mysterious. Using the
replica trick and the underlying symmetries of these quantum critical points, we show here how to construct
nonperturbatively disorder-averaged observables in terms of Green’s functions that scale logarithmically at
criticality. In the case of the spin quantum Hall transition, which may occur in disordered superconductors with
spin-rotation symmetry and broken time reversal invariance, we argue that our results are compatible with an
alternative approach based on supersymmetry. The generalization to the integer quantum Hall plateau transition
is also discussed.
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I. INTRODUCTION

Random impurities in systems of noninteracting electrons
can induce a transition between metallic (delocalized) and
insulating (localized) phases [1]. More than fifty years after
its discovery, the field of Anderson localization remains
very active [2]. Even though the standard scaling theory of
localization [3] predicts the absence of extended states in dis-
ordered noninteracting electronic systems in two dimensions, a
well-known exception to this rule is provided by the transition
between plateaux in the integer quantum Hall effect (IQHE),
a quantum critical phenomena that was predicted theoretically
and observed experimentally a few decades ago [4–6].

The physics of noninteracting electrons moving on a two-
dimensional plane with a perpendicular magnetic field and
a random potential can be described by a two-dimensional
sigma model on the manifold Mn = U(2n)/U(n) × U(n) in
the limit n → 0 [7]. The sigma model can be argued to be
asymptotically free, and it flows to strong coupling, suggesting
complete localization in dimension d = 2 (this is related to the
absence of the Goldstone phase in d = 2). The reason why the
IQHE transition is allowed is well understood in terms of an
additional topological θ term—which can be written because
π2(Mn) = Z—in the sigma model that induces a transition at
θ = π . It is by now well admitted that the quantum critical
point corresponding to this IQHE transition—the strong
coupling fixed point of the sigma model at θ = π—should
be effectively described by a conformal field theory (CFT) in
1+1 dimensions (see, e.g., Refs. [8,9]).

This effective description of a disordered electronic system
in 2+1d in terms of a CFT in 1+1d comes at the price of losing
unitarity, and as a result, the critical properties of the IQHE
transition remain quite poorly understood: the critical expo-
nents are known only either from experiments or numerical
simulations, and a low-energy field theory description of the
critical point is still missing. Because of the underlying replica
or supersymmetric description of the disordered critical point,
it is, however, easy to argue that the central charge of this CFT
should be c = 0 [10,11]—because the partition function of the
problem is essentially trivial Z = 1—and as such should be a
logarithmic conformal field theory (LCFT) [10–14] (the only

unitary nonlogarithmic CFT at c = 0 being trivial). LCFTs
are characterized by the nondiagonalizability of the scale
transformation generator, corresponding to indecomposable
(reducible but not fully reducible), nonunitary representations
of the Virasoro algebra. This property leads to the appearance
of logarithms in correlation functions and to “indecomposable”
operator product expansions. These quantum field theories are
daunting for many reasons: they are necessarily nonunitary,
they are typically nonrational (i.e., they involve infinitely many
primary fields), and from an algebraic point of view they
require going beyond the description in terms of irreducible
representations familiar to physicists, and are instead built out
of large, complicated indecomposable representations that are
very hard to classify mathematically [15]. Most tools familiar
to physicists in this context also have to be reconsidered: for
instance, the Mermin-Wagner theorem does not apply, and
conformal invariance and global group symmetry does not im-
ply the Kac Moody symmetry. For example, whereas the O(3)
sigma model [16] on the coset S2 = SU(2)/U(1) at topological
angle θ = π flows to a Wess-Zumino-Witten (WZW) CFT
with enlarged symmetry SU(2)1, which is “easily” manageable
[17], the CFT describing the IQHE transition (also obtained
from a seemingly similar sigma model) is most likely not a
WZW model. Despite the recent progress in the understanding
of such LCFTs, both from lattice models [18–20] and more
abstract algebraic approaches (see, e.g., Refs. [21–26]), all
examples of LCFTs that are slowly getting under control are
still pretty far from the expected complexity of the LCFT
describing the IQHE plateau transition.

Even if a detailed understanding of this logarithmic CFT
seems unfortunately out of reach for now, it should be possible
to understand what physical observables make the theory
logarithmic. One of the main features of a LCFT is indeed
the existence of logarithmic correlations at criticality—where
one usually expects only power-laws; it is therefore very
natural to ask what kind of disorder-averaged observables
in the IQHE show logarithmic correlations at the plateau
transition. A general mechanism was proposed by Cardy
[13,27] to explain the emergence of logarithmic correlations
in disordered systems from the replica trick, but this argument
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has to be adapted to the more complicated symmetry structure
of the IQHE critical point. This approach was remarkably
successful to understand the physical origin of logarithmic
correlations in “simpler” problems including the O(n → 0)
model [13,27], or percolation [28], for example. Even though
the IQHE transition is admittedly much more involved, it is
still natural to expect the (heuristic) arguments of Refs. [13,27]
to shed some light on the physical origins of logarithmic
correlations in the Anderson transitions.

Following Cardy, our general strategy in this paper will be to
use the replica trick to express disorder-averaged observables
(Green’s functions) in terms of correlators of n species of
fermionic operators, with n the number of replicas, in a theory
with a global group symmetry G(n)—typically, the unitary
group U(n). Using the representation theory of this global
symmetry group, we classify the different lattice observables
and deduce the general form of their correlation functions
using symmetry arguments only. The critical properties of
the physical, disordered system can then be understood, in
principle, from the formal n → 0 limit of the critical point
(if it exists) of these replicated theories for generic n integer.
The resulting correlation functions usually have 1/n poles and
are therefore ill-defined in the physical limit n → 0. These
apparent divergences in the limit n → 0 can be cured but
they lead to logarithms in the limit. The basic mechanism
underlying the emergence of logarithms in the replica limit is
quite easily understood: starting from two power-law functions
r−2�1(n)/n and r−2�2(n)/n with coinciding critical exponents
for n = 0, both diverging as 1/n in the limit n → 0, a
well-defined quantity can be obtained as

lim
n→0

r−2�1(n) − r−2�2(n)

n
= κ r−2�1(0) ln r, (1)

where κ = 2 d(�2−�1)
dn

|
n=0

is a universal number. We will say
that the two scaling operators corresponding to the critical
exponents �1(n) and �2(n) are “mixed” at n = 0, the precise
sense of this statement is that the scale transformation operator
becomes nondiagonalizable at n = 0 [10]. These correlation
functions with logarithmic terms can in turn be argued to
correspond to logarithmic operators in a LCFT, so that scale
invariance is fully preserved at the critical point despite the
presence of nonalgebraic correlations. The physical meaning
of these logarithmic correlations can then be inferred using
Wick’s theorem, thus yielding disorder-averaged observables
in terms of Green’s functions that should behave logarithmi-
cally at criticality.

The apparent simplicity of this program is somewhat
deceiving: the crucial point is to identify properly the sym-
metry G(n) of the critical point for generic integer n. Note
in particular that our approach is drastically different from
the classification of operators based on the sigma model
formulation of the transition [29–32] (see also Ref. [9]): after
all, the theory describing the critical point probably has nothing
to do with Pruisken’s sigma model [7] (or its supersymmetric
variants [33]), cf. the above discussion of the WZW model
that arises in the strong limit coupling of the O(3) sigma
model. On the other hand, the actual symmetry of the critical
point is probably much larger that the naive G(n) symmetry
identified from the action of the replicated theory. This means

that two operators that transform under different irreducible
representations of G(n) (and that could eventually be “mixed”
in the limit n → 0) could actually be part of the same multiplet
of fields for the actual, larger symmetry. From a practical point
of view, this means that the two exponents �1 and �2 in Eq. (1)
could be identical, implying that κ = 0, that is, no logarithmic
term. Despite this important issue, similar approaches applied
to simpler critical points such as the O(n → 0) model or
percolation [28,34] (obtained as the Q → 1 limit of the Q-state
Potts model with perturbation group SQ symmetry) were
remarkably successful to classify the operator content and the
logarithmic correlations of these critical points, even though it
is known that the actual symmetry [35] of these theories is in
fact much larger than O(n) or SQ. Even though quantum Hall
transitions are admittedly much more complicated than say the
O(n = 0) model or percolation, it is natural to try to extend this
approach to critical points that are also much more exciting
from a physical perspective. In the following, we will see that
such a symmetry-based analysis with the simplest symmetry
groups possible yields very sensible results, in agreement with
the existing literature on the subject. In the case of the spin
quantum Hall effect (SQHE), a close cousin of the integer
quantum Hall transition where SU(2) spins replace U(1)
charges, we predict the existence of logarithmic corrections
in some observable that is found to be in agreement with
another approach, based on supersymmetry and a mapping
onto percolation [36]. For the IQHE transition, we show
that the disorder average of a simple combination of Green’s
functions should scale exactly as ∼ ln r at the critical point,
without any power-law contribution; a concrete prediction that
could be verified numerically using the Chalker-Coddington
network model [37].

We emphasize that extrapolating the limit n → 0 of the
replica limit is notoriously complicated in the context of the
IQHE—a fact that can essentially be traced back to the fact
that the transition at θ = π is believed to be of first order
for n > 2, making very hard to extrapolate reliably physical
results to n = 0 [38,39]. Nevertheless, the replica trick seems
more reliable when it comes to predicting the existence of
logarithmic correlations (compared to say, computing the exact
value of universal quantities like critical exponents in the limit
n → 0). The reason for this is that the basic mechanism that
predicts the emergence of logarithms for n → 0, Eq. (1), does
not rely on the precise value of the critical exponents or on
details of the extrapolation, so that one can essentially ignore
that the transition becomes of first order for larger n. This is
well illustrated in the simple case of the n → 1 limit of the
CPn−1 sigma model with topological θ term, which also has a
phase transition at θ = π . Despite the fact that the transition is
also believed to be of first order for n > 2, we will see below
that the replica trick based on the (at least) U(n) symmetry of
the critical point leads to results that are in agreement with
a more rigorous approaches that are available in this case
[18,40,41].

