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Orbital Josephson interference in a nanowire proximity-effect junction
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A semiconductor nanowire based superconductor-normal-superconductor (SNS) junction is modeled theoret-
ically. A magnetic field is applied along the nanowire axis, parallel to the current. The Bogoliubov-de Gennes
equations for Andreev bound states are solved while considering the electronic subbands due to radial confinement
in the N section. The energy-versus-phase curves of the Andreev bound states shift in phase as the N -section
quasiparticles with orbital angular momentum couple to the axial field. A similar phase shift is observed in the
continuum current of the junction. The quantum mechanical result is shown to reduce to an intuitive, semiclassical
model when the Andreev approximation holds. Numerical calculations of the critical current versus axial field
reveal flux-aperiodic oscillations that we identify as a novel form of Josephson interference due to this orbital
subband effect. This behavior is studied as a function of junction length and chemical potential. Finally, we
discuss extensions to the model that may be useful for describing realistic devices.
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I. INTRODUCTION

The Josephson effect is characterized by a current-phase
relationship (CPR) linking macroscopic current flow to the
phase gradient of the superconducting order parameter [1].
The precise form of the CPR for a superconducting weak
link depends on intrinsic factors such as junction geome-
try, material properties, coherence lengths, etc., in addition
to extrinsic variables like temperature and magnetic field.
In superconductor-normal-superconductor (SNS) junctions in
which the N section is long enough to suppress direct tunneling
of Cooper pairs, but shorter than the N -section phase coher-
ence length, a supercurrent may be carried by quasiparticles
undergoing Andreev reflection at the S-N interfaces [2–5].
Planar SNS junctions of width large compared to the S-section
superconducting coherence length have been studied in great
detail [6] (width refers to the dimension perpendicular to
the current). These have revealed, for example, Fraunhofer
oscillations of the critical current Ic with respect to an
externally applied out-of-plane magnetic field [7–9]. For
junction widths comparable to the S-section coherence length,
i.e., the narrow junction limit, this becomes a quasi-Gaussian,
monotonic decay of the critical current [7,10,11]. Recently,
attention has been given to nanoscale, quasi one-dimensional
(1D) SNS junctions, such as those readily engineered by
contacting semiconductor nanowires with superconducting
leads [12–16]. Gating the semiconducting N section allows
for modulating the supercurrent by controlling the chemical
potential [12,15]. The oscillations of the magnetoresistance
of a nanowire SNS junction in the voltage-biased state (i.e.,
no dc supercurrent) versus an axial magnetic field have been
studied [16]. Efforts to realize Majorana fermion quasiparticles
in 1D semiconductors with strong spin-orbit interaction and
proximity coupling to a superconductor [17–20] have further
raised interest in this type of junction. Theoretical results have
indicated that the behavior of the critical current in such a
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junction versus magnetic field and chemical potential can be
used to identify topological phases [21].

Previous theoretical descriptions of quasi-1D SNS junc-
tions [10,11,22,23] have not fully considered the effects
of nanoscale confinement on the CPR, in particular the
implications of orbital angular momentum coupling to an
external magnetic flux. Here we provide a quantum mechanical
description of an idealized junction with a flux applied along
the nanowire axis (parallel to the current). For a planar
junction, no significant modification of the CPR with an
axial flux is expected, as azimuthal motion of the carriers
is absent. However, for a cylindrical geometry, azimuthal
motion leads to a nontrivial effect, which we identify as a
previously unstudied form of Josephson interference. This is
due to the coupling between Andreev quasiparticles (bound
states and continuum states) with orbital angular momentum
and the axial flux, which results in phase shifts of the
energy-versus-phase for these current carrying states. The
total current summed over all channels (occupied orbitals) can
display interference. In contrast to Fraunhofer interference in
wide planar junctions, the flux is aligned with the current and
the oscillations are not periodic in the flux quantum. This effect
is only present in nanoscale junctions with lateral dimensions
(i.e., diameter) smaller than the London penetration depth.
This is a regime in which the general theorem of Byers and
Yang [24] does not apply. It is shown that the supercurrent
from continuum states also contributes to this interference.
For certain junction parameters, the interference effect can
dominate the Ic versus � characteristics. Semiclassically, the
effect is intuitively understood by the pickup of a magnetic
phase by Andreev pairs with an azimuthal velocity component
as they cross the junction ballistically. The aim of this paper is
to theoretically describe this type of Josephson interference in a
fully quantum mechanical way. In particular, we are interested
in understanding the effect in isolation from the additional
complications of real devices, such as noncylindrical contact
geometry, interfacial potential barriers, etc. We consider in
the discussion section how to modify the present model
to better describe realistic devices. Here, we consider the
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FIG. 1. (a) Schematic of the nanowire SNS junction of length L.
It is modeled as a cylinder with a nanoscale diameter d smaller than
both the London penetration length and the S-section phase coherence
length. An axial magnetic field B = B‖ x̂ penetrates the cylinder. (b)
The superconducting order parameter has the magnitude �0 in the S

