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The thermodynamic properties of vector [O(2) and complex spherical] models with four-body interactions are
analyzed. When defined in dense topologies, these are effective models for the nonlinear interaction of scalar
fields in the presence of a stochastic noise, as has been well established for the case of the mode-locking laser
formation in a closed cavity. With the help of an efficient Monte Carlo algorithm we show how, beyond the fully
connected case, rich phenomenology emerges. Below a certain dilution threshold, the spherical model condenses
in a nonequipartite way, while in the XY model the transition becomes continuous and the O(2) symmetry
remains unbroken. We attribute this fact to the invariance under gauge transformations. The introduction of
topological inhomogeneities in the network of quadruplets induces some features: again symmetry conservation;
the vanishing of two-point correlators; and a dynamical correlation function presenting two time scales, the large
one being related to the transition between different degenerated configurations, connected by particular gauge
transformations. We discuss possible experimental implications of these results in the context of nonlinear optics.
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I. INTRODUCTION

A. Thermodynamic approach to nonlinear optics

In the past decade there have been several fascinating at-
tempts to understand nonlinear wave phenomena as collective,
emergent behavior [1–9]. Within such a scheme, the focus is
not on the kinetics of the nonlinear wave propagation [10], but
on the description in terms of static quantities in a suitably
defined ensemble, in such a way that different wave regimes
are in correspondence with different thermodynamic phases of
a Hamiltonian model.

A set of fundamental works in this context are Refs. [5–7],
which describe the mechanism of passive mode-locking in
multimode lasers within a statistical mechanical framework.
The electromagnetic modes in this case are the longitudinal
modes of the resonant cavity, and the nonlinearity is provided
by a saturable absorber, a device which enhances high
electromagnetic field intensity, hence favoring modes with
large amplitude and locked phases. The temporal evolution
of modes is described by a master equation [11] accounting
for the nonlinear coupling of tetrads of modes (a four-body
interaction) and with an additional stochastic drift term due
to the spontaneous emission, which opposes mode locking
as it tends to incoherently disorder moduli and phases. In
the limit in which the dispersion can be neglected [6], the
master equation leads to a Hamiltonian formulation such that
the electromagnetic modes can be regarded as (complex) spin
degrees of freedom, coupled by a four-body ferromagnetic
interaction, while the stability of the system is assured by a
global constraint on the sum of the mode intensities (a spherical
constraint, in the spin language). The steady state of the laser
is described by measurements in the canonical ensemble of
the spin model, where the role of the temperature is played
by the inverse square of pumping rate of the laser source.
The methods of statistical physics applied to this problem
reveal that, for sufficiently high ratio between the pumping rate
and the noise strength, a discontinuous transition separating

a para- from a ferromagnetic phase takes place [12]. In the
ferromagnetic regime the phases and intensities of modes at
different frequencies become locked, i.e., correlated, and long-
range order appears, associated with O(2) symmetry breaking.
In the optical language this phase corresponds to a coherent
light regime in which ultrashort electromagnetic pulses are
generated [the mode-locked (ML) regime]. In the opposite
situation, when the spontaneous emission dominates, light is in
an incoherent-wave (IW) regime with low power efficiency and
flat intensity spectrum, which is described by a paramagnetic
state in the spin language. This approach allows for a treatment
of the nonperturbative influence of noise and explains the
discontinuous nature of the mode-locking transition, along
with other properties reminiscent of discontinuous transitions
as a hysteresis effect called optical bistability [13]. Variations
of this problem have also been considered, as the active mode
locking [8], injection of pulses from an external source [14],
and a general agreement with experimental results has been
found.

Furthermore, there have been a series of theoretical works
generalizing the study of these Hamiltonians through the
addition of quenched disorder in the interaction couplings
[15–18]. These more complex models may represent different
physical situations, such as the random laser phenomena [19],
under specific assumptions [20]. In this case, a sufficiently
large amount of disorder eventually leads to a glassy phase
in the spin model, anticipated by a region with nonzero
complexity, which is believed to describe a frustrated laser
regime with the absence of long-range correlations, possibly
present in random lasers.

In the relevant statistical models in this context, the elec-
tromagnetic modes are complex degrees of freedom [or O(2)
spins, if their amplitude dynamics can be ignored] subject to
a four-body interaction which can be purely ferromagnetic or
disordered. These are, in substance, XY or complex spherical
p-spin ferromagnets or spin glasses, with p = 4. They have
been studied so far in the mean-field approximation, which
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is basically exact in the fully connected case. In this work
we perform a systematic study of the thermodynamics of the
XY and spherical models with four-body interactions beyond
mean field, considering the influence of dilute topologies and
of network correlations. From the optical point of view, such a
generalization makes it possible to account for two ingredients
of crucial importance in optical systems that could not have
been considered in previous studies, in which correlations were
disregarded.

First is the role of mode frequencies, {ωn}, which have an
essential influence on the list of interacting mode tetrads since
these are subject to an energy conservation prescription on their
four frequencies, called the frequency-matching condition (see
the next section). In cavity lasers it is not physically justified
to neglect the influence of mode frequencies. We see that they
may induce correlations in the system dynamics which lead
to dramatic differences with respect to the mean-field case,
and these differences have clear physical consequences in the
optical counterpart.

Second is the presence of dilution in the interaction
network, from the fully connected down to the sparse net-
work with an extensive number of tetrads. This element is
necessary, e.g., to account for the onset of lasing in more
complicated experimental setups as the random laser, in which
the interaction sparseness depends on the spatial superposition
of the electromagnetic fields of the modes. As we will see, a
sufficiently large degree of dilution induces nontrivial changes
in the nature of the XY transition. Furthermore, in the spherical
model case, the dilution induces a transition to a regime in
which the nonlinearity prevents the equipartition of energy.
Since the seminal work of Fermi, Pasta, and Ulam [21], the
nonequipartition of energy induced by nonlinearity is one of
the crucial phenomena in nonlinear physics that claims for a
statistical treatment [1,3].

From the point of view of statistical mechanics, the
models investigated in this article present a remarkably rich
phenomenology when fluctuations are allowed to take place.
As we explain in Sec. I C, the Ising model with p = 4 has
already been considered beyond mean-field approximation,
exhibiting slow dynamics and other kinetic features charac-
teristic of glass formers. The XY model with suitable lattice
plaquette interactions is an effective lattice model for the gauge
O(2) field theory describing electromagnetism. However, this
work considers the four-body XY model within a statistical
mechanical framework, beyond mean-field approximation.

We show how in the arena of these models one can find,
according to the dilution and the presence or absence of
topological correlations, a variety of phenomenology ranging
from the symmetry conservation (reminiscent of the Kosterlitz-
Thouless transition) to different orders of the transition,
nonequipartite energy localization, and slow dynamics, among
other features.

To better motivate the study of these models in the optical
context, we review in some detail the Hamiltonian approach
to the passive mode-locking transition in the next section. In
Sec. I C we review precedent studies of four-body interactions
in statistical physics. We then define the models under study
and describe their properties in Sec. II. The effect of a suffi-
ciently large amount of dilution on them is described in Sec. III.
Section IV is dedicated to the numerical methods that we have

employed, and the consequent results about the spherical and
XY models are exposed in Secs. V and VI, respectively. We
then draw some analogies between these results and similar
phenomena occurring in lattice gauge theories (Sec. VII)
and propose possible physical consequences in the field of
nonlinear optics in Sec. VIII. Our conclusions are in Sec. IX.

B. Statistical approach to mode locking

The evolution of the electromagnetic mode al ∈ C in a
standard passive mode-locking laser is expressed through the
well-known master equation [11]

d

dt
al(t) = (Gl + ıDl)al(t) + (� − ı�)

×
∑

k1,k2,k3

′
ak1 (t)a∗

k2
(t)ak3 (t) + Fl(t); (1)

here the parameter Gl represents the difference between
the gain and loss of the mode l in a complete round-trip
through the cavity, Dl is the group velocity dispersion of the
wave packet, � is the nonlinear self-amplitude modulation
coefficient associated with a saturable absorber and, hence, to
the passive mode locking, and � is the self-phase modulation
coefficient (responsible for the Kerr lens effect). The noise
Fl(t) is generally assumed Gaussian, white, and uncorrelated,

〈F ∗
k1

(t1)Fk2 (t2)〉 = 2T0δk1k2δ(t1 − t2),
(2)

〈Fk1 (t1)Fk2 (t2)〉 = 0,

where T0 is the spectral power of the noise.
A fundamental element, which deserves particular attention

in this paper, is that the sum in the nonlinear term in Eq. (1)
is restricted to the tetrads of modes such that the frequency-
matching condition (FMC),

|ωl − ωk2 + ωk3 − ωk4 | � γ, (3)

is satisfied, where γ is the single-mode linewidth.
In the following we are interested in the purely dissipative

case, in which the group velocity dispersion and the Kerr
effect can be neglected. This includes the important case of
soliton lasers [6]. The purely dissipative situation plays an
exceptional role in our approach: In this case, the evolution
depicted by Eq. (1) is Hamiltonian, while the system remains
stable because the gain decreases as the optical intensity
increases [22]. To study the equilibrium properties of the
model, this last element can be included, considering an
equivalent variant of the model where the gain assumes the
value that exactly keeps the total optical power, E =∑j |aj |2,
constant of motion, as Gordon and Fischer proposed in Ref. [5].
In this way the system evolves over the hypersphere:∑

j

|aj |2 ≡ εN. (4)

In this situation, the effective temperature in the statistical
model is inversely proportional to the squared optical power,
T ≡ T0/ε

2, where T0 is the true heat-bath temperature. Equiv-
alently, the parameter that drives the transition in the photonic
system can be expressed through the so-called pumping rate,
P2 = T −1.
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FIG. 1. Illustration of the disposition of the interacting quadru-
plets in a lattice gauge model in d = 2 dimensions. The sets
of four indices (ijkm) contributing to the energy (by a quantity
−Re[aia

∗
j aka

∗
m]) is given by the gray lattice plaquettes. The so-defined

Hamiltonian is invariant under transformations consisting of rotating
by a phase the degrees of freedom of the white plaquettes (associated
to given sites of an auxiliary lattice, represented with dashed lines).
If one associates a phase ϕn ∈ [0,2π ) to the plaquette defined by
the auxiliary lattice site n, the transformation is ai → aie

ıϕn for i =
3,4,5,6. An equivalent construction is done for d > 2 lattices [23].