The remainder of this paper is organized as follows. In
Sec. II, we analyze the n → 1 limit of theCPn−1 sigma model,
a quantum field theory describing the critical behavior of dense
loops with fugacity n, a problem apparently unrelated to the
Anderson transitions. We describe in details how logarithmic
correlations arise in the n → 1 limit (corresponding to the
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classical percolation problem). Building on these results, we
analyze the replica limit of the SQHE transition in Sec. III
and predict the existence of logarithmic correlations at the
critical point. We show that the same result can also be obtained
from the analysis of the percolation problem in Sec. II (see
also ref. [28]) using the supersymmetry approach developed
in Ref. [36]. We then extend the replica approach to the IQHE
case in Sec. IV, and construct an observable that should behave
purely logarithmically at the critical point. Finally, Sec. V
contains a discussion of the results and concluding remarks.
The main results of our analysis are given by Eqs. (29) and (31)
for the SQHE, and Eqs. (38) and (39) for the IQHE—see also
Eq. (41).

II. WARM UP: n → 1 LIMIT OF THE CPn−1 SIGMA
MODEL, PERCOLATION AND DENSE LOOP MODELS

We begin with a discussion of logarithmic correlations in
a model of dense loops with SU(n) symmetry, a problem
apparently completely unrelated to the Anderson transitions.
However, most results of this paper regarding the Anderson
transitions rely heavily on this section. The aim of this first
section is threefold: (1) it will provide us with a simple
example where the emergence of logarithmic correlations can
be understood in details, (2) it introduces the basis of SU(n)
representation theory that will be crucial in the following, and
(3) it proves the existence of a logarithmic observable in a
critical dense loop model with fugacity n = 1 (percolation),
a model that was shown [36] to describe a certain class
of observables in the SQHE transition using the so-called
supersymmetry trick. We will show in the next section how
this result can be interpreted in the SQHE language using this
supersymmetry mapping.

A. Dense loop models and SU(n) symmetry

Let us consider a dense loop model on the square lattice,
with fugacity (the Boltzmann weight per closed loop) n ∈ R.
An example of configuration of such a loop model is shown
in Fig. 1, where the dense loops are drawn in blue. These

FIG. 1. (Color online) Configuration of a dense loop model with
fugacity n = 1, and corresponding percolation clusters in red.

loops can be thought of as “hulls” of percolation clusters
shown in red in Fig. 1—more precisely, the red clusters are
percolation clusters only for n = 1; for generic n, they coincide
with the so-called Fortuin-Kasteleyn clusters that arise in the
high-temperature expansion of the Potts model [42]. There are
two types of plaquettes in Fig. 1: we will denote the plaquettes
corresponding to the propagation of two blue lines along the
vertical (imaginary time) direction (with a vertical red line) by
1, and we will soon see why we use this notation of identity
operator. On the other hand, the other type of plaquette with a
horizontal red line are denoted by an operator e that contracts
two blue lines and creates a new pair of lines in imaginary
time. We will see in the following that it is useful to think of
these loops as world lines of bosonic particles that get created
and annihilated by the operators e during the imaginary time
evolution.

Labeling by i the columns in Fig. 1, the partition function
is computed as follows: if i is even, plaquettes of type 1 are
weighted by (1 − pA), whereas plaquettes associated with the
operator e get a weight pA. If i is odd, the same applies with
the replacement pA → 1 − pB . Finally, closed loops carry a
Boltzmann weight n. The isotropic line corresponds to pA =
pB and one can show that the system is critical for pA =
1 − pB and −2 � n � 2 (for other values of n, there is a
first-order transition). More formally, we introduce the transfer
matrix

T =
∏
i odd

((1 − pA)1i + pAei)
∏

i even

(pB1i + (1 − pB)ei),

(2)
which constructs two rows of the loop model. A full loop
configuration such as the one in Fig. 1 can then be constructed
by successive iterations of this transfer matrix. In the strongly
anisotropic limit pA → 0 with pA/(1 − pB) fixed, the transfer
matrix can be recast as T � exp[−√

pA(1 − pB)H ], with the
(1+1)D quantum Hamiltonian

H = −ε
∑
i odd

ei − ε−1
∑
i even

ei, (3)

with ε = √
pA/(1 − pB) = 1 at the critical point.

We now discuss a SU(n) representation of this dense
loop model for integer n. There are several ways to do
this [40,43,44]; we follow here Ref. [40]. On each site i

[to simplify the notations, we implicitly work on a given
imaginary time slice of the system so that i labels the
columns of the network as in Eqs. (2) and (3)], we introduce
n bosonic operators b

a†
i , ba

i with commutation relations
[ba†

i ,bb
j ] = δij δ

ab and a,b = 1, . . . ,n. These operators satisfy

the following constraint,
∑

a b
a†
i ba

i = 1 (one particle per site),
so that the n states |a〉 = b

a†
i |0〉, with |0〉 the Fock space

vacuum, form the fundamental (respectfully, antifundamental
or dual) representation of the Lie algebra SU(n) for i even
(respectfully, odd), with the generators acting as Qab

i = b
a†
i bb

i

(respectfully, Qab
i = −b

b†
i ba

i ). The operator ei is then defined
as the projector onto the singlet in the tensor product between
fundamental and dual if i is even (dual and fundamental for i

odd), ei = −∑
ab Qab

i Qba
i+1, which has the familiar form of a

Heisenberg-like coupling. It is then straightforward to verify
that the partition function computed as the trace of powers of
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the transfer matrix (2) admits a graphical expansion in terms
of nonintersecting dense loops—the worldlines of the bosons,
with the weight of each closed loop given by the trace of the
identity operator in the fundamental representation (number
of particles flowing around the loop), that is, n. Therefore the
transfer matrix (or the corresponding quantum Hamiltonian)
of our loop model can naturally be endowed with a SU(n)
symmetry (when n > 1 is integer).

The quantum field theory description of these loop models
(or of the corresponding SU(n) quantum spin chains) is
then provided by a sigma model [38,40,45] on the coset
CPn−1 = U(n)/(U(1) × U(n − 1)) with topological angle θ .
We introduce n bosonic fields za , a = 1, . . . ,n subject to
the constraint z

†
aza = 1 (implicit summation over repeated

indices implied), modulo U(1) phases za ∼ eiφa za , so that z ∈
CPn−1 � S2n−1/U(1). With this field content, the Lagrangian
density of the sigma model reads

L = 1

2g2
|Dμza|2 + iθ

2π
εμν∂μaν, (4)

where aμ is a U(1) gauge field and Dμ = ∂μ + iaμ. Integrating
out the Abelian gauge field yields aμ = i

2 (z†a∂μza − (∂μz
†
a)za).

The θ -angle contribution is a topological term associated with
the nontrivial homotopy group π2(CPn−1) = Z.

If we now think of n as a real parameter after a naive
analytical continuation, it can be shown from the β function of
the sigma model [46] that the coupling flows to larger values
at larger length scales (lower energies) for n � 0. If θ �= 0, the
system flows to a massive phase with restored U(n) symmetry,
but there is a transition at topological angle θ = π . For n � 2,
this transition is believed to be of second order and should
therefore be described by a conformal field theory (CFT).
Many properties of this CFT as a function of n are known
[40], including, for example, the expression of the central
charge and of critical exponents, and in the following we will
argue that logarithmic correlations arise naturally from the
analytic continuation of the SU(n) symmetry at the value n = 1
(corresponding to the percolation problem). Note that although
we will focus in what follows on this second-quantized
description of SU(n) loop models in two dimensions, most
of our results also apply to higher dimensional loop models
[44,47].

B. Observables in SU(n) loop models

In order to classify the observables of the loop models,
we use the underlying SU(n) symmetry of the critical point.
Note that the actual symmetry at the critical point might
be much larger than SU(n)—for these simple loop models,
the symmetry is known [35] and is indeed much larger than
SU(n). As a result, observables transforming under different
irreducible representations of SU(n) might be part of a larger
multiplet—and, in particular, would have the same scaling
dimension—under the eventual larger symmetry. We will,
nevertheless, keep working with the SU(n) symmetry and
analyze carefully the results in the end. We will focus for
concreteness on the two-dimensional second-quantized model
introduced above, but almost identical results apply to higher
dimensional loop models [44,47].

1. Observables acting on N = 1 site

Let us start by classifying the Hermitian operators acting
on a single edge of the form O(i) = ∑

a,b Oabb
†
a(i)bb(i).

Clearly, the total number of bosons �(i) = ∑
c b

†
c(i)bc(i) is

invariant under SU(n), and form an irreducible unidimensional
representation. Within the context of our loop models, �(i) =
1 is the identity operator, with scaling dimension �� =
0. The remaining n2 − 1 operators φab(i) = b

†
a(i)bb(i) −

δab

n

∑
c b

†
c(i)bc(i) transform irreducibly and form the adjoint

representation of SU(n). They are traceless in the sense that
they satisfy

∑
ab δabφab(i) = 0. This decomposition can be

written in terms of the Young diagrams as [1] ⊗ [1] = [1] ⊗
[n − 1] = [n] ⊕ [n − 1,1]. Here and in the sequel, the Young
diagrams are denoted as [λ1,λ2, . . . ], where λi is the number of
boxes in the i th column. Here, [1] is the fundamental (defining)
representation of dimension n and [1] its conjugate (dual), and
[n − 1,1] is the adjoint. Using the fact that trφab(i) = 0, where
the trace is taken in the fundamental representation of SU(n)
generated by |a〉 = b

†
a|0〉, it is then straightforward to show

that the two-point function of φab can be expressed as

〈φaa(i)φbb(j )〉 = 1

n

(
δab − 1

n

)
P(1)

1 (i,j ), (5)

where P(1)
1 (i,j ) is the probability than i and j belong to the

same loop. The factor (δab − 1
n

) is completely fixed by the
condition

∑
a φaa = 0. Note that we have fixed some indices

for simplicity but the full correlation function 〈φab(i)φcd (j )〉
can of course be computed similarly. One can also readily
check that 〈�(i)φab(j )〉 = 0, and 〈φab〉 = 〈�〉 = 0.