section, and is zero in the normal section, with a jumplike variation
at the boundaries.

case where the diameter is smaller than the superconducting
coherence length in the S section, so that the phase of the
order parameter is uniform around the S-section circumference
in any magnetic field up to the critical field of the leads, Hc.
Spin-orbit and Zeeman effects in the N section (e.g., relevant to
III-V semiconductor nanowires) are neglected, and we assume
no barriers at the S-N interfaces. Furthermore, we neglect
magnetic depairing effects.

II. MODEL

Consider an SNS junction created by a semiconducting
nanowire contacted by superconducting leads. A cylindrical
coordinate system r = (x,ρ,θ ) is used, with the nanowire axis
along x̂. The junction is modelled as a cylinder of radius R0.
The diameter d = 2R0 of the cylinder is assumed smaller than
the S-section London penetration depth λS , and the S-section
superconducting coherence length ξS . In Fig. 1(a), we divide
the cylinder into three regions, with region 1 the superconduct-
ing section corresponding to the left lead (x < −L/2), region 2
the normal section corresponding to the nanowire (|x| < L/2),
and region 3 the S section corresponding to the right lead
(x > L/2). The leads are connected to bulk superconductors at
temperature T . Figure 1(b) shows the corresponding variation
of the superconducting order parameter inside the nanowire.

We assume uniform electrostatic potentials in each section
(i.e. no scattering potential is included and transport is
ballistic), and no potential barrier at the S-N interfaces. The
effective mass of the electron is assumed to have the same
value m∗ in both S and N sections so that there is no Fermi
wave-vector mismatch (FWVM) at the S-N interfaces. This
assumption allows us to use Kulik’s method [25] to calculate
the supercurrent of the junction. The advantage of this method
is that it gives an analytical expression for the bound-state
energies, which provides us an intuitive way to understand the
interference effect and connects our model to an approximate
semiclassical picture. We note that inclusion of FWVM or
interfacial barriers would not alter the basic mechanism of

orbital Josephson interference that is demonstrated by this
simpler model, but would require use of a more complicated
transmission matrix formalism to calculate supercurrents. Our
expectations for the qualitative effects of barriers are discussed
in Sec. V.

An axial magnetic field B = B‖ x̂ penetrates the cylinder.
Any screening of the magnetic field in the S sections is
neglected, as we have d < λS . In the Coulomb gauge, the vec-
tor potential is A = Aθ θ̂ = (B‖ρ/2)θ̂ . Using the superscript
α = 1,2,3 to refer to the three sections of the junction (with
the N section corresponding to α = 2), the single-electron
Hamiltonian (excluding the superconducting pairing potential)
in the presence of the magnetic field can be written as

H0 = −μ + Hx + Hθ +
∑

α=1,2,3

V α(ρ); (1a)

Hx = − �
2

2m∗
∂2

∂x2
, (1b)

Hθ = 1

2m∗

(
−i�

1

ρ

∂

∂θ
− eAθ

)2

. (1c)

Here, Hx describes the kinetic energy of motion along the axis
of the cylinder, Hθ the kinetic and magnetic energies of the
azimuthal motion around the cylinder, and V α(ρ) the radial
confining potential of the cylinder in section α.