C. Previous studies of four-body models: Lattice gauge theories

Ising models with four-body (lattice plaquette) interactions
have been studied as cutoff regularized versions of scalar gauge
theories [23]. If the interacting quadruplets are suitably defined
in terms of plaquettes of a hypercubic lattice in d dimensions,
the model energy becomes invariant under flipping sets of four
neighboring spins (see Fig. 1 for details). The p = 4 Ising
model so defined is called Ising lattice gauge theory and is
known to present a single, disordered phase for any nonzero
temperature in d = 2, when it is equivalent to an independent
set of d = 1 pairwise Ising models. In d = 3 the Ising lattice
gauge theory exhibits a phase transition, which is related to the
d = 3 Ising model transition. The low-temperature phase is,
however, unmagnetized, as a consequence of the local gauge
symmetry: the expectation value of any operator not invariant
under local gauge symmetries vanishes, a result called Elitzur’s
theorem [23]. The magnetization is a one-body observable, not
invariant under the 4-spin flipping gauge transformation, and
it consequently vanishes. The nature of the low-temperature
phase is unveiled instead by the gauge-invariant correlation
function, or the expectation value of bunches of spins whose
positions draw a planar close contour in the lattice. Such a
nonlocal operator is helpful to interpret the phase transition
as a confinement-deconfinement condensation of kinks, rather
than a usual order-disorder transition found in pairwise models.
In a different context, classical Ising models with four-body
interactions are also studied as effective models for the
interaction of superconducting electrons or grains [24,25].

p = 4 Ising models have also been studied from a statistical
physical point of view [26–32]. They are, in particular, subject
of interest as far as their plaquette version may exhibit
slow dynamics and other dynamical features reminiscent to
those of glasses, which are self-induced (i.e., not induced
by quenched disordered couplings) [28–31]. The system
with interacting quadruplets defined as the plaquettes of

a hypercubic lattice (the plaquette Ising model) has been
particularly studied. In two dimensions it presents a phase
transition with dynamical activated behavior [33]. In three
dimensions the model is called the Gonihedric model [34,35]
and is known to exhibit a first-order phase transition and
a degenerated ground state [26,28,36]. The slow dynamics,
metastability and glasslike features of the 3D model have been
studied in Refs. [28,31,37,38]. An anisotropic variant of the
Gonihedric model has been recently studied [39], its dynamical
properties are shown to be signaled by the expectation values
of quantum information-theoretical estimates in its quantum
counterpart.

The O(2) generalization of the lattice gauge-invariant
model, called Abelian gauge theory, presents a larger, O(2),
local gauge invariance. Indeed, its behavior at low temperature
is described in the continuum limit with the Euclidean action
of electrodynamics, according to a spin-wave approximation
resembling the one that makes it possible to describe the
undercritical temperature of the d = 2 O(2) model in terms
of a Gaussian theory [23]. As in the Ising gauge theory,
the d = 2 Abelian gauge theory presents no phase transition,
while the d = 3 presents a phase transition separating two
unmagnetized phases and, again, the order parameter being
a nonlocal contour correlator, an object which is directly
related with the potential energy of deconfinement, in the field
theoretical language.

II. THE LEADING MODELS: p = 4 XY AND COMPLEX
SPHERICAL MODELS

A. Definition of the model

We are interested in the statistical analysis of the mode wave
interaction Hamiltonian, introduced in Sec. I B. We restrict our
analysis to the four-body interaction term, as it contains the
essential nonlinear phenomenology. The inclusion of the local
interaction due to a nonflat gain [see Eq. (1)] does not change
the thermodynamic features of the model, and its inclusion is
discussed in Sec. VIII C.

We, then, consider a set of N electromagnetic modes whose
amplitudes are described by the complex numbers am, m =
1, . . . ,N , with phases φm = arg am and moduli Am = |am|.
The Hamiltonian, H, is completely specified in this case by
the list of quadruplets, or ordered sets of four mode indices
(spqr), which correspond to different terms in H. The list of
quadruplets can be specified by the adjacency tensor, Asprq ,
equal to 1 whenever the quadruplet defined by its indices is a
term of the Hamiltonian, and zero otherwise. Hence, H takes
the form [5] [see Eq. (1)]

H = −J0

8

∑
s,p,q,r

AspqrAsApAqAr

× cos(φs − φp + φq − φr ), (5)

while the mode amplitudes are constraint by Eq. (4). This
model corresponds to the (ferromagnetic) four-body complex
spherical model (CSM) in an arbitrary topology of quadruplets.
In the particular case where the moduli Am are fixed and
all equal to 1, the Hamiltonian reduces to the four-body XY
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[O(2)] model:

HXY = −J0

8

∑
s,p,q,r

Aspqr cos(φs − φp + φq − φr ). (6)

B. Symmetry of the list of quadruplets

The adjacency tensorA is, in general, not symmetric under per-
mutations of its indices. However, it exhibits a symmetry which
is also in each one of the terms in the Hamiltonian (5). Given
an ordered set of four indices, its 24 possible permutations
(i.e., quadruplets) can be split into three nonequivalent subsets
of the 8 permutations that have the same energy. Moreover,
if a quadruplet respects the FMC, then all of its 8 equivalent
permutations do. The three nonequivalent permutations can be
chosen to be Q = {(1234),(1324),(4231)}, in such a way that
the Hamiltonian can be then written as

H = −J0

∑
s<p<q<r

∑
π∈Q

Aπsπpπqπr
Aπs

Aπp
Aπq

Aπr

× cos
(
φπs

− φπp
+ φπq

− φπr

)
, (7)

where πs are the members of the permutation, π =
(π1π2π3π4). This is the origin of the 1/8 factor in Eq. (5).
The size scaling of J0 is to be fixed in such a way that the
energy E = 〈H 〉 is an extensive quantity in both low- and
high-temperature phases. We treat this point in Sec. III.

C. Topology of quadruplets

In the following analysis we have considered two types of
topologies A.

1. Homogeneous topology (HT)

The quadruplets are selected uniformly at random. The
desired number of quadruplets (or ordered sets of four indices),
N4, are randomly chosen among all the possible quadruplets.
Specifically, in order to preserve the permutation symmetry
of the Hamiltonian (cf. Sec. II B), this random selection is
performed by randomly selecting N4/8 quadruplets among
all possible N (N − 1)(N − 2)(N − 3)/8 quadruplets with
different energy, and, for each one, we append all their eight
equivalent permutations to the list. We call fully connected
the particular case of the HT such that all quadruplets are
considered.

We stress that in the HT case, hence, the list of quadruplets
is not conditioned by the set of frequencies. In the photonic
language, this situation corresponds to the case of the so-
called narrow frequency distribution, in which the different
frequencies ωn are all similar in magnitude, the difference
between them being lower than the linewidth γ , so that the
FMC [Eq. (3)] is trivially satisfied.

2. Correlated topology (CT)

The quadruplets are no longer chosen in an uncorrelated
way, although they are still stochastically chosen. We randomly
select N4/8 quadruplets with different energy, only among the
possible ∼ N3 quadruplets spqr satisfying the relation

s − p + q − r = 0, (8)

and, for each one, we append all its eight equivalent permu-
tations to the list. This prescription is the result of imposing
a FMC [cf. Eq. (3)] if one supposes a set of N frequencies
distributed as a linear comb,

ωm = ω0 + m δω, δω 
 γ, (9)

which is the case of interest describing closed cavity lasers.
The FMC identity has become an integer identity since, in the
optical interpretation, the values ωm are to be understood as the
centers of the bins of a discrete frequency distribution whose
bin width is given by the linewidth γ , so that Eq. (3) becomes
equivalent to Eq. (8).

Besides having a clear physical motivation (the equispaced
frequency case), the constraint Eq. (8) is also the simpler and
most natural way of introducing correlations in an abstract
stochastic set of interacting quadruplets. Consider the analogy
with a random network: A way to construct random but
correlated graphs is by introducing some kind of distance
between different nodes (as the absolute value of the difference
between the node indices dsp = |s − p|) and choosing bonds
with a probability depending on such a distance. In the case
of the list of quadruplets, one needs a four-index function, and
a similar role can be played by dspqr = |s − p + q − r|. The
FMC with the equispaced set of frequencies is equivalent to
choosing quadruplets presenting the minimum value, dspqr =
0. In this way, the mode frequencies are not a degree of
freedom, but a coordinate driving correlations as distance in
a graph. This resembles the Golay-Bernasconi model [40,41],
where instead one is interested to find the sequences with low
autocorrelation.

While there is a stochasticity in both homogeneous and CT,
due to the fact that only a random fraction of the possible
quadruplets are considered, there is an important difference:
In the HT, the average number of quadruplets connecting
two nodes is independent of the nodes in the quadruplet,
while in the CT one can show that the number of quadruplets
(normalized as a probability distribution) connecting couples
of nodes with frequency difference ωi − ωj , i.e., at a distance
|i − j |, is h(x) = 2(−x + 1), where x = |i − j |/N . Modes
with similar frequencies are connected by a higher number of
quadruplets (and, consequently, effectively more coupled) in
Eq. (5). This difference is illustrated in Fig. 2: We show the
difference through the from-quadruplet graph, or a weighted
graph such that each node represents a mode, and the edge
weight (represented by the line thickness) is proportional to
the number of quadruplets containing their modes.