This exact lattice formula makes the nature of the operator
φ very transparent: it creates a propagating loop, or more
precisely, it creates two “legs” at site i, one incoming and one
outgoing. In two dimensions, this observable is known as a
“two-leg watermelon” operator for this reason. Let �φ(n) be
its scaling dimension, known exactly in two dimensions [48]:
�φ(n) = 1 − 2

g
, with g ∈ [2,4] given by n2 = 2(1 + cos πg

2 ).
In the continuum limit, we expect the following scaling:

〈φaa(ri)φbb(rj )〉 = A(n)

(
δab − 1

n

)
r−2�φ (n), (6)

where A(n) is some nonzero function of n, and r = |ri − rj |.
To summarize, the SU(n) symmetry allowed us to identify

two distinct scaling operators, the identity and a two-leg
watermelon operator. While the representation theory analysis
was performed for n integer, the correlation functions (5)
and (6) make sense for generic n. Although nothing partic-
ularly exciting happens in the limit n → 1, one can already
see that the limit n → 0 will be singular from Eq. (6). As we
will see more explicitly in the following, poles like the one in
Eq. (6) lead to logarithmic correlations. In this case, one can
check that the scaling dimension �φ(n) vanishes as n → 0,
indicating a “mixing” of the operator φab with � (the identity)
at n = 0. This mixing can also be traced back to the dimension
n2 − 1 of the representation of φ that becomes formally −1 in
the limit n → 0. We will not describe this limit n → 0 here,
but instead turn to more complicated operators that will have
singular limits as n → 1. We will then show more explicitly
how these poles lead to logarithmic correlations.
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2. Observables acting on N = 2 sites

We now turn to observables acting on two nearest-neighbor
edges i and i ′. For simplicity, we consider a coarse-grained
picture in which i and i ′ are two sites near position ri

(see Fig. 2), corresponding to the fundamental representation
of SU(n) (even columns). We wish to consider operators
of the type b

†
a(i)bb(i)b†c(i ′)bd (i ′). It is natural to enforce

a symmetry between i and i ′, and we further restrict our
study to operators that are symmetric under the exchange
(a,b) ↔ (c,d), and that vanish if a = c or b = d. The last
two conditions are conveniently satisfied by operators that are
antisymmetric under the exchanges a ↔ c or b ↔ d. We there-
fore define Tabcd (ri) = −Qab(i)Qcd (i ′) + Qad (i)Qcb(i ′) −
Qab(i ′)Qcd (i) + Qad (i ′)Qcb(i), with Qab(i) = b

†
a(i)bb(i).

These operators transform under SU(n) as [2] ⊗ [2] ⊂ ([1] ⊗
[1])⊗2, with (n(n − 1)/2)2 components. This representation
is reducible, and can be decomposed as [2] ⊗ [2] = [n] ⊕
[n − 1,1] ⊕ [n − 2,2].

The first term is the invariant T 0 = ∑
ab Taabb where all

the indices are contracted. Defining TrQ = ∑
a Qaa—not to

be confused with the symbol tr, which corresponds to the
trace in the fundamental representation—this operator can be
expressed as T 0(ri) = −2TrQ(i)TrQ(i ′) + 2TrQ(i)Q(i ′) =
2(TrQ(i)Q(i ′) − 1), which is clearly invariant. This operator
corresponds to a lattice version of the energy operator. More
precisely, we define the energy operator ε(ri) = T 0(ri) −
〈T 0〉, where we have subtracted the constant term 〈T 0〉 =
2(n − 1)P(1)

1 (i,i ′) + 2(1/n − 1)P(1)
0 (i,i ′), whereP(1)

0 (i,i ′) is the
probability that i and i ′ belong to different loops, i.e.,
P(1)

0 (i,i ′) = 1 − P(1)
1 (i,i ′). Note that since the sites i and i ′

lie within a small neighborhood around the position ri , 〈T 0〉
is indeed a constant in a coarse grained picture, i.e., it does
not depend on ri . The two-point function 〈ε(ri)ε(rj )〉 can be
expressed exactly in terms of lattice probabilities conditioning
the points i, i ′, j and j ′ to belong to various loops. The explicit
result is not very illuminating, but it shows that 〈ε(ri)ε(rj )〉
vanishes as n → 1. Denoting by �ε(n) the scaling dimension
of ε(ri), we thus expect, in the continuum limit,

〈ε(ri)ε(rj )〉 = A0(n)(n − 1)r−2�ε(n), (7)

where A0(n) is a regular function of n with A0(1) �= 0 finite,
and r = |ri − rj |. In two dimensions, we have [49] �ε(n) =
6
g

− 1, where g was defined above.
The second term [n − 1,1] in the decomposition of

[2] ⊗ [2] is the adjoint representation, corresponding to the
n2 − 1 fields T 1

ab(ri) = ∑
c Tabcc − δab

n
T 0 = −Q(i)TrQ(i ′) +

Q(i)Q(i ′) + i ↔ i ′ − δab

n
T 0. This operator has the same

symmetry as φab(ri), we thus expect its two-point function

i

i

j

j

r = |ri − rj |
ri rj

FIG. 2. (Color online) Schematic representation of the coarse
grained two-point function 〈O(ri)O(rj )〉 of observables acting on
N = 2 sites. The two sites i and i ′ (respectfully, j and j ′) are chosen
in the infinitesimal neighborhood of the position ri (respectfully, rj ).

to be dominated by a power-law behavior with the same
scaling dimension �φ(n), with some eventual subleading
contributions. This correlator can also be expressed on the
lattice as

〈
T 1

aa(ri)T
1
bb(rj )

〉 = 1

n

(
δab − 1

n

)
(n − 2)

n

×
[

4P(2)
2 (ri,rj ) + (n − 2)

(
nP(2)

1 (ri,rj )

−P(2)
1′ (ri,rj ) + 1

n
P(2)

1′′ (ri,rj )

)]
. (8)

In this expression, P(2)
2 (ri,rj ) is the probability that i and j

belong to the same loop while i ′ and j ′ belong to another loop,
or that i and j ′ belong to the same loop while i ′ and j belong to
another loop.P(2)

1 (ri,rj ) is the probability that the four points i,
i ′, j , and j ′ belong to the same loop, whereasP(2)

1′ (ri,rj ) counts
configurations in which three out of the four points belong to
the same loop, while the last remaining point in its own loop
(see Fig. 3). Finally, P(2)

1′′ (ri,rj ) corresponds to configurations
where either i or i ′ is in the same loop than either j or j ′, with
the remaining two points being alone in their own loop. All
these probabilities vanish as r = |ri − rj | → ∞.

Finally, the last term [n − 2,2] in [2] ⊗ [2] has dimension
n2(n + 1)(n − 3)/4, which becomes formally −1 when
n = 1. As we will describe in details in the following, this
is the representation that will be mixed with the energy
operator when n = 1. These operators are given explicitly by

P
0,0
dP

1,1
d P

1,0
d

r

P
(2)
2 P

(2)
1

r

ri

rj

P
(2)
1 P

(2)
1

FIG. 3. (Color online) Graphical representations of loop config-
urations contributing to the various probabilities introduced in the
text. Note that some of the probabilities contain more terms than the
ones drawn: for instance, P(2)

1′ counts configurations in which any
of the four points is isolated in a loop while the other three points
belong to another loop. See main text for a precise definition of all
these probabilities.
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T 2
abcd = Tabcd − 1

n−2 (δabT
1
cd + δcdT

1
ab − δbcT

1
ad − δadT

1
cb) −

1
n(n−1) (δabδcd − δadδcb)T 0, and they satisfy the n2 constraints∑

a T 2
aacd = 0. The two-point function of T 2 then reads

〈
T 2

aabb(ri)T
2
ccdd (rj )

〉 = 4

n2

(
δacδbd + δadδbc − 1

n − 2

× (δac + δbd + δad + δbc)

+ 2

(n − 1)(n − 2)

)
P(2)

2 (ri,rj ), (9)

with a �= b and c �= d—otherwise this correlator is simply
zero. Despite this rather complicated expression, this correlator
is remarkably simple. The combination of Kronecker deltas is
entirely fixed by the symmetry constraints

∑
a=c,d T 2

aacd = 0,

and the dependence on P(2)
2 (ri,rj ) provides a natural physical

interpretation of T 2 as a “four-leg watermelon operator,” with
two loops propagating from ri to rj . One can also check that all
the crossed two-point correlation functions between T 2, T 1,
and ε vanish, as required by symmetry. The scaling dimension
of T 2 reads [48] �T 2 (n) = (4+g)(3g−4)

8g
, and in the scaling limit,

we expect

〈
T 2

aabb(ri)T
2
ccdd (rj )

〉 = 2A2(n)

n2

(
δacδbd + δadδbc − 1

n − 2

× (δac + δbd + δad + δbc)

+ 2

(n − 1)(n − 2)

)
r−2�T 2 (n). (10)

3. Other observables

It is obviously possible to generalize the above to
observables acting on N > 2 sites, but this will not
be necessary for our purposes. Moreover, it would
be natural to ask what happens to the symmet-
ric observables T̃abcd (ri) = Qab(i)Qcd (i ′) + Qad (i)Qcb(i ′) +
Qab(i ′)Qcd (i) + Qad (i ′)Qcb(i), which would also transform
reducibly under SU(n). We chose to focus on the antisymmet-
ric tensors Tabcd (ri) = −Qab(i)Qcd (i ′) + Qad (i)Qcb(i ′) −
Qab(i ′)Qcd (i) + Qad (i ′)Qcb(i) to forbid the cases a = c or
b = d, which would effectively reduce to operators acting on
N = 1 site in a coarse grained picture. It is, of course, possible
to carry on the same analysis for T̃abcd instead of Tabcd , and one
ends up with three irreducible representations with dimensions
1, n2 − 1, and n2(n + 3)(n − 1)/4—note that the dimension of
this last representation becomes formally 0 at n = 1 (instead
of −1 in the antisymmetric case above), indicating the absence
of mixing. One finds the same pole structure as for N = 1, and
in particular, the limit n → 1 of all the irreducible operators
constructed out of T̃abcd is well defined. In the end, we find
that the correlation functions of these other operators in the
limit n → 1 do not contain any new information so that it is
possible to focus only on the observables considered in the
previous paragraph.