Radial confinement results in charge carriers occupying
transverse subbands denoted by a pair of quantum numbers.
We use the pair (n,l) in the N section, and (p,l′) in the S

sections, where n and p are the radial quantum numbers,
and l,l′ the orbital angular momentum quantum numbers. The
chemical potential in the cylinder is defined as the energy
difference between the bottom edge of the lowest subband
and the Fermi energy, and is denoted by μ (Fig. 2). The
numerical calculations were performed using the electron
effective mass m∗ = 0.023me corresponding to InAs. Zeeman
and spin-orbit effects on the critical current of the junction
(studied in Ref. [26]) are not considered here, in order to focus
on the effects of orbital angular momentum. In Sec. V, we
discuss the conditions under which either the orbital effect or
the Zeeman + spin-orbit effects could be more dominant.

In this paper, we do not write out an explicit form for V α(ρ),
and do not solve for the radial wave functions corresponding
to the subbands (n,l) in any section of the cylinder. Instead,
we use a shell conduction model for the N section. This
is appropriate for certain III-V nanowires (such as InAs
or InN), where the charge carriers are typically confined
near the surface due to a positive surface potential, forming
a surface accumulation layer [27,28]. Assuming a strong
downward surface band bending (∼100–200 meV) [29], the
radial position of the carriers in all subbands (n,l) is taken
to be R � R0. This greatly simplifies the calculation of the
eigenvalues of Hθ [Eq. 1(c)]. However, we emphasize that
the qualitative results obtained here should not be limited to
this shell conduction model, particularly since we find a weak
dependence of the interference effect on R.

Superconductivity in the leads is described by the order
parameter (pairing potential) �(r), which in the general case,
must be calculated self-consistently. We use a simplified model
in which � is constant, so that proximity effects such as
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FIG. 2. Subband energies for the electrons in the N section [i.e.,
the eigenenergies of H0 in Eq. (1) at k = 0] vs the normalized
magnetic flux � = (πB‖R2)/(h/e). The l = 0 and l = ±1 subbands
with n = 0 are shown. The energies are parabolic because of the

�
2

2m∗R2 (l − �)2 contribution to the energy by Hθ [see Eqs. (1c)
and (4a)]. The upper dashed line is the Fermi energy. The chemical
potential μ is the Fermi energy measured from the bottom of
the lowest subband, ζ0,0 (lower dashed line). We have assumed
ζ0,±1 = ζ0,0, so the bottoms of the n = 0 subbands have the same
energy. The effective chemical potential for electrons at flux �,
μe

n,l(�), is the difference between the subband energy and the Fermi
energy at that flux. This is shown for the subband (n,l) = (0, −1)
at � = 1. For the holelike states (not shown), the subband energies
[Eq. (4b)] are inverted (mirrored) with respect to the E = EF line,
and the l quantum number negated (l → −l). The effective chemical
potential for holes is given by μh

n,l(�) = μe
n,−l(�).

the reduction of � near the S-N interfaces due to “reverse”
proximity are neglected. For ρ < R0, there is a jumplike
variation at the boundary of each section [Fig. 1(b)]:

�(r) =
⎧⎨
⎩

�0e
iχL, x < −L/2,

0, |x| < L/2,

�0e
iχR , x > L/2.

(2)

Outside the radius of the cylinder, the order parameter is zero:
�(r) = 0 when ρ > R0. Here, �0 is the superconducting
energy gap value in the leads, and χL(R) is the phase of the
superconducting condensate in the left (right) lead. The order
parameter is zero in the N section because of the lack of
attractive electron-electron interactions (repulsive interactions
are present in general, but neglected here).

In Eq. (2), a spatially uniform � is assumed in the S sections
in all magnetic fields up to Hc. This is justified if the following
two conditions hold: (i) the diameter of the cylinder is smaller
than the superconducting coherence length in the S section,
d < ξS . The change in the phase of the order parameter around
the circumference of the cylinder, δχ , is constrained to integer
multiples of 2π , because � has to be single valued (i.e., due
to fluxoid quantization [30]). When d < ξS , one can assume
δχ = 0, since ξS sets the length-scale for the spatial variations
of the order parameter [31], so � must be uniform. The validity
of the assumption d < ξS in experimental devices is discussed
in Sec. V. (ii) The injected current in the SNS junction is much

smaller than the critical current of the superconducting leads.
Otherwise, the superfluid flow in the S sections cannot be
neglected, and a self-consistent determination of � is required,
as performed in Ref. [32]. Here, we assume the critical current
of the junction is bottle-necked in the N section, which is
reasonable given that the critical currents of nanowire junctions
are typically small compared to those of the S leads.