There are good reasons to classify the interaction topology
in the two types, HT, CT. As we explain below, if N4 ∼
O(N�2), the thermodynamic behavior of the system is com-
pletely determined by the type of topology of quadruplets and
not by N4, and it is essentially different in the HT and CT cases.
The frequency correlations in the last case induce correlations
between mode amplitudes with different frequencies, ajaj ′ ,
that will drastically modify the thermodynamic phases, as
shown in Sec. V.

One may ask why we study stochastic sets of quadruplets
instead of considering, for example, deterministic sets given
by the four nodes composing a plaquette of a d-dimensional
hypercubic lattice, as done for the Gonihedric model in the
works mentioned in the Introduction. The answer is given, on

014204-4



STATISTICAL PHYSICS OF NONLINEAR WAVE INTERACTION PHYSICAL REVIEW B 92, 014204 (2015)

FIG. 2. (Color online) From-quadruplet graphs of two lists of
quadruplets with N = 12, N4 = 97 and homogeneous (left) and
correlated (right) topology, respectively. Adjacent nodes represent
adjacent mode indices, and the thickness of a link is proportional to the
number of quadruplets that contain the two linked nodes. The angular
position of a node corresponds to its index, so that nodes on adjacent
clock hours have adjacent frequencies. The central frequencies are
at 9 and 10 o’clock. For the HT the thickness is uncorrelated to the
position. For the CT it is apparent that the thickest links are between
adjacent modes. Moreover, in the CT case the modes at the center of
the spectrum (at 9 and 10 o’clock) share more quadruplets than those
at the edge (at 3 and 4 o’clock).

the one hand, by the fact that the p = 4 ferromagnetic spherical
model, as we explain in the next section, presents a trivial
thermodynamic behavior when the number of quadruplets
is low enough and, in particular, in the N4 ∼ O(N ) case
corresponding to the plaquette-based list of quadruplets. From
the point of view of optics, on the other hand, the present
system is relevant for the description of a closed cavity laser,
such that, in principle, each mode interacts with the rest of
the modes (the fully connected case). This would lead to
N4 ∼ O(N4) [or to N4 ∼ O(N3) with the constraint Eq. (8)],
a situation which is incompatible with the plaquette-based
topology. Finally, we stress that there is a convenience for
studying stochastic sets of quadruplets: Such dilute systems
can be numerically processed more efficiently, hence the
usefulness of the dilute ensemble of quadruplets. This point is
discussed in Sec. IV.

III. ROLE OF THE QUADRUPLET DILUTION
THRESHOLD

A. Nonequipartite condensation in the complex spherical model

As will see, the complex spherical model presents a trivial
low-temperature behavior, that we call nonequipartite conden-
sation, whenever the number of quadruplets is low enough,
N4 ∼ O(N<2) for the ferromagnetic case. The nonequipartite
condensation is such that all the spherical constraint Eq. (4)
is concentrated in a low, O(1) number of sites, whose
amplitudes are A ∼ O(

√
N ). In this case, the energy in the low-

temperature phase is of order E ∼ −J0N
2. The equipartition,

alternative to the nonequipartite condensation, is characterized
by a A ∼ O(1) in both phases; hence, E ∼ −J0N4. In the latter
case, the low-T phase is characterized by the homogeneity
of spin moduli, which tend to lock, i.e., to become equal
throughout the system, contrarily to the former case. One
observes that the energy is lower (of a larger order with N )

in the nonequipartite condensation whenever N4 ∼ O(N<2).
Requiring the extensivity of the energy one obtains that,
according to the type of condensation, J0 is subject to satisfy
the following scaling

J0 ∼
{

1/N nonequipartition [N4 ∼ O(N<2)],
N/N4 equipartition [N4 ∼ O(N>2)].

(10)

For high-enough temperature, one expects a disordered phase
with uncorrelated and equipartited spins. The extensivity of
the energy requires J0N4 ∼ O(N ), implying in its turn that the
nonequipartite condensation does not occur for N4 ∼ O(N>2),
confirming Eq. (10).

This argument does not apply to the marginal situation
N4 ∼ O(N2). We expect, however, equipartition, since in this
circumstance there is an extensive entropic contribution to the
free energy. This is in agreement with our numerical results
for all the considered systems satisfying N4 ∼ O(N2), which
turn out to be equipartite.

In the following we are interested in the equipartite case.
We, hence, consider from now on systems with N4 ∼ O(N�2).
Our Hamiltonian, in its final form, will be taken as [see
Eq. (10)]

H = − N

8N4

∑
spqr

AspqrAsApAqAr

× cos(φs − φp + φq − φr ). (11)

B. Nonequipartition in the disordered complex spherical model

Although in the next section our numerical analysis focuses
on the ferromagnetic case, for completeness we also discuss
how the nonequipartite condensation occurs in the quenched
disordered case below the higher threshold N4 ∼ O(N3). The
argument is based on a mean-field approximation making it
possible to compute the scaling of the average energy with
N , N4 within the replica formalism. The details can be found
in Appendix B. Supposing that the coupling J in Eq. (5) is
no longer ferromagnetic but Gaussian distributed with average
J0 and variance σ , one has that the energy scaling in both
nonequipartite and equipartite types of condensation goes as

E ∼
{

nonequipartite −(J0 + σ )N2,

equipartite −(J0 + σ 2)N2,
(12)

so that for the extensivity of the energy one is forced to take for
σ the minimum between N/N4 and 1/N2. Hence, the threshold
between nonequipartition and equipartition becomes, in this
case, N4 = O(N3). This threshold is compatible with the
provisional results of our simulations in the presence of
disorder (which will be reported in a future communication).

C. Magnetized-to-unmagnetized threshold of the XY model
for low number of quadruplets

An equivalent threshold effect is observed for the p = 4
XY ferromagnet [Eq. (6)], with HT. In this case the threshold
is, instead, the extensive situation N4 ∼ O(N ), above which
the system presents a low-temperature phase with spontaneous
breaking of the O(2) symmetry. Below and at the threshold,
i.e., for N4 ∼ O(N�1), the model remains unmagnetized. This
fact is discussed in more detail in Sec. VI.
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IV. NUMERICAL ANALYSIS

A. Efficient Monte Carlo simulation: The synchronous Monte
Carlo algorithm

We have performed a Monte Carlo (MC) integration using
a homemade algorithm dealing with vector p = 4 interaction
models in arbitrary topologies. The algorithm uses local
updates (in the spherical model case it is not possible to
use cluster updating, due to the nonlocality induced by the
spherical constraint). The parallel tempering algorithm has
been used to enhance equilibration in large systems.

Moreover, for most of the results presented in this article we
have used a parallel, high-performing version of the algorithm,
running on graphics processing units. The parallel Monte
Carlo sampling of a system of interacting spins requires the
division of the set of spins in noninteracting subsets, such
that the members of each one can be processed in parallel.
In bipartite lattices, such a division is called the checkerboard
decomposition, while, in general, graphs defining the pairwise
interaction require the coloring of the graph in such a way
that all spins with identical color are processed in parallel and
different colors are processed sequentially [42]. As explained
before, the case of interest is a system in which the topology of
the interaction is given by a set of at least O(N2) quadruplets
between N modes, so that each mode possesses an extensive
number of quadruplet neighbors, i.e., of modes such that there
is at least a quadruplet connecting both. As a consequence, the
MC parallelization of such a highly connected system is, in
principle, unfeasible.

However, parallel MC techniques can still be used in this
case. We have observed that, quite remarkably, there are
circumstances (that will be specified elsewhere) in which
applying the so-called synchronous MC rule (i.e., to all spins
in parallel, regardless of their connectivity), one recovers the
correct results. Although one is making an error in each
update (since one updates interacting spins simultaneously),
the overall error averages down to zero. In a fully connected
p = 2 spin model the fully parallel MC update does not
differ with respect to a sequential MC scheme, as it has
been already observed [43]. In the present case with p =
4-body interactions and O(N�2) quadruplets, the results of
the synchronous MC are, again, consistent with the serial
algorithm.

It is particularly remarkable that for the present model it
is not necessary to have a fully connected system for the
synchronous MC algorithm to work: a dilute, but connected-
enough system is sufficient to obtain results which are indistin-
guishable from that of the serial MC algorithm. Interestingly,
this holds true even if the transition is no longer describable
in mean-field approximation: We show that in the CT case
fluctuations arise and change the nature of the transition and,
even in this case, the synchronous MC leads to correct results.

An example of the reliability of the synchronous MC is
shown in Fig. 3 for the average energy in the HT, but the
picture is valid also for the CT case. The measures are always
compatible for a serial MC and a parallel MC. In the low-
temperature phase, in particular, the values are numerically
indistinguishable. Some appreciable deviations are observed
only in the high-temperature phase in the case of diluted
systems (N4 = N2 in Fig. 3). In this case the synchronous

FIG. 3. (Color online) High-temperature intensive energy versus
temperature for systems with three sizes in a diluted HT with
N4 = N 2 quadruplets, computed with the serial MC algorithm
(open symbols for N = 50,100,150). The results obtained with the
synchronous update for these systems (corresponding full symbols
for N = 100,150) yield an average value closer to zero, though
compatible in the statistical uncertainty. At low temperature both
algorithms accurately coincide and the results are indistinguishable,
as displayed in the inset for N = 150. Note that the fully connected
system (open circles), simulated by means of a serial MC, exhibits a
zero energy at high T yet for N = 50.

algorithm predicts an average energy which is closer to zero,
although compatible with the serial algorithm within thermal
fluctuations. For T > Tc, the synchronous algorithm has hence
the effect of masking finite-size effects, since the energy per
site E/N vanishes at large N for T > Tc.