C. Logarithmic correlations in the n → 1 limit

The n → 1 of Eq. (10) is clearly ill-defined. This indicates
a “mixing” between the scaling operators T 2 and ε at n = 1,
and is further confirmed by the fact that the scaling dimensions
�ε = �T 2 = 5

4 coincide for that value of n. In order to obtain

finite correlation functions for n → 1, we follow [27] (see
also [28]) and introduce a new field ψab = (1 − δab)(T 2

aabb +
1

n(n−1)ε). Finiteness of correlation functions at n = 1 then
requires A0(1) = A2(1), and one ends up with the logarithmic
correlation function at n = 1:

〈ψab(ri)ψcd (rj )〉 = 2A0(1)r−5/2

(
δacδbd + δadδbc

+ δac + δbd + δad + δbc + κ ln
r

a

)
, (11)

where a is the lattice spacing (UV cutoff), and κ is universal
and given by

κ = 4 lim
n→1

�T 2 − �ε

n − 1
= 8

√
3

π
. (12)

This proves the emergence of a field with logarithmic correla-
tions at the critical point. Moreover, one can readily check
that ψab is mixed with the energy operator under a scale
transformation r �→ �r , a feature characteristic of logarith-
mic operators [10]: ψab(�r) = �−5/4(ψab(r) + κ

2 ln � ε(r)),
whereas ε(�r) = �−5/4ε(r). We also note that the Kronecker
delta in (11) are purely formal since n = 1, but it will turn out
to be convenient to keep track of this structure to interpret this
correlation function geometrically.

In order to elucidate the geometrical meaning of this
logarithmic two-point function, it is fruitful to go back to lattice
correlation functions. Using Eq. (9) and the exact expression
of the two-point function of ε in terms of probabilities, one
can readily express the two-point function of ψab in terms
of various probabilities as well. The now well-defined n → 1
limit then yields

〈ψab(ri)ψcd (rj )〉 = 4P(2)
2 (r)(δacδbd + δadδbc

+ δac + δbd + δad + δbc)

+ 4(Fd (r) − F∞
d + Fc(r)). (13)

In this expression, Fd (ri,rj ) = P1,1
d + P0,0

d − P1,0
d is a linear

combination of disconnected probabilities (Fig. 3): P0,0
d is the

probability that the four points i, i ′, j , and j ′ belong to four
different loops, P1,1

d is the probability that i and i ′ belong to
the same loop while j and j ′ belong to another loop, P1,0

d is
the probability that j and j ′ belong to the same loop while
i and i ′ belong to two other loops, or the same with the role
of ri and rj reversed. Fd (ri,rj ) has a nonvanishing limit when
r = |ri − rj | → ∞ given by F∞

d = (P(1)
1 (i,i ′) − P(0)

1 (i,i ′))2 =
(1 − 2P(0)

1 (i,i ′))2, which is a constant independent of the
position ri—it is, however, nonuniversal and depends on how
the coarse graining procedure is defined. Finally, Fc(ri,rj )
corresponds to the connected part and is given by Fc(ri,rj ) =
P(2)

1 (ri,rj ) − P(2)
1′ (ri,rj ) + P(2)

1′′ (ri,rj ) − 4P(2)
2 (r).

Comparing Eqs. (11) and (13), we immediately
find 2P(2)

2 (r) ∼ A0(1)r−5/2 and 2(Fd (r) − F∞
d + Fc(r)) ∼

A0(1)r−5/2κ ln r
a

. In particular, the ratio

Fd (r) − F∞
d + Fc(r)

P(2)
2 (r)

∼ κ ln
r

a
, (14)
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should be purely logarithmic for a dense loop model with
fugacity n = 1, with the universal amplitude κ given by (12).
We expect this expression to be particularly suited for
numerical checks, since it isolates the logarithmic dependence.
It is worth pointing out that the logarithmic dependence stems
only from the disconnected part Fd (r): using the n → 1 limit
of (8), one can easily show that the connected piece Fc(r) ∝
〈T 1

aa(r)T 1
bb(0)〉 is purely algebraic for n → 1, with a leading

contribution given by the two-leg exponent �φ(n = 1) = 1
4 .

D. Relation to the Potts model, percolation, and supersymmetry

1. Percolation and Potts model

We have thus shown that dense loop models with fugacity
n = 1 involve a logarithmic operator resulting from the mixing
of the energy and the four-leg watermelon fields. The two-point
function of this logarithmic operator can be expressed in
terms of probabilities that could readily be measured using
Monte Carlo simulations for example. When n = 1, the
two-dimensional dense loop model introduced above can be
mapped onto bond percolation, where the loops are the hulls
of percolation clusters. Our results thus also apply to the
two-dimensional percolation problem, where the observables
that we described act on the hulls of percolation clusters. The
existence of a logarithmic operator mixing energy and 4-leg
fields in percolation was pointed out in Refs. [28,50], and
a similar concrete logarithmic observable in percolation was
uncovered [28,34] using the Q → 1 limit of the Potts model.
Despite the similarities between the above calculation and the
result of Ref. [28]—that can be traced back to the relation
between the representation theory of SU(n) and the symmetric
group—note that the resulting logarithmic observables are
different, since the ones obtained from the Potts model act
on percolation clusters, instead of acting on hulls. Therefore,
even if the Potts model is known to be related to loop models
with SU(n) symmetry [43], the observables in both models
are different. For instance, the probability that two points
separated by a distance r belong to the same percolation
cluster is definitely different from the probability that two
points belong to the same loop surrounding a cluster, and
they actually scale with different exponents, r−5/24 and r−1/2,
respectively [48,51].

2. Supersymmetry versus replicas

Although the loop models introduced above do not involve
quenched disorder, it is helpful to think of our approach based
on the formal limit n → 1 of the SU(n) symmetry as a sort of
replica trick. As in disordered systems, it is possible to use an
alternative, more rigorous approach based on supersymmetry
to construct loop models [36,40,52]. Intuitively, one introduces
both fermonic and bosonic operators to ensure that closed
loops get a weight n = 1, the fermonic terms giving negative
contributions when computing the weight. Loop models with
fugacity n are then described by a SU(n + m|m) global (su-
per)symmetry (SUSY), where SU(n + m|m) is the supergroup
analog to SU(n), defined by the transformations preserving a
form with n + m bosonic variables and m fermonic ones (see,
e.g., Ref. [53] for a review of Lie superalgebras). There is then
no issue with the value n = 1 and percolation can be described

[36,40] by, e.g., a theory with SU(2|1) SUSY [or SU(m + 1|m)
SUSY in general]. The emergence of logarithmic correlations
can also be understood in this supersymmetric language
[11,12,18], using more involved representation theory tools,
such as indecomposable representations—representations that
are reducible but not fully reducible. We will not describe
the SUSY approach in more detail here (see [40]), but we
simply note that although SUSY is very powerful to predict
formally the emergence of logarithmic operators, it does not
yield simple geometrical formulas like (14).

3. Extended symmetry

As mentioned above, the actual symmetry at the strong
coupling fixed point of the two-dimensional CPn−1 sigma
model is much larger than SU(n) [35]. As a result, operators
that transform under different irreducible representations of
SU(n) could actually be part of the same multiplet of fields for
the actual, larger symmetry. This means that the prefactors of
some of the logarithms predicted using the SU(n) symmetry
could in fact be zero. In the example (11) described above,
the prefactor (12) is nonzero and can be computed exactly.
Moreover, the true symmetry of the critical point is also known
exactly for those dense loop models [35]. For example, the
representation [n − 2,2] with dimension n2(n + 1)(n − 3)/4
of SU(n) is part of a much larger representation of dimension
n2(n2 − 3)/2 for the actual symmetry [35] (or n4 − 3n2 + 1
for fields living at the boundary). However, in the limit n → 1,
the dimension of both representations goes (formally) to −1,
indicating a “mixing” (in the sense described above) with
the trivial representation of dimension 1. Therefore, in the
limit n → 1, the SU(n) symmetry is enough to understand
the mixing of the four-leg operator (corresponding to the
representation [n − 2,2]) and the identity operator.

Even if in this case, considering a smaller symme-
try does not affect the prediction of logarithmic corre-
lations for the four-leg operator, this example nicely il-
lustrates that fields having different symmetry properties
under SU(n) can actually have the same scaling dimen-
sion. More precisely, for bulk fields we find that the
large representation n2(n2 − 3)/2 for the true symme-
try decomposes as (n2(n + 3)(n − 1)/4) ⊕ (n2(n − 3)(n +
1)/4) under SU(n), where we denoted representations by
their dimension for simplicity. For boundary fields, the
representation n4 − 3n2 + 1 for the true symmetry de-
composes as (n2(n + 3)(n − 1)/4) ⊕ (n2(n − 3)(n + 1)/4) ⊕
(n2 − 1) ⊕ 2 × ((n2 − 4)(n2 − 1)/4). These irreducible SU(n)
representations—all contained in the tensor product ([1] ⊗
[1])⊗2—therefore correspond to the same primary field (the
four-leg operator) for the extended symmetry. Interestingly,
some aspects of that analysis can be recovered directly at the
level of the CPn−1 sigma model.1

Note also that considering a smaller symmetry group at
the critical point may also lead us to miss some logarithms:
for example, considering the full symmetry of dense loop
models predicts a mixing between the representations of
dimension n2(n2 − 3)/2 (or n4 − 3n2 + 1 at the boundary) and

1A. Nahum (private communication).
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n2 − 1 (adjoint) for n = √
2, consistent with other approaches

[28]. However, we would completely miss this mixing by
considering only the smaller SU(n) symmetry—there is no
pole at n = √

2 in Eq. (10). Having these drawbacks in mind,
we are now ready to go back to the Anderson transitions.