III. THEORY

We wish to calculate the current-phase relationship (CPR)
of the junction in the presence of an axial magnetic field.
First, the spectrum of discrete levels (Andreev bound states)
in the junction is obtained. Next, the current from the discrete
levels, as well the “continuum” levels with energy |E| > �0 is
calculated. It is shown that energy eigenstates corresponding
to these energy levels (both the bound states and the continuum
states) follow the single-electron subband structure imposed
by the Hamiltonian H0 [Eq. (1)]. In particular, we show that
the CPR is modified by the axial magnetic flux in a way that
depends on the orbital angular momentum of the subbands.
This leads to a form of Josephson interference when one or
more subbands with orbital angular momentum are occupied.

A. Bogoliubov-de Gennes equations

The wave functions of the elementary excitations of the SNS
junction are identified as the solutions to the Bogoliubov-de
Gennes [31] (BdG) equations:(

H0 �(r)
�∗(r) −H ∗

0

)(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
, (3)

where H0 is given by Eq. (1), and u(r) and v(r) are particle-
and holelike wave functions. The asterisk (∗) denotes complex
conjugation.

The solution strategy for Eq. (3) starts with finding the
solutions to H0. Let us first consider the N section. Given
the simple forms of Hx and Hθ in Eq. (1), it is clear that
the single-particle eigenfunctions are plane waves in the x,θ

directions of the form eikxeilθφn,l(ρ). The linear momentum
along the axis of the cylinder is given by �k, and the radial
eigenfunction in the subband (n,l) is given by φn,l(ρ). As
discussed above, we use a shell conduction model for the N

section, so φn,l is not written out explicitly, but assumed to
result in a radial position R � R0 for the carriers. The most
general solutions u(r),v(r) to Eq. (3) are expansions over these
single-particle solutions [33,34]. However, since �∗(r) = 0 in
the N section, (k,n,l) are good quantum numbers and the
single-particle energies are given by

H0u(r) = {�2k2/(2m∗) + [�2/(2m∗R2)](l2 + �2)

−εl + ζn,l − μ}u(r), (4a)

−H ∗
0 v(r) = {−�

2k2/(2m∗) − [�2/(2m∗R2)](l2 + �2)

−εl − ζn,l + μ}v(r). (4b)

Here, � = (πB‖R2)/(h/e) is the normalized magnetic flux
enclosed by the charge carriers, εl = [�2/(2m∗R2)](2l�), and
ζn,l is the radial confinement energy associated with φn,l(ρ).
The electron subband energies (i.e., the eigenvalues of u at
k = 0) are plotted in Fig. 2, and are parabolic in shape versus
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the magnetic flux. For the corresponding eigenvalues for v,
the parabolas are inverted (mirrored with respect to the Fermi
energy, EF ). This gives v(r) its holelike character: its group
velocity vg = 1

�
∇kE is opposite to its wave vector k (i.e.,

it is retroreflected—see Ref. [35]). Note, however, that for a
given k, charge is transported in the same direction by the two
wave functions, as the retroreflected hole has opposite charge
to the electron. The eigenvalues associated with u(r),v(r)
are not equal in magnitude, as the term εl has the same
sign in both lines of Eq. (4). This follows because of the
complex conjugation of the diagonal term on the second row of
Eq. (3), and is a manifestation of the breaking of time-reversal
symmetry in the presence of a magnetic field: the retroreflected
particle sees the same magnetic field as the incident particle,
rather than a time-reversed field Aθ → −Aθ .

B. Andreev bound states

Following the original work of Kulik [25], we calculate the
spectrum of the bound states of the nanowire SNS junction,
however, here we allow the solutions to carry finite orbital
angular momentum.

Suppose there is a solution �(r) = (u(r),v(r))T to Eq. (3),
with energy E within the gap, |E| < �0. Since we assume
no FWVM or barriers at the S-N interface, the right- and
left-moving solutions �± can be separated [25]. We disallow
superpositions of (n,l) subbands in the N section. This is
justified because (i) we have assumed the ballistic regime,
so no scattering-induced subband-mixing occurs, and (ii) the
pairing potential, Eq. (2), is zero in the N section, and so it
does not mix the (n,l) states (see Ref. [34]).