B. Observables of interest

Besides the energy, E = 〈H〉, we consider the following
observables. First is the specific heat:

c = 1

N

∂〈H〉
∂T

= 〈H2〉 − 〈H〉2

N T 2
. (13)

Also, the average modulus, 〈r〉, with r being

r = 1

N

∑
j

Aj , (14)

a quantity which is related with the site fluctuations of the
modulus: 1

N

∑
j (|aj | − r)2 = 1 − r2. The larger is r , the more

locked are the moduli of the spins in a given configuration,
and r = 1 corresponds to a configuration with all the mode
amplitudes that have modulus equal to 1. Another interesting
observable is the magnetization, 〈m〉, where m is the complex
number,

m = 1

N

∑
j

aj , (15)

along with its Cartesian components, mx = Re[m] and my =
Im[m].

Finally, we also measure frequency correlation functions,
which are ensemble averaged correlations between modes
whose frequencies differ by a given quantity, ω. These
observables acquire full sense in the CT case, when the
mode frequencies play a role in the topology and, hence, in
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the thermodynamics. We define, in particular, the intensity
correlation function, Ci,

Ci(ω) = 1

K(ω)

〈
N∑

i,j=1

A2
i A2

j δ(ωi − ωj + ω)

〉
, (16)

K(ω) =∑i

∑
j δ(ωi − ωj + ω) being the normalization,

along with the phase correlation function, Cp,

Cp(ω) = 1

K(ω)

〈
N∑

i,j=1

cos(φi − φj ) δ(ωi − ωj + ω)

〉
. (17)

We also define their respective connected functions,

C̄i(ω) = Ci(ω) − 1

K(ω)

N∑
i,j=1

〈
A2

i

〉 〈
A2

j

〉
δ(ωi − ωj + ω),

(18)
and idem for C̄p(ω).

C. Details of the simulations

We have considered finite-size realizations for several
values of N , ranging from N = 50 to N = 103, depending on
the topology and N4. As an equilibration test we have verified
the stationarity of the distributions of observables in different
MC time windows of exponentially increasing length and the
symmetry of the histograms of the single components of the
magnetization, h(mx,y) = h(−mx,y) (cf. Fig. 11).

Throughout our analysis, we have not performed systematic
averages over realizations of the list of quadruplets in none
of the topology types (HT, CT). This is justified since the
fluctuations of thermodynamic quantities among different
realizations of the interaction network are at least one order
of magnitude less than thermal fluctuations. In Fig. 4 we
show how thermal fluctuations are larger than topological
fluctuations of the energy in the worst case analyzed: the
N = 50 with N4 ∼ O(N2) quadruplets distributed with the
CT (i.e., the smallest, most inhomogeneous system).

FIG. 4. (Color online) Thermal energy fluctuations versus topo-
logical (graph-to-graph) fluctuations of a CT system with N = 50 and
with N4 = N 2 quadruplets. The topological fluctuations have been
computed over a set of 100 realizations of the list of quadruplets.

V. NUMERICAL RESULTS FOR THE COMPLEX
SPHERICAL MODEL

We now present the results of our MC analysis for the
complex spherical model. The most salient feature of our
simulations is the presence of a phase transition of first-order
nature. The phase transition separates a high-T phase with
randomly distributed degrees of freedom, zero magnetization,
and zero energy per mode for large N from a low-temperature
phase with (1) locked moduli and phases(2) nonzero spin-spin
correlations, at least in single configurations and for moderate
time scales.

A remarkable observation is the irrelevance of random
dilution: For both kinds of topologies the results of our
simulations are independent of the number of quadruplets,
as far as this quantity is above the threshold N4 ∼ O(N�2),
corresponding to equipartite systems. This means that the
results (with the only exception of the finite-size scaling of
the critical temperature) remain unchanged in the broad range
of N4 scaling from ∼ N4 down to ∼ N2.

There is an essential difference between the thermodynamic
behavior of the system in the presence of homogeneous
and correlated topologies: In the first case the behavior is
compatible with the mean-field solution, the low-temperature
phase is spontaneously magnetized, and spin-spin correlators
are nonzero. In contrast, for CTs the results significantly differ
from the mean-field solution; there is lack of spontaneous
magnetization at low temperatures, and two-point correlators
turn out to vanish.

As already mentioned, we have found phase transitions of
different nature (first and second order), and different low-
temperature states (magnetized and unmagnetized, with zero
and nonzero two-point correlators), depending on the kind
of topology, the dilution, and the model (XY /CSM). Before
describing in detail our results, we anticipate that these general
features are outlined in Table I.

A. Homogeneous topology

General features and comparison with mean-field theory

We first consider the HT system and the fully connected
case (i.e., with all the possible quadruplets active) as a
particular case of it. Our first, already-mentioned, result is
that, given the topology type, the dilution turns out to be

TABLE I. Nature of the transitions and of the correlators in the
low-T phase for the different considered models, as emerges from the
numerical analysis. Whenever 〈m〉 = 0, also the two-point correlators
C̄i,p vanish.

Model Topology N4 Transition 〈m〉(T < Tc)

CSM HT O(N�2) First-order �= 0
CSM HT O(N<2) non-Eq. cond.
CSM CT O(N�2) First-order = 0
CSM CT O(N<2) non-Eq. cond.
XY HT O(N>1) First-order �= 0
XY HT O(N ) Second-order = 0
XY CT O(N>1) First-order = 0
XY CT O(N ) First-order = 0
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/N

T

(T − Tc)Nν

FIG. 5. (Color online) Energy per spin versus temperature for
several sizes in the HT with N4 = N 2. The finite-size critical
temperature Tc(N ) increases with size. The inset shows that the data
(with the same symbol meaning of the main figure) satisfies a scaling
of the form Tc(N ) − T mf

c ∼ N−b, with b = 0.6, indicating that they
are compatible with the mean-field critical temperature for large N .
The two vertical lines of the mean-field curve are in correspondence
to the transition and to the spinodal temperature.

irrelevant: The intensive quantities for values of N4 lower
than its maximum value are indistinguishable, within statistical
errors, from that of the fully connected case. We thus expect
the behavior in the HT to coincide in the large-N limit with
the mean-field solution of the model [5,18]; cf. Appendix A.
This predicts for the transition temperature T mf

c = 0.407 26.
In Fig. 5 we present a finite-size analysis of the energy E in
the case of a homogeneous set of N4 ∼ O(N2) quadruplets.
The high-temperature phase has zero energy and decreases
discontinuously at a size-dependent value Tc(N ). As shown in
the figure inset for the N4 ∼ O(N2) case, the finite-size scaling
of the transition temperature, Tc(N ) = kN−b + Tc(∞), leads
to an infinite-volume Tc(∞), which is compatible with T mf

c ,
for all the studied sets of quadruplets [44].

In Fig. 5 we also present the energy as a function of
temperature for the marginal mean-field solution shown in
Appendix A,

Emf(T ) = −1

4
[1 + (1 − 2T )1/2]2, T < Tc. (19)

It is apparent how, while the value of the critical temperature
estimated by finite-size scaling on simulation data coincides
with the mean-field analytical solution, the behavior of Emf(T )
below the transition does not coincide with the numerics. This
difference decreases with decreasing temperature, eventually
vanishing at zero temperature. Such a discrepancy is absent
in both the XY and the real spherical model, for which the
respective mean-field solutions exactly describe the behavior
of finite-size systems already at quite small sizes at all
temperatures, as we have verified numerically.

In the ordered phase, there may be a correlation between
the angle fluctuations of a site, i, and the value of its radius,
ri . We expect such a correlation since smaller radii contribute
less to the energy and, consequently, their angle fluctuations
are higher. We suggest that these angular fluctuations are
underestimated in the mean-field description (which does not
account for site-to-site fluctuations) and are responsible for

hE

E

FIG. 6. (Color online) Histogram of the energy at several tem-
peratures of a N = 100 system in the HT with N4 = N 2. There is a
temperature range in which the high-T and the low-T peaks coexist.

the discrepancy described above. This argument justifies the
fact that the difference between mean-field theory and the
numerical data increases with T , that the numerical energy is
underestimated, and that there is no such a discrepancy in the
spherical and XY models, in which there is only one degree of
freedom. In any case, the mean-field derivation in Appendix A
is supposed to describe exactly the fully connected system
in the large-N limit: There is need of further investigation to
clarify this unexpected behavior.

The finite-size transition temperatures Tc(N ) reported as
vertical lines in Fig. 5 have been calculated from the bimodal
energy probability distribution (cf., Fig. 6) because the temper-
atures at which the high- and low-energy peaks enclose equal
areas. We have also considered the metastable continuation
of the disordered phase energy, averaging over the disordered
peak only, and a temperature limit of the metastable regime (a
spinodal temperature, Ts) as the one at which the low-energy
peak vanishes. As shown in Fig. 7, the quantity Ts(N ) − Tc(N )
decreases with increasing size, thus indicating that again the
metastability behavior of the model is different from that
predicted by the marginally stable mean-field solution, which

FIG. 7. (Color online) Stable and metastable energy per spin in
systems with N = 50, 300, HTs, and with N4 = N 2. The temperature
end point of metastability approaches the finite-size critical tempera-
ture for large and larger sizes. The vertical line signals the mean-field
critical point.
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FIG. 8. (Color online) Specific heat versus temperature for dif-
ferent sizes of HT. The dataset is the same as Fig. 5. The inset shows
the data with the scaling relation Tc(N ) − T mf

c ∼ N−b, with b = 0.6.

predicts Ts = 1/2 in the thermodynamic limit [the metastable
energy being that of Eq. (19), continued to Ts = 1/2]. The
shrinking of the metastable interval persists even using a
MC protocol which favors the relaxation towards the (low-T )
metastable phase, i.e., starting from an ordered configuration
and switching off the parallel tempering algorithm. The
observed decreasing of the metastable interval with system size
is so strong that, with the actual statistics and temperature grid,
for the largest simulated sizes we are not able to observe any
spinodal point distinct from the critical point in the statistical
error. For the largest sizes the low-energy peak in the energy
distribution associated with the ordered phase (see Fig. 6)
disappears as the zero-energy peak of the paramagnetic phase
appears. This situation is different from what happens in
the marginal mean-field solution described in Appendix A
. We note also that the finite-size nature of metastability in
temperature-driven transitions has already been observed in a
ferromagnetic model with pairwise interactions [45].