III. LOGARITHMIC OBSERVABLES AT THE SPIN
QUANTUM HALL TRANSITION

We now turn to the study of logarithmic correlations at the
spin quantum Hall transition, a close cousin of the integer
quantum Hall transition where SU(2) spin is transported
instead of U(1) charge. We first review the basic physics of
the spin quantum Hall effect and introduce the corresponding
network model that describes the transition. Using the replica
trick and the global symmetries at the critical point, we then ex-
hibit linear combinations of Green’s functions whose disorder
average should be logarithmic. Finally, using supersymmetry
and an exact mapping onto classical percolation [36], we
argue that this logarithmic observable found using the replica
trick coincides with the logarithmic two-point correlator in the
SU(n = 1) loop model discussed in the previous section.

A. Spin quantum Hall transition

The spin quantum Hall eEffect (SQHE) is the quantization
of the spin Hall conductance, analogously to the quantization
of the Hall charge conductance in the integer quantum Hall
effect (IQHE). Spin transport is defined as the response to the
spatial variation of an external Zeeman magnetic field, which
plays the role of the electric field in the IQHE. If the external
field is along the z direction, the spin Hall conductance σ S

xy is
defined by the spin current along the x direction:

jz
x = −σ S

xy∂yBz. (15)

As in the IQHE, the spin Hall conductance σ S
xy can take

nonzero values only in systems with broken time-reversal
invariance.

The SQHE may occur is singlet superconductors [54,55]
with mean-field Hamiltonian

H =
∑
ij

∑
σ

tij c
†
iσ cjσ +

∑
ij

�ij c
†
i↑c

†
j↓ + �

ij cj↓c↑. (16)

There is no notion of charge transport since charge is obviously
not conserved by the superconductor, but the Hamiltonian has
a global SU(2) spin rotation symmetry if �ij = �ji . If the
gap function � is complex, time reversal invariance is broken
and σ S

xy may take nonzero values. For a clean dx2−y2 + idxy

superconductor, one can show that σ S
xy is quantized and that

transport is carried by chiral edge modes at the edge of a system
with a boundary. These edge states are robust to weak disorder,
whereas strong disorder eventually drives the system to a
topologically distinct localized phase characterized by σ S

xy = 0
(spin insulator). In the following, we will study this Anderson
transition from the SQHE phase to the spin insulating phase.

Spin rotation symmetry and broken time reversal invariance
defines the symmetry class C [56,57]. The corresponding
sigma model describing the transition [58,59] is defined on
the coset Sp(2n)/U(n) with n → 0 using a replica approach, or
OSp(2|2)/U(1|1) using supersymmetry [more general cosets

A

B

FIG. 4. (Color online) Network model with directed links and
two types of nodes A and B on the square lattice. Particles can
propagate along the directed links, with random SU(2) [respectfully,
U(1)] matrices associated with the propagation on each link in the
SQHE (respectfully, IQHE) case. The blue and red circles represent
scattering matrices at each node.

OSp(2m|2m)/U(m|m) can also be used to describe fluctua-
tions of observables and compute multi-fractal exponents].

B. Network model and Green’s functions

The lattice version of this noninteracting disordered
fermions problem is introduced using a variant [36,54] of the
Chalker-Coddington network model for the integer quantum
Hall transition [37].

As in the Chalker-Coddington model, we introduce a
network with directed links and two types of nodes A and
B on the square lattice (Fig. 4) where particles can propagate.
The difference with the Chalker-Coddington case comes from
the spin of these particles, as disorder is introduced by random
SU(2) matrices [instead of random U(1) phases] associated
with the propagation along each link. The nodes of the network
correspond to scattering events and we take the scattering
matrices at each node to be diagonal in the spin subspace
and

SK,σ =
⎛
⎝

√
1 − t2

Kσ tKσ

−tKσ

√
1 − t2

Kσ

⎞
⎠, (17)

where σ =↑ , ↓ labels the spin of the particles and K =
A and B denotes the two different types of nodes. Spin
rotation symmetry implies that tK ≡ tK↑ = tK↓,2 and isotropy
of the network enforces t2

A + t2
B = 1, so that we parametrize

tA = cos θ and tB = sin θ . The isotropic critical point of the
network model then occurs for tA = tB = 1√

2
, and varying θ

away from π/4 drives the system into either a spin insulator
or a quantum spin Hall state, with a jump in the spin quantum
Hall conductance at the transition.

The simplest way to define Green’s functions is to use
a first quantized formalism where the single particle wave
function ψ(r,t) follows a discrete time evolution ψ(r,t + 1) =

2Taking tK↑ �= tK↓ breaks the SU(2) symmetry and splits the
transition into two copies of the IQHE.
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Uψ(r,t) where the evolution operator U is a sparse 2N ×
2N symplectic matrix for a network with N links. U simply
describes the discrete evolution of the wave function with
random SU(2) matrices on each link and the correct scattering
factor at each node. The retarded Green’s function between
two links i and j is then defined as

G(i,j )σi ,σj
= 〈i,σi |(1 − zU )−1|j,σj 〉, (18)

where z = eiε−η with the energy ε = 0 at the transition and η =
0+ an infinitesimal level broadening. The advanced Green’s
function is defined by replacing z by z−1, but because the
evolution operator is a symplectic matrix, it is possible to
relate the advanced Green’s functions in terms of the retarded
one, so that all physical observables can be expressed in terms
of the retarded Green’s function (18) only. At the transition
[36], the Green’s functions show a critical behavior, so that for
example trG(i,j )G(j,i) ∼ r−1/2. Note that the averaged local
density of states is critical and scales as ρ(ε) ∼ ε1/7 at the
transition [36], in sharp contrast with the IQHE case.

C. Second quantization and supersymmetry

The SQHE network model can also be conveniently de-
scribed within a second-quantized framework. One then thinks
of the evolution operator as a product of transfer matrices,
and introduces fermions f †

σ to represent the retarded Green’s
function. Usually, one needs both retarded and advanced
operators to describe the product of retarded and advanced
observables, but as already described above, we will only need
the retarded Green’s function in the case of the SQHE effect.
In order to average over disorder, we use either the replica or
the supersymmetry trick. Within the replica trick, the Green’s
function can be represented as

G(i,j )σi ,σj
= lim

n→0

〈
f a

σi
(i)f a†

σj
(j )

〉
, (19)

with, in the path integral formalism,

〈
f a

σi
(i)f a†

σj
(j )

〉 =
∫

D[f,f ]f a
σi

(i)f a
σj

(j )ez
∑n

b=1 f bUf b

, (20)

where f a=1,...,n = f a
σi

(i) is a vector of size 2N ,
and the path integral measure reads D[f,f ] =∏n

a=1

∏
i,σi

df a
σi

(i)df a
σi

(i)e−f a
σi

(i)f a
σi

(i). Because of the replica
limit n → 0, the average over disorder can be realized
explicitly and it is useful to think of the critical point of the
disordered system (the SQHE plateau transition) as obtained
from a limit n → 0 of a family of CFTs with central charge
c(n) → 0 as n → 0.

A more productive approach in the context of the SQHE
is to use the so-called supersymmetry trick in order to
average over disorder [36] (see also Refs. [60,61]). Instead
of a family of fermions (or bosons) parametrized by n → 0
as in the replica tick, one introduces two bosons bσ and
two fermions fσ per link (one per spin), with canonical
commutation relations on “up links” of the network, and
modified anticommutation relations for the fermions on down
links (see Ref. [36] for details). The equal number of fermions
and bosons ensures that closed loops in the graphical expansion
of the partition function vanish, so that ZSUSY = 1. In the path
integral formalism [61], this can be understood very easily

as ZSUSY = ∫
D[f,f ]D[b,b†]ezf Uf +zb†Ub ∼ 1, thanks to the

Gaussian integral identities
∫
D[f,f ]ezf Uf = Det(1 − zU ) =

(
∫
D[b,b†]ezb†Ub)−1. In the second-quantized framework, one

ends up with a transfer matrix that commutes with the
superalgebra osp(2|2) (see, e.g., Ref. [53] for a review of Lie
superalgebras) for any disorder realization, and the average
over disorder then projects the Fock spaces on each up or
down links onto SU(2) singlets. The resulting Fock spaces
can be shown to correspond to the fundamental representation
of sl(2|1) ∼ osp(2|2) (for up links) and its dual (for down
links), both with finite dimension 3 (super dimension 2|1)
with two bosonic states and one fermonic one. This drastic
simplification—the Fock spaces become finite-dimensional
after averaging over disorder—allows one to solve this
supersymmetric model exactly by mapping it onto the classical
percolation problem. We will not need the details of this map-
ping here and instead refer the interested reader to Ref. [36],
but we simply remark that using the isomorphism osp(2|2) �
sl(2|1), the resulting loop models obtained by expanding
graphically the partition function corresponds precisely to
the supersymmetric “SU(2|1) ∼ SU(n → 1) ∼ percolation”
model studied in Sec. II (see Sec. IID2 in particular). This
mapping is summarized in Fig. 5. Note that the only SQHE
observables that can be mapped onto classical percolation
in this way can be described using two bosons bσ and two
fermions fσ per link only. For instance, multifractal properties
usually require more species of fermions and bosons, with
supersymmetry osp(2m|2m) and m > 1, and this mapping onto
percolation breaks down [62,63].