In the S sections, Cooper pairing generally mixes subbands
with different radial quantum numbers p, but the orbital angu-
lar momentum number l remains a good quantum number [33].
The latter follows from the cylindrical symmetry of Eq. (3),
which in turn follows from a cylindrically symmetric H0 and
a spatially uniform �. For a given quantum number l and
energy E, the most generic single-particle wave function in
the leads is given by eilθ

∑
p βp,Eeikp,Exφp,l = eilθYl,E(x,ρ).

In each term of the sum, kp,E adjusts itself such that the energy
of that term is E. For |E| < �0 considered here, kp,E also has
an imaginary component, resulting in an exponential decay of
the wave function inside the S section [35]. In general, there is
significant freedom in the choice of the expansion coefficients
βp,E , which will allow matching of the radial wave functions
in the N and S sections.

The wave functions �± can be written as

�±
n,l,E =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A±eilθ e±ike
n,lxφn,l(ρ)

( 1
0

) +
B±eilθ e±ikh

n,lxφn,l(ρ)
( 0

1

)
, |x| < L/2,

C±eilθψR
l (x,ρ)

(
eiχR

γ ±
)
, x > L/2,

D±eilθψL
l (x,ρ)

(
γ ±

e−iχL

)
, x < −L/2.

(5)

The wave numbers ke
n,l and kh

n,l represent the momenta of the
electron- and holelike components in the N section, respec-
tively. γ + = �0(E + i

√
�2

0 − E2)−1 is the BCS coherence
factor in the leads, and γ − is its complex conjugate. ψL,(R)

l are,

in general, superpositions of the Yl,E functions with different
E, due to the intersubband mixing induced by �. Since there
is no FWVM or barrier at the S-N interfaces, �± has to be
continuous at |x| = L/2. In order for this to be possible, we
must have ψR

l (L/2,ρ) = ψL
l (−L/2,ρ) = φn,l(ρ). A solution

can always be achieved by a correct choice of the expansion
coefficients βp,E , so the form given in Eq. (5) for �± is valid.

We now concentrate on the N section, and derive the
quantization rules for the energies of the bound states.
Asserting that each term of �± in the N section has energy
E, the wave numbers ke

n,l,k
h
n,l are obtained as a function of

energy:

ke
n,l(E) =

√
2m∗

�

√
μe

n,l + E, (6a)

kh
n,l(E) =

√
2m∗

�

√
μh

n,l − E, (6b)

where we have defined an effective chemical potential for an
electronlike (holelike) particle in the subband (n,l) in the N

section μ
e(h)
n,l := μ − �

2

2m∗R2 (l ∓ �)2 − ζn,l . The minus (plus)
sign in the parentheses refers to the electronlike (holelike)
particle, and ζn,l is the radial confinement energy due to φn,l .
The effective chemical potential is the difference between the
energy of the subband (n,l) and the Fermi energy at a given
magnetic field (see Fig. 2), and is a positive quantity for any
subband that is occupied.

The energy quantization rules can be obtained [25] by
finding the set of coefficients {A±, . . . ,D±} that make Eq. (5)
continuous at |x| = L/2. This is only possible if the following
relation holds:

γ 2ei(ke
n,l−kh

n,l )Le∓iχ = 1, (7)

where the junction phase χ = χR − χL enters with a minus
sign when for �+, and a plus sign for �−. Note that
the superscript s = +,− denotes the right- and left-moving
solutions, respectively. The complex phase of the right-hand
side of Eq. (7) must equal 2mπ , with m = 0, ± 1, ± 2, etc.
Since ke

n,l,k
h
n,l depend explicitly on the bound-state energy E

[Eq. (6)], this results in a quantization rule for E, and yields the
bound-state spectrum. This procedure is carried out in Sec. IV
to numerically solve for E as a function of χ .

Quite generally, if �s = (u,v)T is an eigensolution of the
BdG equation [Eq. (3)] with energy E, then �s = (−v∗,u∗)T

is also an eigensolution [31] with energy −E. If �s is a
right-moving solution, then �s is left-moving, and vice versa.
Let s denote the conjugate of s. The wave functions �s and
�s are degenerate at zero field, for all χ [Fig. 3(a)]. This
degeneracy is lifted in the presence of the magnetic field, which
induces a finite phase shift, as will be discussed below. The
pair of solutions (�+,�+) are phase shifted together in one
direction, while the opposite pair (�−,�−) are phase shifted
in the opposite direction [Fig. 3(b)].