The specific heat is presented in Fig. 8. One observes
no divergence with increasing system size, and a finite-size
scaling confirming the one of the energy reported in Fig. 5.
The average modulus and the magnetization are presented in
Fig. 9. For high temperature, the average modulus achieves

FIG. 9. (Color online) Average moduli versus temperature for
systems with N = 300, HT, and CT. (Inset) Average modulus of
the magnetization versus temperature for the two systems. The CT
system is unmagnetized also at low temperatures.

FIG. 10. (Color online) Comparison between energy of systems
with HT and CT with N = 100 modes and N4 = N 2. The black line
is the marginal stable mean-field solution. The HT data are observed
to converge at −1 for T → 0 increasing the size, while the CT curve
remains lower than the HT curve at low temperatures and converges
to a value lower than one for T → 0.

[up to O(N−1/2) fluctuations] the value (2/π )1/2, which is the
average modulus of uncorrelated complex random variables
satisfying the spherical constraint, as can be exactly proven
for large N . The value of 〈r〉 is discontinuous at the transition
and converges to 1 for T → 0, which means that all the
spins exhibit equal modulus, |aj | = 1. The magnetization
vanishes in the high-T phase and it is 1 for zero temperature,
indicating that it is of ferromagnetic nature: Not only are the
moduli locked but also all the phases coincide and both phases
and moduli lock at the same temperature, as predicted by
mean-field theory [18].

B. Correlated topology of quadruplets

We now describe the differences induced by quadruplet
correlations due to the FMC. The correlations promote
fluctuations on the radial and angular degrees of freedom, not
describable in mean-field approximation. As a consequence,
the behavior substantially differs from that in the HT case.

1. Absence of spontaneous O(2) symmetry breaking

Although the transition remains first order and qualitatively
equal to that of the HT case, the energy density stays
below that of the HT case (see Fig. 10). Again, the energy
density is independent from N4 up to fluctuations. The most
dramatic difference induced by the CT is, however, seen in the
average magnetization, which vanishes for all temperatures.
We show the change in the magnetization behavior comparing
the histogram of the magnetization components mx = Re[m]
(Fig. 11). In both HT and CT cases, the high-temperature phase
is unmagnetized with a Gaussian distribution of mx centered
in zero. In the homogeneous case, the low-temperature phase
is magnetized (|m|2 → 1 for T → 0) following a phase di-
rection (φ = arg m), which is degenerated and whose average
projection in the x axis results in the peaks of h(mx). For zero
temperature, the distribution coincides, indeed, with h(m) =
(2π )−1(1 − m2)−1/2, or the m distribution corresponding to
a homogeneously distributed φ (cf. Fig. 11); in other words,
the average magnetization is zero for HT, but this happens
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FIG. 11. (Color online) Histograms of a Cartesian component of
the magnetization for two systems with N = 300 and N4 = N 2, HT,
and CT (bottom panel and top panel, respectively). The HT case is
fully magnetized and for zero temperature it converges to the function
[2π (1 − m2)]−1/2 (indicated as a black curve in the bottom panel).
The CT system is unmagnetized at all temperatures.

since the single configurations are fully magnetized over
an angle which is degenerated. In the CT case, the low-
temperature phase is unmagnetized instead: The average and
the most probable magnetization remains zero for arbitrary low
temperature, indicating an absence of global magnetic order.
In the low-temperature phase, the magnetization histogram
becomes nearly constant in temperature and it develops long
tails.

2. Phase wave and two-point phase correlators

At the origin of this feature there is a property of the low-T
phase with CT that we call the phase wave [44,46]. Modes
at nearby frequencies with small value of |i − j | participate
in a larger number of quadruplets, since the condition Eq. (8)
is more frequently satisfied than for distant modes. For this
reason, nearby spins in the frequency are effectively more
coupled and tend to align. This induces a phase wave [in
analogy with the “spin wave” term in the context of the
O(2) pairwise model]: In single low-T configurations, the
phases of the spins exhibit an approximated linear dependence
with the frequencies ωj [or with the spin index; see Eq. (9)],
φ(ωj ) � φ0 + �(ωj − ω0), where � is the phase-wave slope,
a configuration-dependent quantity. In Fig. 12 we illustrate the
phase wave at two different equilibrated configurations at the
same temperature.

FIG. 12. Angular degree of freedom φj = arg aj , versus spin
index j of two single equilibrated configurations with N = 500
spins in a CT of quadruplets at a common undercritical temperature,
T = 0.34. It is evident the presence of a phase wave, i.e., the
approximated linear dependence of the phase on the spin index.
Configurations are shown exhibiting different phase-wave slopes,
�1, �2.

Given a realization of the quadruplet topology, there are
different possible values of the phase-wave slope arising with
higher probability. We consider the quantity

(�) =
∣∣∣∣∣∣

N∑
j=1

〈cos φj 〉 eı2πj�/N

∣∣∣∣∣∣. (20)

Configurations with fixed value of the slope � contribute as
narrow peaks of the function . At a finite temperature, we
observe wide peaks, as a result of thermal fluctuations, at some
privileged values of � depending on the specific realization of
the list of quadruplets (see Fig. 13), their amplitude increasing
with decreasing temperature. Above the critical temperature,

FIG. 13. (Color online) The function  [Eq. (20)], describing
the proliferation of different phase-wave slopes, in a CT system
with N = 80, N4 = N 2, for four temperatures. The different peaks
correspond to different possible slopes. At supercritical temperatures,
 does not present peaks but uncorrelated oscillations, while at
undercritical temperatures, the position of the peaks is common for
all the temperatures, and the peak amplitude roughly decreases for
increasing temperature.
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FIG. 14. (Color online) Phase-correlation function of a CT sys-
tem with N = 300, N4 = N 2, averaged over small time intervals, τ =
103 MC steps. Different curves correspond to different temperatures.
While the correlation for supercritical temperatures vanishes up to
thermal fluctuations, at low temperatures it oscillates with a frequency
given by the phase-wave slope.

the function  randomly fluctuates near zero, indicating the
lack of correlation between different spins.

The phase wave is, hence, the microscopic mechanism for
which there is no global O(2) symmetry breaking in the low-T
phase of the CT.

Phase correlation versus frequency. The phase correlation
function helps to further characterize the phase wave above
described. Figure 14 reports the phase correlation function Cp

for a system with N = 150 in a CT for several temperatures.
In the figure, the correlations have been averaged over a
short number (τ ∼ 103) of MC steps. While for T > Tc the
phases of different spins are completely uncorrelated, the
correlation is not trivial for T < Tc and presents oscillations
in frequency around zero, in correspondence with the phase-
wave oscillations: Spins nearby in frequency (in spin index)
exhibit strongly correlated orientations, at least in single
configurations.

The picture, however, turns different when averaging over
larger intervals of time. Our numerical results indicate that
in the CT the sum of the correlations Cp over all distances
decays to zero when averaged for arbitrary large MC times,
at difference with the HT case (see Fig. 15 and Sec. V B 4).
This gives strong evidence of the fact that the two-point angle
correlators vanish even at arbitrary low temperatures. The
microscopic origin of this fact is the degeneracy of phase-wave
configurations with different slopes, so that phase correlations
corresponding to different slopes cancel out.

3. Two-point moduli correlations

As a further insight into the low-temperature phase we
present the behavior of the two-point moduli correlator. As
shown in Fig. 16, the disconnected quantity Ci is approx-
imately equal to (2/π )2 in the high-T phase, indicating
independence of moduli, while for low temperatures there is a
nontrivial correlation presenting a maximum at a nonzero value
of the spin frequency distance ω and decaying below the value
(2/π )2 for distant spins, which are less coupled and hence
less correlated. Since spins must obey the spherical constraint,
the existence of spins with moduli larger than 1 implies the

FIG. 15. (Color online) Angular two-point correlators, as in
Fig. 14, but with N = 100 and averaged over larger intervals of
local-update MC time (τ = 104 and 105, top and bottom panel,
respectively).

existence of other spins with moduli less than 1. However, the
connected function C̃i, registering the fluctuations on top of
this general tendency, vanishes for large system size, as can
be seen for different sizes in Fig. 16: For larger and larger
sizes, the values of C̃i corresponding to both phases decrease
with the value of N , along with the “gap” separating the data
of both phases, which turns to be a finite-size effect of the
high-temperature phase. We conclude that also moduli-moduli
correlators vanish for CT in the thermodynamic limit.