D. Logarithmic correlations from the replica trick

1. Observables acting on N = 1 link

We now focus on the replica approach and start from
fermions fα = f a

σ , with α = (a,σ ) and a = 1, . . . ,n, with n

the number of replicas. We work with fermionic operators
because bosonic variables in the Anderson transitions typically
involve noncompact symmetries, leading to a much more com-
plicated representation theory analysis. For symmetry class C,
we expect the global symmetry of the network model to be
Sp(2n), the group of unitary matrices U satisfying UT σyU =
σy . We start with observables of the form fα(i)f †

β (i) where
i labels the links of the networks. The conjugate of the
fundamental representation [1] of Sp(2n) is pseudo-real
[1] � [1] since U ∗ = σyUσy . It is therefore convenient to
introduce ca

σ = ∑
σ ′(iσy)σσ ′f

a†
σ ′ , which transforms as c �→ Uc

if f �→ Uf with U ∈ Sp(2n). The combination f T σ yc is
then clearly invariant, and the n(2n − 1) − 1 antisymmetric
operators

Wαβ = fαcβ − fβcα + σ
y

αβ

n
f T σ yc (21)

form an irreducible representation of Sp(2n). The n(2n + 1)
symmetric counterparts Vαβ = fαcβ + fβcα then correspond
to the adjoint representation of Sp(2n). The average over
disorder in the network model enforces the physical operators
to be SU(2) singlets. Among all these operators, we therefore

014205-9



ROMAIN VASSEUR PHYSICAL REVIEW B 92, 014205 (2015)

Spin Insulator SQH InsulatorSQHE Transition

FIG. 5. (Color online) Percolation description of the SQHE transition [36], with periodic (respectfully, open) boundary conditions in the
vertical (reps. horizontal) direction. The blue loops can be thought of as (semiclassical) paths contributing to spin transport, and their orientations
correspond to alternating fundamental and dual representations of the superalgebra sl(2|1). Average over disorder configurations enforce that
these loops be nonintersecting, so that they can be mapped onto hulls of classical percolation clusters (shown in red in the middle picture only).
The SQHE transition then corresponds to the critical point of the percolation problem, separating a trivial spin insulator phase from an SQH
insulator phase with a jump is the spin quantum Hall conductance.

restrict the physical observables to

φab(i) = Wa↑b↓ =
∑

σ

(
f a

σ f b†
σ − δab

n

n∑
c=1

f c
σ f c†

σ

)
, (22)

which transform under the adjoint representation of the
subgroup U(n) ⊂ Sp(2n) (see Sec. IIID2 below). We thus
expect the two-point function of φab for generic n to take
the form

〈φaa(ri)φbb(rj )〉 = A(n)

(
δab − 1

n

)
r−2�φ (n), (23)

where the scaling dimension �φ(n) is obviously different from
the one used in Sec. II for SU(n) models, in particular, its
general expression as a function of n is not known. We also
define the invariant operator � = ∑

σ

∑n
c=1 f c

σ f c†
σ , along with

�̂ = � − 〈�〉. The two-point function of �̂ is then given by
〈�̂(ri)�̂(rj )〉 = nB(n)r−2��(n) with B(0) �= 0 and ��(n) is
the scaling dimension of �.

Disorder-averaged correlation functions in the network
model are then obtained by considering the limit n → 0, which
is ill-defined in Eq. (23). The only way to fix this divergence
is to require A(0) = B(0) and �φ(0) = ��(0), and introduce
ψa = φaa + 1

n
�̂. The n → 0 limit of ψa is then well-defined:

〈ψa(ri)ψb(rj )〉 = A(0)r−2�φ (0)
(
δab + κ ln

r

a

)
, (24)

with κ = 2 limn→0(�φ − ��)/n. The same correlation func-
tion can also be expressed in terms of disorder-averaged
Green’s functions in the SQHE network problem using Wick’s
theorem

〈ψa(ri)ψb(rj )〉 = trG(i,i)trG(j,j ) − trG(i,i) × trG(j,j )

− δabtrG(i,j )G(j,i), (25)

where tr represents the trace over the spin index—recall that
the retarded Green’s function G is actually a 2 × 2 matrix.
Comparing Eqs. (24) and (25), we can then infer the scaling
of various Green’s functions as a function of the distance r .

As discussed above, using the supersymmetry mapping
[36], one can then relate these Green’s functions
to percolation observables (see also Refs. [61–64]).
For instance, it is straightforward to show that
trG(i,i)trG(j,j ) = ∑

σi ,σj
〈bσi

(i)b†σi
(i)fσj

(j )f †
σj

(j )〉SUSY =
〈(1 + 2B(i))(1 + 2Qz(j ))〉SUSY = 1, where B and Qz

are two of the eight SUSY generators of sl(2|1) in
the fundamental representation (see, e.g., Ref. [53]
or the Appendix of Ref. [63]) and we have used
the fact that strBQz = strB = strQz = 0, with str the
supertrace in the fundamental representation. Therefore,
trG(i,i)trG(j,j ) − trG(i,i) × trG(j,j ) = 0 so the correlation
function that could show a logarithm at this order is trivially
zero. Similarly, one finds that the nonlogarithmic part
trG(i,j )G(j,i) is given by −2P(1)

1 (i,j ) where P(1)
1 (i,j ) is

the probability—introduced above in Sec. II—that i and j

belong to the same loop. This shows [36] that trG(i,j )G(j,i)
decays with the two-leg (one-hull) exponent, which allows
us to identify �φ(n = 0) = 1

4 . These results imply that the
parameter κ in Eq. (24) is actually zero. Note that nothing
in our symmetry analysis prevents this from happening.
This could be just a coincidence, i.e., the derivative of the
exponents �φ(n) and ��(n) with respect to n could coincide
at n = 0, but this could also indicate the presence of a larger
symmetry that enforces �φ(n) = ��(n). We emphasize that
the actual symmetry of the critical point of the SQHE is most
likely must larger that U(n) or Sp(2n), so we always run into
the risk of predicting logarithms that appear with amplitudes
κ = 0. This was also true for the loop models of Sec. II—for
which it is known that the actual symmetry of the critical point
is much larger than SU(n) [35], but there we had a way to
compute κ exactly, see Eq. (12). Actually, had we considered
the above SU(n) model at a mean-field level (above the critical
dimension), we would have also found κ = 0 instead of (12).
Our approach is nevertheless fully consistent—the symmetry
analysis correctly predicts that trG(i,j )G(j,i) should be a
scaling operator—and we deduce that observables acting on a
single link do not have logarithmic correlations.
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2. Sp(2n) versus U(n) symmetry

In order to find logarithmic observables, we thus turn to
operators acting on two nearest neighbor links i and i ′ as in
Fig. 2. Before doing so, we first remark that equation (22)
suggests restricting to SU(2)-invariant operators from the very
beginning:

∑
σ f a

σ f b†
σ , and analyzing the U(n) symmetry of the

remaining indices. Incidentally, the remaining symmetry U(n)
coincides with the denominator in the coset Sp(2n)/U(n) of the
sigma model describing the transition. This simplification is
motivated by the fact that the genuine symmetry of the critical
point is unknown anyway, so that we choose to work with
the subgroup U(n) of Sp(2n) in order to simplify dramatically
the calculations. As we will see in the following, this will
turn out to be enough to identify observables that should have
logarithmic correlation functions at the critical point.

We remark that this is related to our choice of considering
quadratic observables fα(i)f †

β (i) from the beginning. It is of

course quite natural starting from operators like fα(i)f †
β (i)

that the SU(2) invariance has to be enforced within the replica
approach before taking the limit n → 0 since the spin structure
is completely lost in the replica limit Sp(2n → 0). A more
correct approach would be to consider more complicated
representations V and V  of Sp(2n) acting on a single
edge, that are compatible with the SU(2) symmetry and
that involve products of fermionic operators with different
replica indices (see Ref. [38] in the context of the IQHE).
Other observables would then be constructed by taking tensor
products of these representations. However, we will see in
the following that some of the logarithmic structure of the
SQHE can be understood by starting with the much simpler
quadratic operators

∑
σ f a

σ f b†
σ satisfying the SU(2) local

(“gauge”) invariance, classifying them using the remaining
unitary symmetry of the replica indices and analyzing the
limit n → 0. We also note that in the SUSY language,
this amounts to considering the much simpler subgroup
U(1|1) of OSp(2|2) ∼ U(2|1) whose indecomposable repre-
sentations are suspected to play a crucial role in disordered
systems [12].

3. Observables acting on N = 2 links

We now turn to observables acting on two nearest
neighbor sites i and i ′. Let us consider operators of the type∑

σi ,σ
′
i
f a

σi
(i)f b†

σi
(i)f c

σi′ (i
′)f d†

σi′ (i ′), which are manifestly SU(2)
invariant. As in Sec. II, we expect observables symmetric
under the exchange a ↔ c or b ↔ d to reproduce the physics
of the operators acting on N = 1 link, with no logarithm for
n = 0. We thus focus on the antisymmetric tensor Tabcd (ri) =
−Qab(i)Qcd (i ′) + Qad (i)Qcb(i ′) − Qab(i ′)Qcd (i) + Qad (i ′)
Qcb(i), with Qab(i) = ∑

σ f a
σ (i)f b†

σ (i). We then consider
�(2) = ∑

ab Taabb which is invariant under U(n), and
introduce �̂(2) = �(2) − 〈�(2)〉. The fields φ

(2)
ab = ∑

c Tabcc

then transforms in the adjoint representation of U(n). These
two operators �̂(2) and φ

(2)
ab have the same symmetry as �

and φab introduced in Sec. IIID1, and the same mechanism
leading to logarithms in the limit n → 0 applies here as well.
Because they have the same symmetry, the ill-defined limit
n → 0 indicates logarithms in subleading contributions [34],

so that we find, in the limit n → 0,〈
ψ (2)

a (ri)ψ
(2)
b (rj )

〉 = Aδabr
−2�φ (0)

+Br−2�
(2)
φ (0)

(
δab + C ln

r

a

)
+ . . . , (26)

where ψ (2)
a = φ(2)

aa + 1
n
�̂(2). As we have seen above, �φ(0) =

1
4 corresponds to the one-hull percolation exponent, while

�
(2)
φ (0) is a priori unknown from this replica analysis, but

we will shortly see that it is given by the two-hull percolation
exponent, �

(2)
φ (0) = 5

4 .
To translate this into a concrete prediction for the network

model, we evaluate the correlator 〈ψ (2)
a (ri)ψ

(2)
b (rj )〉 in terms

of disorder-averaged Green’s functions. We find 16 different
contributions, which we compute using Wick’s theorem,
including, for example,

lim
n→0

n∑
c,d=1

∑
{σ }

〈fa,σ1 (p1)f †
c,σ1

(p1)fc,σ2 (p2)f †
a,σ2

(p2)