C. Andreev approximation

Deriving an analytical expression for the bound-state
spectrum by inserting Eq. (6) into Eq. (7) becomes intractable,
because of the complicated dependence of ke

n,l − kh
n,l on E.

In order to gain insight into the behavior of the bound
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FIG. 3. (Color online) Eigenenergies of the Andreev bound states
of a short (L = 25 nm 	 ξ 0

n,l ∼ 200 nm), cylindrical SNS junction
with no barriers at the S-N interfaces, vs the superconducting
phase difference χ of the leads. Two values of normalized magnetic
flux, � = πR2B‖/(h/e) = 0,2.5, are shown. We concentrate on one
subband (n,l) with n = 0 and l = 1. (a) Zero magnetic field, � = 0.
The energies correspond to the four allowed wave functions (defined
in the main text), and the states are pairwise degenerate for all
χ . (b) � = 2.5, where the degeneracies are lifted, and there is a
phase shift with opposite directions for each pair of states. The
phase shift is small because of the short length of the junction.
The following parameters were used for both panels: μ = 200 meV,

R = 30 nm, and T = 100 mK.

states, we invoke below the well-known Andreev approxi-
mation [2,3,36], in which |ke

n,l − kh
n,l| is considered a small

quantity compared to |ke
n,l| and |kh

n,l|. This approximation
is widely used in the literature for a variety of situations
[25,36–38], but can be violated in some regimes of our SNS
junction. In particular, when the subband energy is close to the
Fermi energy, ke

n,l and kh
n,l become small and the assumption

|ke
n,l − kh

n,l| 	 |ke
n,l|,|kh

n,l| is not justified. Keeping these re-
strictions in mind, we now look at how the CPR of the junction
is modified in the presence of the axial magnetic field.

The effective chemical potential for electronlike (holelike)
particles in the subband (n,l) in the N section can be
written μ

e(h)
n,l = μ − �

2

2m∗R2 (l2 + �2) ± εl − ζn,l , where εl =
[�2/(2m∗R2)](2l�) enters with a plus sign for electronlike
particles. It reflects the coupling of the orbital motion and
the axial field. The Andreev approximation translates to the
following condition: E + εl 	 μe,μh, i.e., the quasiparticle
energy and the coupling to the field are small perturbations
on the single-particle energies. Equations (6a) and (6b) can
be expanded in a Taylor series in the powers of (E + εl). We
calculate ke

n,l − kh
n,l to first order:

ke
n,l − kh

n,l 
 2

�

E + εl

vn,l

, (8)

where vn,l =
√

2(μ − �2

2m∗R2 (l2 + �2) − ζn,l)/m∗ is the veloc-
ity of a particle in the subband (n,l) traveling along the cylinder
axis in the N section.

By inserting (ke
n,l − kh

n,l) into Eq. (7) and equating the
complex phase of the left-hand side of Eq. (7) with 2mπ ,
where m = 0,1,2, etc., we obtain the following expression for

the spectrum of bound states:(
L

ξ 0
n,l

)(
E±

n,l,m

�0

)
− 2arccos

(
E±

n,l,m

�0

)

∓ χ +
(

L

ξ 0
n,l

)(
εl

�0

)
= 2πm, (9)

where ξ 0
n,l = �vn,l/(2�0) is the healing length [37] for the

subband (n,l), and the energy of the bound state depends
on three quantum numbers n,l,m, and the junction phase
difference χ . E+(E−) refers to the eigenenergy of the
right-moving (left-moving) solution. Note that the energy
corresponding to �+ is −E+, for example.

In a short junction, L 	 ξ 0
n,l , Eq. (9) allows only one

m value per solution, and there are four bound states
(�+,�+,�−,�−) per subband (n,l). At zero field, there
are two positive, and two negative solutions at any given
χ [Fig. 3(a)]. For long junctions, there are more than four
bound-state energies per subband, with different m numbers
[37,39–42].