4. Slow dynamics at low temperature

We now present numerical evidence of the CT system to
exhibit slow dynamics at low temperatures, whose origin is the
degeneracy of phase-wave configurations with different slopes.
To this aim, we define dynamical measurements, through the
time average〈· · · 〉τ =∑τ

τ ′(· · · )/τ over a finite-time interval
of length τ , in units of local MC steps. For sufficiently
large τ , such an average coincides with the thermal average.
Consequently, we define the τ -correlation function for phases
and moduli, respectively, as

Cp(τ ) = 1

N

∑
r

�τ (r), (21)

Ci(τ ) = 1

N

∑
r

[〈AiAj 〉τ − 〈Ai〉τ 〈Aj 〉τ ], (22)

�τ (r) ≡ 1

N

∑
j

[〈cos(φj − φj+r )〉τ − 〈cos φj 〉τ 〈cos φj+r〉τ

− 〈sin φj 〉τ 〈sin φj+r〉τ ], (23)
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FIG. 16. (Color online) (Top) Disconnected modulus correlation
function [cf., Eq. (16)], where N = 300, N4 = N 2, and the time
averages are over thermalized data in time windows of length τ = 106.
(Bottom) The connected modulus correlation function [Eq. (18)] for
the same system. In the inset the connected modulus correlation
function at the temperature T = 0.46 is shown for the sizes N =
900,200,100, showing that the function decrease for increasing sizes.

along with the modified τ -long phase correlation function,

�(τ ) =
N∑

r=1

N

K(r)
|�τ (r)|, (24)

where K is defined below Eq. (16). The functions Cp,i(τ ) are
simply the sum of two-point correlators in different sites, while
�(τ ) is the the sum of the absolute value of the function �τ (r)
for all the possible spectral distances r . Note also that in the
limit τ → ∞ the time average coincides with the equilibrium
average and, thus, �(τ → ∞) is equivalent to

∑
ω Cp(ω); cf.

Eq. (17).
We stress that the function �(τ ) decays slower than Cp(τ ),

and it has been defined to estimate the correlation time of the
phase wave, as it does not include the anticorrelation between
“distant” spins (intrinsic to the phase wave configurations) oc-
curring in single configurations. Both functions, nevertheless,
present a qualitatively similar behavior.

As it has been explained in the previous section, we have
found strong evidence for the thermal average of both Cp and
� to vanish at low temperature in the CT and to be nonzero in
the HT. Above Tc they obviously vanish for all topologies up
to finite-size effects. This is illustrated in Fig. 17 for a N = 50

FIG. 17. (Color online) Temporal correlation functions Cp and
� for N = 50, N4 = N 2, CT, and HTs (top and bottom panel,
respectively) for several temperatures (the color code is as in Fig. 11).
The finite-size critical temperature is T (50) = 0.39(7).

system in the CT case, where correlations decay towards zero
for sufficiently large times.

A remarkable feature of the temporal correlation functions
is that, at least for CT, both Cp and � decay slower and
slower as temperature decreases. This is also reflected in the
probability distribution of the phase-wave correlation time,
τφ , defined as the time employed by �(τ ) to decay below
a given threshold. Such a distribution develops long tails as
temperature decreases, as shown in Ref. [44].

An explanation for such a behavior is provided by the
dynamical measure of the function . Its estimation in
equilibrium dynamical simulations over a time window such
that Cp in Fig. 17 has not yet decayed presents just few
peaks or even a single peak only, corresponding to the few
different phase-wave configurations with fixed slope in which
the system remains trapped during a few thousand local MC
steps. In this situation the use of a nonlocal update, as the
parallel-tempering algorithm, is essential to thermalize the
system (to get it decorrelated) in a feasible number of MC steps
(∼104 for a system with N = 50), recovering the multiplicity
of peaks in Fig. 13. These facts suggest a dynamical picture
of the CT system according to which, at low temperatures,
different phase-wave slopes are degenerated and correspond
in some way to different minima in the potential energy
landscape, so that the time to escape from one of them
dramatically increases with decreasing T .

A careful sight suggests that a slow dynamics may be
present also in the HT case, whose origin is, however, different,
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being towards a nonzero value for the correlation. The analysis
in the HT case is more difficult since it requires the knowledge
of the thermalized probability distributions of Cp, � at different
temperatures. A deeper study is necessary to describe the
dynamics of both cases in an accurate way.

The moduli temporal correlation function Ci presents but
quite short relaxation times even at low temperature in both
HT and CT, indicating that the moduli dynamics is irrelevant
in the emergence of large time scales.

VI. NUMERICAL RESULTS FOR THE XY MODEL

The XY model with four-body interactions [defined by the
Hamiltonian Eq. (6) with quenched amplitudes, Aj = 1 for
all j ] presents as well a rich and interesting phenomenology,
which we now resume.

Dense homogeneous topology. As we explained in the
previous section, the moduli dynamics at low temperatures
does not play any essential role in the thermodynamics of
the CSM for a dense [N4 ∼ O(N�2)] set of quadruplets: In
the low-temperature phase the moduli are more and more
homogeneous and equal to 1 at lower and lower temperatures.
The behavior of the p = 4 XY model in dense HTs, as
one could expect from this argument, is indeed qualitatively
identical to that of the CSM: There is a discontinuous phase
transition separating a phase with uncorrelated angles and
a low-T magnetized phase with O(2) symmetry breaking.
The finite-size critical point Tc(N ) is obviously higher than
the CSM case (see Fig. 18). In the dilute (though dense)
version, N4 ∼ O(N2), we have observed how the mean-field
solution [47] accurately reproduces the numerical results for
energy and magnetization, with the exception of the transition
temperature, which may be higher than the mean-field value
(see sizes N = 200 and 300 in Fig. 18). In the fully connected
case the critical temperature is compatible with the mean-field
value.

Sparse homogeneous topology. We have also considered
the case with high dilution, so that the number of quadruplets
is N4 ∼ O(N<2). For the CSM, one obtains a nonequipartite
condensation in such a topology, as explained in Sec. III. In

FIG. 18. (Color online) Energy of the XY model in a dense,
homogeneous set of quadruplets (N4 = N 2) for several sizes. The two
largest have a critical transition temperature larger than the mean-field
prediction. The data are indistinguishable from the mean-field result
for T < T mf

c .

FIG. 19. (Color online) Energy of the XY model in sparse (N4 =
N ), homogeneous sets of quadruplets for four sizes. The energy is
continuous at the transition. (Inset) Specific heat for the same systems.

the XY case, our simulations provide instead evidence that the
system exhibits the mean-field behavior for N4 ∼ O(N>1).
In the homogeneously sparse case N4 ∼ O(N ) we observe,
instead, evidence for the onset of a second-order phase
transition, separating two unmagnetized phases. Remarkably,
the effect of diluting until reaching sparseness has the effect
of preventing the symmetry breaking. The energy presents
no discontinuity while the specific heat is an increasing
function of N at the transition; cf. Fig. 19. The magnetization
histograms reveal an absence of angular symmetry breaking,
with long tails that appear continuously at low temperatures
and whose magnitude decreases with the size of the system; cf.
Fig. 20. The resemblance of the sparse case with the unbroken
symmetry in the pairwise XY model in two dimensions is
discussed in the next section.

Correlated topology. Remarkably, for both N4 ∼ O(N )
and N4 ∼ O(N�2), our numerical analysis suggests that the
phase transition remains discontinuous (differently from the
HT case), with a low-temperature phase characterized by
the absence of magnetization and the presence of phase
waves, as in the CSM case in a dense CT. In the presence
of a CT, our results indicate that the sparseness of the list
of quadruplets [N4 ∼ O(N ) in this case] only changes the

FIG. 20. (Color online) mx histogram of the XY model in a
sparse (N4 = N ), homogeneous set of quadruplets for N = 150.
(Inset) mx histogram for the size N = 500.
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FIG. 21. (Color online) XY model energy in CTs for several sizes
and two types of dilution, dense (N4 = N 2) and sparse (N4 = N ). The
inset shows the energy histogram in the sparse case with N = 200 and
several temperatures in the range [0.38 : 0.51]. In the presence of CT
the transition remains first order even in the sparse system, with the
energy in the low-temperature phase coinciding with the mean-field
theory (see main text).

high-temperature phase, which presents nonzero energy, while
the transition remains first order. We present the finite-size
E(T ) curves in Fig. 21. From our data we have concluded
that the transition remains first order in the sparse case,
since there is no finite-size indication of divergence in the
susceptibility χ = N (〈|m|2〉 − |〈m〉|2) and since the energy
histogram presents two separated peaks, with a coexistence
region, as can be seen in the inset of Fig. 21. The magnetization
histograms are qualitatively identical to those of the CSM in
CTs in Fig. 11.

The whole picture on the type of low-temperature behavior
and the symmetry conservation for all of our models happens
to be rich and unexpected, and it is outlined in Table I.

A remarkable fact of the results of Fig. 21 is that the
energy of the dense case coincides with the mean-field
energy in the whole range T < min{Tc(N ),T mf

c }, although
the finite-size transition temperature can be larger than the
mean-field solution. Such an agreement between the CT and
the HT observables (and, incidentally, between both and the
mean-field theory) was absent in the CSM (see the precedent
section). The differences between the average energy on CTs
and HTs are, hence, attributable to the moduli dynamics.
What is more, we observe that also in the sparse case there
is an agreement between the mean-field theory and sparse and
dense CT and HTs for what concerns the energy at low-enough
temperatures.

VII. ANALOGY WITH THE ABELIAN LATTICE
GAUGE THEORY

In the Introduction we mention the fact that the three-
dimensional Abelian lattice gauge theory presents a second-
order phase transition, mappable to the 2D Kosterlitz-Thouless
transition. The low-temperature phase is unmagnetized, a
property which follows from the model gauge invariance via
Elitzur’s theorem, stating that noninvariant observables under
gauge transformations present a vanishing expected value in
a gauge-invariant system. We believe this mechanism to be
the origin of the vanishing of the magnetization also in our

4-XY model in a homogeneous sparse topology, mentioned
in the previous section. According to this argument, the
stochastic set of homogeneous quadruplets acquires a kind
of gauge invariance. For example, it is possible that in a
sparse list of random quadruplets there is a proliferation of
sets of four spins occupying the bonds of four neighboring
quadruplets as in Fig. 1, hence allowing for a gauge symmetry
which is lost in denser topologies. This would justify the
fact that in the absence of topological correlations, the one-
point (magnetization) and the two-point (phase and intensity
correlators) operators vanish, since they are not invariant under
four-spin transformations (while four-point correlators, as the
different terms in the Hamiltonian, are nonzero in general).