× fb,σ3 (p3)f †
d,σ3

(p3)fd,σ4 (p4)f †
b,σ4

(p4)〉

= lim
n→0

n∑
c,d=1

∑
{σ }

det
i,j=1,...,4

(Gσiσj
(pi,pj )δαiβj

), (27)

with α ∈ {a,c,b,d}, β ∈ {c,a,d,b}, and p ∈ {i,i ′,j,j ′}. Com-
puting these 16 determinants explicitly and taking the limit
n → 0, we find an expression that can be recast as

〈ψa(ri)ψb(rj )〉 = 4(�(r) − �∞ + �(r) + �(r))

− 4δab(2 × �(r) + �(r)). (28)

The most important piece of this correlator is the disconnected
part

�(r) = trG(i,i)trG(i ′,i ′)trG(j,j )trG(j ′,j ′)

+ tr[G(i,i ′)G(i ′,i)]trG(j,j )trG(j ′,j ′)

+ trG(i,i)trG(i ′,i ′)tr[G(j,j ′)G(j ′,j )]

+ tr[G(i,i ′)G(i ′,i)]tr[G(j,j ′)G(j ′,j )], (29)

which has a finite limit as r → ∞:

�∞ = (trG(i,i)trG(i ′,i ′) + trG(i,i ′)G(i ′,i))2. (30)

The functions �(r) and �(r) can also be readily computed
and contain 16 and 4 terms respectively, but their explicit
expression will not be relevant to our purposes. Indeed,
in analogy with the discussion in Sec. II, we expect the
logarithmic correlations to arise from disconnected terms such
as �(r), and not from connected observables like �(r) and
�(r)—at this point, this statement is a conjecture based on
analogy but it will be verified below when we compare our
results to the supersymmetric approach. Based on this and
using Eqs. (26) and (28), we thus obtain

�(r) − �∞ ∼ αr−1/2 + βr−5/2 ln
r

a
+ . . . (31)

with a the lattice spacing (UV cutoff), where we have antici-
pated the fact that �

(2)
φ (0) = 5

4 (see supersymmetric approach
below). Even though (31) is enough to show the existence
of logarithmic correlations in the disordered SQHE network
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model (which would naively contradict scale invariance and
therefore immediately implies the existence of logarithmic
operators!), it may seem like a rather weak prediction since the
logarithm appears only as a correction to a power-law function,
which itself is a subdominant contribution. We will see in the
following that the IQHE transition leads to a prediction that
should be (much) more appropriate for numerical checks.

E. Logarithmic correlations from the supersymmetry trick

We now argue that the logarithmic correlation (31) obtained
from the replica trick can be recovered using an independent
method based on the results of Sec. II and the SUSY
description of some SQHE observables in terms of percolation
probabilities [36] (see also Refs. [61–64]). Recall that the
SUSY description involves two bosons bσ and one fermion f

on each link, corresponding to the fundamental representation
of the superalgebra sl(2|1). In that language, Eq. (29) can be
written as

�(r) =
∑
{σσ ′}

〈bσi
bσi

(i)†bσi′ bσi′ (i
′)†bσj

bσj
(j )†bσj ′ bσj ′ (j

′)†〉d,

(32)
where r = |ri − rj |, and the subscript d in the correlator
refers to the disconnected part (with a finite limit r → ∞)
involving Wick contractions between i and i ′ or j and
j ′ only. This correlation function can easily be expressed
in terms of the SUSY generator B = 1

2 (b†↑b↑ + b
†
↓b↓ + 1),

so that it can be expanded onto various classical perco-
lation probabilities, with amplitudes given by the super-
trace of powers of B in the fundamental representation
(see, e.g., Ref. [63] for related calculations). Similarly,

we find that �∞ = (trG(i,i)trG(i ′,i ′) + trG(i,i ′)G(i ′,i))
2 =

(1 + 4〈B(i)B(i ′)〉SUSY)2 = F∞
d , where F∞

d = (P(1)
1 (i,i ′) −

P(0)
1 (i,i ′))2 was introduced in Sec. II. Gathering these different

pieces, we find the following expression in terms of percolation
probabilities:

�(r) − �∞ ∼ Fd (r) − F∞
d , (33)

where Fd (r) is precisely the linear combination of discon-
nected percolation probabilities introduced after Eq. (13). As
we have argued in Sec. II C, Fd (r) has a leading power-law be-
havior associated with the one-hull percolation exponent, with
logarithmic corrections to the subleading term—associated
with the two-hull or four-leg percolation exponent—that can be
understood as the singular limit n → 1 of SU(n) loop models.
Using these results, we thus conclude that Eq. (31) holds, in
agreement with the replica analysis. Therefore the logarithmic
correlations in percolation described in Sec. II C have the same
physical origin as the logarithm in (31), and they correspond
to the “mixing” of the energy and two-hull (four-leg) operators
in the 2D percolation problem.

IV. (TENTATIVE) GENERALIZATION TO THE
IQHE TRANSITION

We have shown above that both the replica trick and
the supersymmetry trick—combined with the analysis of
SU(n → 1) loop models—predict the existence of logarith-
mic correlations at the SQHE plateau transition, associated

with concrete disorder-averaged observables [see Eq. (29)].
Although the SUSY mapping onto percolation is obviously
very specific to the SQHE transition, our analysis of the n → 0
limit of the replica trick can be generalized to other symmetry
classes. To illustrate this point, we conclude this paper by
shortly describing the case of the IQHE, with symmetry
class A. The network model describing the transition was
introduced in the seminal work of Chalker and Coddington
[37], the only difference with the SQHE case being the random
U(1) phases—instead of SU(2) matrices—on each link. The
associated topological sigma model [7] with bosonic fields
reads

L = σxx

8
tr(∂μQ)2 − σxy

8
εμν trQ∂μQ∂νQ, (34)

where Q lives on the coset U(n,n)/U(n) × U(n) (or
U(1,1|2)/U(1|1) × U(1|1) in the SUSY formulation [33]),
with n the number of replicas, and σxy plays the role of
a topological angle associated with the nontrivial second
homotopy group π2 = Z of the target space. At the plateau
transition, the sigma model flows to strong coupling and we
expect the quantum critical point to have a large symmetry, and
we will assume that U(n,n) is a subgroup of this symmetry. To
avoid having to deal with noncompact symmetries, we restrict
ourselves to the case of fermonic replicas, with symmetry
group U(2n). We thus write the retarded and advanced
Green’s functions as G±(i,j ) = limn→0〈f ±

a (i)f ±†
a (j )〉, where

a = 1, . . . ,n, with the U(2n) symmetry acting on the indices
α = (a,±).

A. Observables acting on N = 1 link

Using the symmetry analysis of Sec. II, we introduce the
operators φαβ = fα(i)f †

β (i) − δαβ

n

∑
γ fγ (i)f †

γ (i), which could
potentially lead to logarithms in the limit n → 0 because
of the second term. However, the average over disorder in
the Chalker-Coddington model leads to observables with
the same number of retarded and advanced particles on a
given link—this can be understood in a graphical expansion
as retarded paths come with a random phase eiγ while
retarded paths are weighted with e−iγ , integrating over γ then
restricts the number of paths of each types to be the same.
We therefore consider the observables φab(i) = f ±

a (i)f ∓†
b (i),

which transform irreducibly under the reduced symmetry
U(n) × U(n). Note that this is similar to the reasoning that
led us to consider a reduced U(n) symmetry for the SQHE
transition in order to ensure that all observables were SU(2)
singlets, a condition enforced by the average over disorder.
Once again we emphasize that this is related to our choice
to start with simple quadratic operators: the vertex model
corresponding to the U(2n)/U(n) × U(n) sigma model is in
fact built out of more complicated representations V and V 

of U(2n) (involving products of up to n fermion operators)
compatible with the local U(1) invariance [38]. As in the
SQHE case, we choose to focus instead on the much simpler
operators φab(i) = f ±

a (i)f ∓†
b (i) and to restrict our analysis to

the subgroup U(n) × U(n) of U(2n). [From the SUSY point of
view, this means that we are considering only some part of the
indecomposability of the supergroup U(1,1|2) corresponding
to the much simpler subgroup U(1|1) × U(1|1).] We expect
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this analysis to be enough to uncover potentially logarithmic
observables as n → 0.

There is no 1/n pole in correlation functions at this order
(this differs from the SQHE case) and the only nontrivial
correlator is 〈φaa(i)φ†

bb(j )〉,
lim
n→0

〈f ±
a (i)f ∓†

a (i)f ∓
b (j )f ±†

b (j )〉 = −δabG±(i,j )G∓(j,i),

(35)
consistent with the fact that G±(i,j )G∓(j,i) should be a
scaling operator.