The bound-state spectrum Eq. (9) gives, for the case of no
magnetic field (εl = 0), a result similar to the well known
Andreev levels of a ballistic SNS junction [25,37], but with
a different value of the healing length for each subband. An
example is shown in Fig. 3(a) for subband (n,l) = (0,1) in a
short junction with L = 25 nm 	 ξ 0

n,l ∼ 200 nm. Figure 3(b)
shows the energy-versus-phase curves of the bound levels at
a finite flux, � = 2.5. The curves are now phase shifted by
an amount δn,l = ( L

ξ 0
n,l

)( εl

�0
), where εl = [�2/(2m∗R2)](2l�).

That is, E±
n,l,m(χ ) → E±

n,l,m(χ ∓ δn,l).

D. Reduction to a semiclassical model

The phase shift δn,l can be understood semiclassically as the
phase picked up by azimuthal travel around the circumference
of the cylinder in the presence of the magnetic field. In this
picture, for a subband (n,l) with l �= 0, the particles (both
electron- and holelike) travel in a spiral path as they traverse
the junction length L. In the shell-conduction model the spiral
has radius R. The velocity along the axis is vn,l , while the
azimuthal velocity is vθ (l) = �l/(m∗R). The semiclassical
phase δsc is is due to the coupling of vθ and the vector potential
A = (B‖ρ/2)θ̂ , and is calculated from the Ginzburg-Landau
formula for the phase:

δsc = (2e/�)
∫

A · dl = (2e/�)
∫

A · vdt, (10)

where the differential element dl is along the spiral path, v =
vn,l x̂ + vθ θ̂ is the velocity, t is time, and the second integral
is taken from t = 0 corresponding to the particle leaving one
S section, to t = L/vn,l , when it arrives at the other S section.
The result is δsc = elLB‖/(m∗vn,l), which equals δn,l . This
shows that when the Andreev approximation holds and there
is shell conduction, the semiclassical result coincides with
the quantum mechanical one. Note that in the expression for
δsc there is no explicit dependence on R. The dependence
of the phase shift on R comes only through vn,l , and is a
weak dependence within the Andreev approximation. More
generally, we numerically calculate the energy spectra using
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Eq. (6) without the Andreev approximation and find similar
phase shifts that are always proportional to the junction length
L and to the angular momentum quantum number l.

E. Bound-state and continuum currents

The current due to the Andreev bound states in the subband
(n,l) at temperature T is calculated [37,41,43] from the
formula

In,l(χ ) = e

�

∑
s,m

f
(
Es

n,l,m

)dEs
n,l,m(χ )

dχ
, (11)

where f (Es
n,l,m) = 1/(exp(Es

n,l,m/(kBT )) + 1) is the Fermi-
Dirac occupation probability of a given energy level (kB is the
Boltzmann constant). Energies corresponding to both types of
wave functions �s

n,l and �s
n,l must be inserted into Eq. (11).

The total bound-state current is the sum of supercurrent
amplitudes from all occupied subbands [44] (“open channels”
in the language of Ref. [45]):

Itotal(χ ) =
∑
n,l

In,l(χ ). (12)

The continuous spectrum of states with energies |E| > �0

also contributes to the junction current. A continuum level
can be viewed as a “leaky” solution [37,39] to the Andreev
bound-state problem described above, with a complex-valued
eigenenergy E = ER + iEI , with |ER| > �0. The leaky level
follows the same subband structure as the Andreev bound
states. The imaginary component of energy results in a finite
lifetime for the continuum level, reducing its contribution to
the junction current, but for a long junction L � ξ 0

n,l , this
contribution is significant, and cannot be ignored [37].

The continuum current due to the subband (n,l), Jn,l(χ ),
is calculated using the transmission formalism [37,42,46].
We calculate the transmission coefficients for the electrical
currents carried by electron- and hole-like excitations incident
on the S-N interfaces, resulting in leaky solutions in the N sec-
tion. The details of the calculation are given in the Appendix.
For the rest of this section the subscripts n,l are dropped for the
sake of simplicity; it is implicitly assumed that all quantities
pertain to the subband (n,l). The result for the continuum
current is

J (χ ) = e

h

(∫ −�0

−∞
+

∫ ∞

�0

)∣∣u2
0 − v2

0

∣∣( 1

F+(E,−χ )

− 1

F−(E,−χ )
− 1

F+(E,+χ )
+ 1

F−(E,+χ )

)