In any case, we stress that such a symmetry does not
completely forbid the presence of magnetized configurations:
In Fig. 20 one observes two maxima of the distribution h(mx)
at nonzero values of mx . These magnetizations, however, are
much less probable than the most probable value at mx = 0.

An analogous mechanism is behind the vanishing of
the average magnetization found in both XY and spherical
models in the presence of topological correlations. In this
case, the transformations leaving the total energy invariant
(up to fluctuations) are only those connecting phase-wave
configurations with different allowed slopes (cf. Fig. 13),
which are nonlocal in the sense that they involve all the spins,
depending on their frequencies: δφi = (�′ − �)ωi . Since the
magnetization and the two-point correlators are not invariant
under such transformations, one expects the vanishing of their
expectation values even at low temperatures.

VIII. CONNECTION WITH OPTICS AND POSSIBLE
EXPERIMENTAL REALIZATIONS

Interpreted from the point of view of optics, the results
of our analysis lead to several straightforward consequences
in the field of multimode laser formation. Perhaps the most
immediate result, not captured by approaches that neglect
the role of the frequencies, is the existence of a correlated
phase without global O(2) order, whose microscopic origin
is the phase wave. We now explain how this phase can have
experimentally accessible consequences in the form of a phase
delay of the ultrashort electromagnetic pulses resulting from
the nontrivial mode-locking in the presence of FMC [44,46].
Such a temporal delay should be experimentally accessible,
as similar carrier phase delays are measured even in ultrashort
lasers [48].

A. Phase delay and phase wave

Let τ be the time measured in units of the time interval be-
tween two pulses, which in the statistical physical framework
can be associated to a microscopic unit of time evolution,
for example, a MC step. Let an(τ ) = An(τ )eıφn(τ ) be the nth
electromagnetic mode at the MC time τ . Consider also the
microscopic time unit t � τ describing the evolution of the
electromagnetic pulse, whose form is

E(t |τ ) =
N∑

n=1

An(τ )eı[2πωnt+φn(τ )]. (25)
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FIG. 22. Electromagnetic pulse in time [Eq. (25)], with ω0 =
374, δ = 1 [cf. Eq. (9)], in correspondence of the two phase-wave
configurations in Fig. 12, with slopes �1 and �2. The carrier-envelope
delay indicated as horizontal arrows is a function of � and ω0.

In the low-temperature phase (i.e., the mode-locking phase
at high pumping rate) of a system with HT, all electromag-
netic modes exhibit a common phase φn = φ up to thermal
fluctuations, and there is no phase delay in the resulting E.
In contrast, the nontrivial ML induced by the CT is such
that the phase velocity dE/dt |t0 changes from pulse to pulse,
where t0 is a reference time with respect to the position of
the maximum envelope at a given τ . The time delay of the
field with respect to the envelope is a nontrivial function of
the phase-wave slope � and of the central frequency ω0 [see
Eq. (9)]. We show in Fig. 22 the form of the pulses at different
thermalized configurations characterized by different τ ’s, and
their corresponding phase waves, from which the fields E have
been calculated through Eqs. (9) and (25).

In summary, the relaxation of the narrowband approxima-
tion requires the introduction of the role of mode frequencies,
through the FMC, Eq. (3). We have seen in Secs. V and VI how
this, in turn, induces the phase-wave mechanism. We propose
that, whenever the role of the frequencies of a multimode
laser is not negligible, and if the present model effectively
describes the pulse formation (as is the case of the passive
mode-locking laser in a closed cavity, which satisfies these two
conditions), it should be observable a carrier-envelope delay of
stochastic nature, of a magnitude changing, in general, from
pulse to pulse (as in Fig. 22). Such single pulse dynamics,
and also its relationship to experimental measurements of the
average signal over several (thousands) pulses, is currently
under investigation.

B. Nonequipartite condensation

The nonequipartite condensation phenomena may manifest
in experimental circumstances more complicated than those
of the multimode cavity resonant, such that the dilution
of interaction between modes can be tuned through some
mechanism. In a random laser, this is determined by the
spatial separation between electromagnetic modes, since the
coupling between four of them is proportional to their spatial

overlap [17]. In a situation in which the leading interaction
is given by the disordered version of Eq. (5), one expects to
observe, by varying the spatial concentration of modes, an
abrupt transition from a regime with single isolated peak
spectra, with a few number of very intense modes, to a
continuous spectra in which the optical intensity is roughly
equidistributed among different modes.

In this spirit, we propose an interpretation of the results of
the experiment performed in Ref. [49], the first experimental
observation of the onset of mode-locking order in random
lasers. In this experiment, a sample of nanoparticles is
immersed in a gain medium, and the pumping protocol is
such that the spatial region of the sample to be pumped can be
continuously enlarged, though maintaining the overall optical
power constant. In this way, when a large fraction of the
sample is illuminated, the onset of a continuous collective
spectra is observed, corresponding to a large amount of
overlapping modes. When, instead, only part of the sample
is pumped, the activated modes are low-overlapping in space,
their interaction is sparse, and the intensity behavior is as that
of the nonequipartite phase described in Sec. III.

C. Gain and intensity spectrum

One of the most easily accessible experimental quantities
in laser setups is the intensity spectrum of the signal, I (ω).
In our framework the spectra can be directly evaluated so to
allow for a straightforward comparison.

For the study of the spectra, it is interesting to consider the
introduction of a nonflat gain curve [11], which generalizes
the Hamiltonian [Eq. (5)] in the following way:

H = −
∑

s

GsA
2
s − N

8N4

∑
spqr

AspqrAsApAqAr

× cos(φs − φp + φq − φr ). (26)

We consider Gaussian gain curves Gs ≡ G(ωs), G being a
Gaussian distribution with the maximum at the center ω0 of
the spectrum, and variance σg . In experiments, the temperature
is typically constant, while the optical energy ε is ranged. To
correctly compare with our simulations, where T varies at
constant ε, we measure the intensity spectrum as I (ωj ) =
〈|aj |2〉/

√
T . In this case, to be consistent with the photonic

counterpart, one also has to consider a temperature rescaled
gain curve, G(ω,T ) = T G0(ω), with a reference gain curve
G0(ω).

We now summarize the results of our numerical analysis of
the Hamiltonian [Eq. (26)]. As a first observation we point out
that the system behavior is robust against the inclusion of the
local gain term: The critical properties and the general features
of thermodynamic phases described in the previous sections
remain unchanged.

In the IW regime the intensity spectrum is rather influenced
by the shape of the gain curve; see Figs. 23 and 24. In
general, the transition causes an abrupt change in the intensity
spectrum. Above the lasing threshold, in the ML regime, the
intensity spectrum is mainly determined by the topology of
the interactions and it is stable against the introduction of a
nonflat gain curve. For HT, the intensity spectrum is flat for
high-enough pumping; see Fig. 23. This reflects the fact that in
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FIG. 23. (Color online) Intensity spectra for a HT system with
N = 150 and N4 = N 2 at three different temperatures. For this
system the transition is at Tc(150) = 0.369(3). The gain curve is
Gaussian with mean in the center of the considered frequencies.
(Left) Gain profile with larger variance, σg = N . (Right) Gain profile
with smaller variance, σg = N/4.

HT the frequencies do not play any role, besides the gain curve,
and this role becomes no longer dominant in the ML phase.
In particular, comparing to the case of an approximately flat
gain curve, the spectrum does not change above the transition
threshold (cf. left panel of Fig. 23).

The intensity spectrum has full sense in the CT, where,
instead, the frequencies play a relevant role in determining the
topology. In this case, the transition is generally more abrupt
in the intensity spectrum. Above the threshold the spectrum is
peaked around the central frequencies disregarding the shape
of the gain (Fig. 24), as the modes at the central frequencies
are effectively strongly coupled (cf. Fig 2). In other words, the
ML spectrum shape observed in experiments results from our
analysis to be a direct consequence of the frequency-dependent
mode interactions resulting from the FMC. In Fig. 25 this
outcome is emphasized considering a gain curve with an
average different from the central frequency of the amplified

FIG. 24. (Color online) Intensity spectra for a CT system with
N = 150 and N4 = N 2 at three different temperatures. For this
system the transition is at Tc(150) = 0.386(3). The gain curve is
Gaussian with mean in the center of the considered frequencies.
(Left) Gain profile with larger variance, σg = N . (Right) Gain profile
with smaller variance, σg = N/4.

FIG. 25. (Color online) Intensity spectra for the same system of
Fig. 24 but with a gain curve σg = N/4, centered in ωj = N/6.

spectrum: Both the frequency of maximum intensity and the
whole shape of the spectrum abruptly change at the ML
threshold.

The observed effect may furnish a theoretical mechanism to
explain the so-called gain-narrowing phenomena [11,50,51].

D. Other possible experimental consequences

In this section we propose two further aspects of our
analysis that may have a direct experimental consequence.
The first one is the possibility of experimentally measuring
the vanishing of two-point (phase and intensity) correlators. If
the correlation measurements are averaged over times much
larger than a light round-trip in the cavity, the vanishing of
two-point correlators should be observable. The vanishing of
two-point correlators may, then, signal the dominance of the
nonlinear interaction mediated by the FMC, which leads to null
two-point functions, as emerges from our analysis in Sec. V.
Even in random lasers, intensity-intensity correlations can be
measured (see, for example, Refs. [52–55]). Also, phase-phase
correlations are measured in conventional lasers with standard
techniques [56] and, in principle, the phase wave could be
observed through phase correlation oscillations (as in Fig. 14)
if a sufficiently high time resolution is achievable.