B. Observables acting on N = 2 links

As for the SQHE, one needs to consider coarse
grained observables acting on more than one link to
generate logarithmic correlations. We thus consider prod-
ucts of operators acting on a single link of the form
f ±

a (i)f ∓†
b (i)f ∓

c (i ′)f ±†
d (i ′), which can be thought of as be-

ing obtained from “fusing” N = 1 operators—we recall
that i and i ′ are close neighbors. These n4 operators
form a reducible representation of U(n) × U(n). There is
a unique invariant T (0,0) = ∑

ab f +
a (i)f −†

b (i)f −
b (i ′)f +†

a (i ′) =
TrQ+−(i)Q−+(i ′), where the trace symbol corresponds to
a sum over the indices and Q+−

ab = f +
a (i)f −†

b (i). There are
also two representations corresponding to the products trivial
× adjoint or adjoint × trivial in retarded/advanced spaces,
given by T

(0,1)
ab = ∑

c f +
c (i)f −†

a (i)f −
b (i ′)f +†

c (i ′) − δab

n
T (0,0)

and T (1,0) = ∑
c f +

a (i)f −†
c (i)f −

c (i ′)f +†
b (i ′) − δab

n
T (0,0). Be-

cause of the 1/n terms in these operators, these operators
could potentially have an ill-defined n → 0 limit that would
eventually lead to logarithmic correlations. However, it is not
hard to see using Wick’s theorem that because of the sum
in the first terms, the n → 0 limit of, say, the correlator
〈T (1,0)

aa (i,i ′)T (1,0)†
bb (j,j ′)〉 is well defined. In other words, the

correlation function 〈T (1,0)
aa (i,i ′)T (1,0)†

bb (j,j ′)〉 will involve a
term δab − 1

n
dictated by representation theory that, similarly

to other examples we have studied in this paper, could
lead to logarithms in the limit n → 0; but it appears with
an overall O(n) prefactor that cancels the 1/n pole. After
subtracting the invariant and these two representations, we
are left with n4 − 1 − 2 × (n2 − 1) = (n2 − 1)2 operators that
transform under the product of adjoint representations under
U(n) × U(n). These operators are given by

ψabcd = f +
a (i)f −†

b (i)f −
c (i ′)f +†

d (i ′)

− δbc

n

∑
k

f +
a (i)f −†

k (i)f −
k (i ′)f +†

d (i ′)

− δad

n

∑
k

f +
k (i)f −†

b (i)f −
c (i ′)f +†

k (i ′) + δbcδad

n2
T 0.

(36)

We thus expect the two-point function 〈ψabbaψ
†
cddc〉 for

generic n �= 0 to scale algebraically as r−2�ψ (n) with
an amplitude proportional to (δad − 1

n
)(δbc − 1

n
). Sim-

ilarly to the previous examples encountered in this
paper, we introduce a new operator ψ̂abba = ψ̃abba − 〈ψ̃〉
and ψ̃abba = f +

a (i)f −†
b (i)f −

b (i ′)f +†
a (i ′) = ψabba + 1

n
(T (1,0)

aa +

T
(0,1)
bb ) + 1

n2 T
0 in order to solve the ill-defined limit n → 0.

Because there are three different operators ψabba , T 1,0 ∼ T 0,1

and T 0 involved, the resolution of the “n → 0 catastrophe”
is more intricate than the other examples encountered in this
paper.3 We leave the detailed understanding of this n → 0
limit for future work, but simply notice that regardless of these
details, the n → 0 limit will yield 〈ψ̂abbaψ̂

†
cddc〉 ∼ r−2�ψ (0) ln r

if a �= d and b �= c, with the possibility of having ln2 r terms
as well. The important point is that in analogy with the other
examples described in this paper, we expect to have logarithmic
corrections in the disconnected part of the correlation function
〈ψ̂abbaψ̂

†
cddc〉, obtained by enforcing all the replica indices

a �= d and b �= c to be different. Using Wick’s theorem, we
find

〈ψ̂abbaψ̂
†
cddc〉 = �(r = |ri − rj |) − �∞, (37)

for a �= d and b �= c with

�(r) = G+(i,i ′)G−(i ′,i)G+(j,j ′)G−(j ′,j ). (38)

The function �(r) has a (nonuniversal) finite limit as r → ∞,

given by �∞ = G+(i,i ′)G−(i ′,i)
2
, which is independent of

ri—recall that i and i ′ are chosen to be in the infinitesimal
neighborhood of ri . The replica approach thus predicts

�(r) − �∞ ∼ r−2�ψ (0) lnα r, (39)

with α = 1 or 2. Contrary to the SQHE case (31), logarithms
appear in the leading power-law contribution, and there is no
need to subtract a very complicated combination of Green’s
functions to isolate the logarithmic term. The downside is
that the limit n → 0 is less controlled in the IQHE case as it
involves three operators, leading to the indetermination of the
exponent α = 1 or 2 in (39). Note also that the term coming
with amplitude δadδbc in the correlation function 〈ψ̂abbaψ̂

†
cddc〉

should scale purely algebraically, so that

�(r) = G+(j,i)G+(i ′,j ′)G−(i,j )G−(j ′,i ′) ∼ r−2�ψ (0).

(40)
Gathering these different pieces, we conclude that

�(r) − �∞
�(r)

= G+(i,i ′)G−(i ′,i)G+(j,j ′)G−(j ′,j ) − �∞
G+(j,i)G+(i ′,j ′)G−(i,j )G−(j ′,i ′)

(41)
should scale purely logarithmically at the plateau transition,
either as ln r or as ln2 r . It would be really interesting to
compute this quantity numerically in the Chalker-Coddington
model and to try to fit it with α ln2 r + β ln r + γ to check this
prediction.

Expanding Green’s functions graphically in terms of re-
tarded and advanced paths [65,66], these logarithmic corre-
lations appear from the mixing of the operator creating two
advanced paths and two retarded paths (which is essentially the
analog of a watermelon operator, with dimension X2,2 in the
notations of Ref. [66]), and the operator T (0,0)(ri), which is just
counting the number of retarded and advanced paths around

3In particular, there is the possibility of a mixing of these three
operators into a rank-3 Jordan cell for the scale transformation
generator, leading to (ln r)2 terms in correlation functions.
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the neighborhood of ri , corresponding to the “thermal”-like
perturbation driving the system out of criticality by taking
z �= 1.

C. Remarks on open versus closed quantum networks and
conductance correlations

We emphasize that our field theory predictions apply to
closed quantum networks, for which no lead is connected
to the system. In particular, quantities like G+(i,j )G−(j,i)
(diffusion propagator) in terms of the Green’s functions (18)
require an infrared regulator in order to be finite (an infinites-
imal level broadening making |z| slightly less than 1). From a
numerical point of view, it is more convenient and efficient to
work with open quantum networks that are also more natural
in the context of transport. For example, to define the point
contact conductance g(i,j ), one simply cuts in half two links
i and j (the contacts) with each cut leading to one in-going
link (source of current) and one out-going link (drain). This
amounts to attaching two leads to the system. The conductance
can then be computed within the Landauer-Büttiker formalism
in terms of the transmission matrix between the leads (see
Ref. [67] for details). Unfortunately, opening links in the
network correspond to the insertion of additional operators
that make our analysis more complicated [9]. Moreover, the
point-contact conductance g(i,j ) is in general completely
unrelated to G+(i,j )G−(j,i) (except in the SQHE case where
their average are actually identical up to a constant)—see
in particular the discussion in Ref. [62]. It is nevertheless
tempting to conjecture that the symmetry considerations of
this paper extend to g(i,j ) as well, even if in general it
scales in a different way as G+(i,j )G−(j,i). This conjecture
is motivated by the naive guess that the open or closed nature
of the network model should not affect our symmetry-based
analysis: it is then natural to expect logarithms as well in
observables involving g(i,j ) instead of G+(i,j )G−(j,i). The
analog of Eq. (38) in terms of conductances would give an
observable characterizing the correlations between the local
transport properties (conductances between i and i ′, and
between j and j ′) of two remote regions ri and rj . It would
be very interesting to investigate numerically (or theoretically
using a different approach) whether such physically appealing
observables show logarithmic correlations at criticality.

V. DISCUSSION

In this paper, we have generalized the ideas of Cardy [27]
to analyze the physical origin of logarithmic correlations in
quantum Hall plateau transitions using the replica trick. In
the case of the spin quantum Hall transition, we found a
combination of Green’s functions that scales logarithmically
on average at the critical point [see Eqs. (29) and (31)].
Alternatively, we recovered this result independently using
the percolation description of the SQHE transition [36] and a
replicalike analysis of the n → 1 limit of SU(n) dense loop
models. Using a similar argument for the integer quantum Hall
transition, we uncovered a relatively simple observable that
should have logarithmic correlations at the plateau transition
[see Eqs. (38) and (39)].

We emphasize that these predictions based on the replica
limit of a global symmetry group at the critical point should
be taken with care: as we have already mentioned repeatedly
throughout this manuscript, considering a symmetry group
smaller than the actual symmetry of the critical point may
in principle completely spoil our predictions: different rep-
resentations for the smaller group that are mixed and lead to
logarithms in the replica limit n → 0 could in fact be part of the
same larger irreducible representation for the actual symmetry
group of the system. In other words, the amplitudes in front
of the logarithms within our approach could in principle
be zero. However, we recall that the very same approach
leads to results in very good agreement with numerical
simulations [28] and with more rigorous algebraic approaches
[41] in simpler critical points including the two-dimensional
percolation problem studied in Sec. II, even though the actual
symmetry there is also much larger than SU(n) as well
[35]. Moreover, the replica approach seems to lead to very
natural predictions for the scaling operators of the critical
theory, with results that are consistent using two different
approaches (replica trick versus supersymmetry) in the SQHE
case.

Our predictions should therefore be taken as reasonable
conjectures as to where to look for logarithmic correlations
in quantum Hall plateau transitions. It would obviously be
very important to verify the results of this replica analysis
numerically, and we expect in particular that the prediction (41)
should be very useful in that respect, since it should scale
purely logarithmically at the critical point, with no power-law
dominant contribution. Our field theory predictions apply
naturally to closed quantum networks, and it would be crucial
to see to what extent they generalize to open networks that
are more natural from the point of view of transport, and that
seem more practical numerically. We note that we considered
simplified observables for the SQHE and the IQHE transitions
(see Sec. IIID2 above): we leave the detailed analysis of the
Sp(2n) or U(2n) symmetry of these theories for future work.
It would also be very interesting to investigate to what extent
the replica and the supersymmetry approaches agree for the
SQHE transition: for example, the replica analysis provides a
natural expression for the “watermelon” operators scaling with
the k-hull percolation exponents. Whether these expressions
agree with the mapping onto percolation via the super-
symmetry trick remains unknown. We expect that pushing
further this symmetry-based replica analysis of quantum Hall
transitions should be very helpful to make progress towards
a deeper understanding of the CFTs describing these critical
points.
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