Second, according to the analysis presented in Sec. V, the
metastable phase in the ML regime is expected to decrease with
the size of the system. This is observed even in the HT, where
the role of frequencies is irrelevant. In the optical counterpart
this would imply that the region of optical bistability [57]
should decrease as the number of modes in the multimode
mode-locking setup increases. The other way around, the
dependence/independence of this phenomena on the number
of nodes could be used to infer whether the optical bistability
is a consequence of the (finite-size) metastability observed in
our simulations or whether its origin is different.

IX. CONCLUSIONS AND PERSPECTIVES

The present analysis studies vector statistical models with
four-body interactions beyond the mean-field approximation.
From our numerical study it emerges that these systems present
a very rich phenomenology, among which we highlight the
absence of global symmetry breaking in the presence of
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quadruplet correlations, the absence of symmetry breaking
and the smoothness of the transition in the XY model for
N4 ∼ O(N ) homogeneous interacting terms, the nonequipar-
tite condensation of the complex spherical model on sparse
[N4 ∼ O(N<2)] graphs, and the slowing down of the dynamics
in the low-temperature phase. Other rather unconventional
results regarding these models are exposed in Secs. V and VI.

From a methodological point of view, we have provided
a parallel algorithm to MC sample systems with p = 4-body
interactions in an efficient way [i.e., in a time O(N4) instead of
O(N N4)] in the unfavorable situation in which the interaction
network is nonsparse.

Moreover, we have stressed that these results, presented
in a statistical physical framework, have experimental con-
sequences in the field of photonics as these models describe
also the interaction between electromagnetic modes is passive
mode-locking lasers. In principle, they cover a broad range of
experimental circumstances in which the modes are subject to
a nonlinear quartic interaction and to a stochastic drift. In the
case of laser formation the drift is induced by the spontaneous
emission, considered as an effective thermal bath, and the
different light regimes are associated with different resulting
thermodynamic phases of the statistical model. This is well
established in the case of the mode-locking transition of a
closed cavity laser, which is solvable by mean-field theory in
the so-called narrowband approximation [5,44]. The present
work goes beyond mean field and allows to take into account
frequency correlations. Our results not only account for general
features of discontinuous transitions observed in mode-locking
experiments, but also predicts a variety of phenomenology
such as the vanishing of two-mode correlations, the carrier
phase delay of electromagnetic pulses, or the nonequipartite
condensation, which presumably lies at the origin of the
experimental observations of Ref. [49], and in this paper we
determine the conditions under which these phenomena arise.
The model under analysis invites us to establish further links
between the present results and other quantities measured in
laser experiments, as there are further quantities provided by
the MC analysis that are experimentally accessible (intensity
and phase correlations and intensity spectra, hysteresis of the
energy curve).

This setup allows for an analysis with additional ingredients
such as quenched interaction disorder [17] and any type of
interaction topology. This freedom is sufficient to enlarge the
spectrum of experimental situations that may be effectively
described in the statistical approach. Going beyond the passive
mode-locking transition in establishing the link between
optics and statistical physics is a challenging problem. That
problem would include learning under what circumstances a
Hamiltonian formulation is possible and what the properties
of the couplings appearing in Eq. (26) describing a given
experimental condition are. Such a query is indeed a big
theoretical challenge, which has motivated intense research in
the last years; see Ref. [20] for a review of the state of the art.
In random laser phenomena there is no closed cavity and this
fact poses several theoretical difficulties in the treatment, such
as the very definition of lasing mode [58,59], the presence of
dissipative, outer-radiative modes and their effective influence
in the set of lasing modes [60], the possible existence of an
imaginary part in the coupling interaction, and the existence

of correlations in the coupling disorder and, possibly, in the
noise [20,61].

Besides the direct photonic interpretation, the Hamiltonian
Eq. (5) is quite general, and the form of topological correlations
[introduced as the FMC constraint, Eq. (8)] is a very natural
way of selecting the degrees of freedom which effectively
interact. For this reason, we believe that the physical conse-
quences of the present study are not limited to optics, but are
possibly relevant in more general situations described by a
scalar field subject to a nonlinear interaction.

ACKNOWLEDGMENTS

We thank Claudio Conti, Andrea Crisanti, Baruch Fischer,
Neda Ghofraniha, Marco Leonetti, and Giorgio Parisi for
motivating discussions. The research leading to these results
has received funding from the Italian Ministry of Education,
University and Research under the Basic Research Inves-
tigation Fund (FIRB/2008) program/CINECA Grant Code
RBFR08M3P4 and under the PRIN2010 program, Grant Code
2010HXAW77-008 and from the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework
Programme FP7/2007-2013/ under REA Grant Agreement No.
290038, NETADIS project.

APPENDIX A: THE MEAN-FIELD SOLUTION OF THE
FERROMAGNETIC MODEL

Consider the fully connected ferromagnetic model

H = − 1

N3

1,N∑
jklm

ajaka
∗
l a

∗
m,

with
∑

j

|aj |2 = εN. (A1)

Defining aj = σj + iτj , the partition function is

Z =
∫

S

exp

⎡
⎣ β

N3

∑
jklm

(σjklm + τjklm + ϕjklm)

⎤
⎦dσdτ ,

where the subscript S means that the integral is evaluated over
the hypersphere [Eq. (A1)] and

ϕ1234 = 1
3 (ψ12,34 + ψ13,24 + ψ14,23),

ψ12,34 = σ12τ34 + σ34τ12,

and we are using the shortening

σ12···k = σ1σ2 · · · σk.

Introducing the magnetizations

mσ = 1

N

∑
j

σj , mτ = 1

N

∑
j

τj ,

the partition function is written as

Z =
∫

Dm e−NβF (m),

with

βF (m) = −β
(
m2

σ + m2
τ

)2 − ln
[
π
(
ε − m2

σ − m2
τ

)]− 1.
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Solving the integral over the magnetizations with the saddle-
point method leads us to consider

β
dF

dmσ,τ

= 2mσ,τ

[
− 2β

(
m2

σ + m2
τ

)+ 1

ε − m2
σ − m2

τ

]
= 0.

The paramagnetic (PM) case with mσ = mτ = 0 is always a
solution. For

ε2β > 1 → T < ε2, (A2)

also a ferromagnetic (FM) solution appears with

m2
σ + m2

τ = ε

2

(
1 +

√
1 − 1

ε2β

)
.

The average energy is

〈H〉 = − ∂

∂β
lnZ = −ε2

(
m2

σ + m2
τ

)2 + O
(

1

N

)
,

and it is zero for the PM solution and

〈H〉
N

= −ε4

4

(
1 +

√
1 − 1

ε2β

)2

(A3)

for the FM solution.

The Hessian of the functional F yields the stability
properties of the previous solutions. The PM solution mσ =
mτ = 0 is associated with two degenerate positive eigenvalues,
so the PM solution is always stable. The FM solution has
a null eigenvalue and a positive eigenvalues; then, in the
region where the FM solution exists, it is always marginally
stable.

Then, in the region of the phase diagram given by Eq. (A2),
the stable PM and the marginal FM solutions coexist. The
equilibrium transition is at the point

ε2βc = 2.455 408 . . . ,

where the free energy of the two solutions are equal. At
lower temperature Ffm < Fpm and the PM solution becomes
metastable.

APPENDIX B: ENERGY SCALING IN THE DISORDERED
SPHERICAL MODEL

We suppose a Gaussian distribution of couplings P (J ),
with average J0 and variance σ . In this case, we can write an
n-replicated partition function,

Zn =
∫ N∏

j=1

dajda∗
j

∫ ∏
[jklm]

J
(4)
[jklm]P (J[jklm]) exp

{
−β

n∑
b=1

HJ [{a(b)}]
}

=
√

2πσ 2

∫ N∏
j=1

dajda∗
j exp

⎧⎨
⎩

1,N∑
[jklm]

⎡
⎣J0β

n∑
b=1

ab
j a

b∗
k ab

l a
b,∗
m + 1

2
σ 2β2

⎛
⎝∑

b

ab
j a

b,∗
k ab

l a
b,∗
m

⎞
⎠

2⎤
⎦
⎫⎬
⎭,

where [jklm] points out distinct interacting quadruplets. Unlike the fully connected case, in a diluted case the “spatial” index of
the modes is not removed. However, just for scaling purposes, one can try and use a mean-field approximation for the diluted case
as well, assuming that

∑
N4

∼ (N4/N
4)
∑

jklm, where the sum runs over all indices. In this way one can rewrite the exponent in
terms of the overlap matrices and magnetizations as usual, so to obtain (cf. Ref. [18])

E

N
= − 1

N

d

dβ
lnZ = − 1

N

d

dβ
lim
n→0

Zn − 1

n

= − 1

2

∑
b

g(Qb1,Rb1) − k(mσ ,mτ ),

where (a1 ≡ σ1 + iτ1)

Qab =
∑

1

σa
1 σb

1 + τ a
1 τ b

1

2N
,

Rab =
∑

1

σa
1 σb

1 − τ a
1 τ b

1

2N
, mσ = 1

N

∑
1

σ1,

g(Qab,Rab) = β
(
Q2

ab + R2
ab

)[1

9
σ 2

4

(
Q2

ab + R2
ab

)N4

N

]
,

k
(
ma

σ ,ma
τ

) = 1

2

[(
ma

σ

)2 + (ma
τ

)2]{ 1

12
J

(4)
0

[(
ma

σ

)2 + (ma
τ

)2]N4

N

}
.

In the case of equipartition, one has O(N ) spins of amplitude O(1), so all the overlap matrices and magnetizations are O(1).
Then the extensive energy in both cases results as in Eq. (12).
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