× f (E)dE, (13)

where E is the real part of the energy of the continuum level
and f (E) is the Fermi-Dirac distribution at temperature T , and
u0,v0 are real-valued BCS coherence factors:

u2
0 = 1

2

(
1 +

√
E2 − �2

0

/
E

)
, (14a)

v2
0 = 1

2

(
1 −

√
E2 − �2

0

/
E

)
. (14b)

The functions F±(E,χ ) depend on energy, through
the wave numbers ke and kh [Eq. (6)] as well

as the coherence factors u0,v0: F±(E,χ ) = u4
0 + v4

0 −
2u2

0v
2
0cos[(ke(±E) − kh(±E))L + χ ]. Equation (13) can be

intuitively understood in terms of the leaky solutions to the
BdG equation: the terms containing F+ pertain to the contri-
bution of leaky states of type �s

n,l,m, while those containing
F− pertain to �s

n,l,m. The junction phase χ enters with a
plus (minus) sign for left (right) moving solutions. At zero
magnetic field, F+(E,χ ) = F−(E,−χ ). This is analogous to
the degeneracy of �+,�− in Fig. 3(a). Therefore Eq. (13)
reduces to Eq. (17) in Ref. [37], up to an application of the
Andreev approximation.

In the presence of the magnetic field, the terms (ke − kh)L
shift the functions F±(E,χ ) in phase relative to the zero-field
case, in the same manner as the phase shifts found previously
for the bound states. Employing the Andreev approximation
[Eq. (8)], we obtain

F±(E,χ ) = u4
0 + v4

0 − 2u2
0v

2
0cos

[(
E ± εl

�0

)(
L

ξ 0

)
+ χ

]
,

(15)

which is shifted in phase with respect to the zero-field
case. Explicitly for the subband (n,l), we have F±

n,l(E,χ ) →
F±

n,l(E,χ ± δn,l), with the phase shift δn,l defined previously.
The total continuum current of the junction is

Jtotal(χ ) =
∑
n,l

Jn,l(χ ). (16)

The critical current Ic of the junction is defined as the
maximum of total bound-state + continuum currents with
respect to χ :

Ic = maxχ∈[0,2π)[Itotal(χ ) + Jtotal(χ )]. (17)

IV. NUMERICAL RESULTS

We numerically solve the continuum and bound-state
currents of an SNS junction at finite magnetic fields, using the
shell conduction approximation with the shell at a radius R =
30 nm. Temperature is set to T = 100 mK in all calculations.
From this point on, only (n,l) subbands with n = 0 are
assumed to be occupied in the N section. The Andreev
approximation is not used in calculating the CPR. The critical
current of the junction is calculated from Eq. (17), and its
behavior versus axial magnetic flux � = πR2B‖/(h/e) is
studied. Note that our assumption of no barriers at the S-N
interfaces also implies full Andreev reflection.

A. Single subband

As an illuminating example we study a 500-nm-long
junction with a chemical potential of μ = 8.5 meV. This value
for μ is chosen because it allows l = −1,0,1 subbands to be
occupied at � = 0; at � = 1 the |l| = 1 subbands depopulate.1

In this section, we concentrate on the CPR obtained for one

1The effective chemical potentials follow μe
n,l(�) = μh

n,−l(�), see
Fig. 2. In this example, as � approaches 1, μe

0,1,μ
h
0,−1 go to zero, at

which point Andreev quasiparticles can no longer be supported by
the |l| = 1 subbands.
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FIG. 4. (a) bound-state current In,l , continuum current Jn,l , and
the sum In,l + Jn,l for the subband (n,l) = (0,1) vs the supercon-
ducting phase χ at zero magnetic field, � = 0. Since the junction
is long, L = 500 nm � ξ 0

n,l , the CPR is triangular. The kinks in
In,l ,Jn,l at χ = 0.05,0.95 are due to Andreev bound states crossing
the gap edge into the continuum levels, but the total subband current
is a smooth function of χ . (b) Total subband current In,l + Jn,l vs
the superconducting phase as a function of the normalized axial
magnetic flux �. At zero flux the maximal value occurs near
χ = π . At finite flux, the bound-state and continuum currents are
phase shifted. For � = 0.1, two discontinuities can be seen in
In,l + Jn,l because of the phase shifts, and the maximal value no
longer occurs near χ = π . At � = 0.35, the phase shifts amount
to 2π and the zero-field curve is recovered. The maximal current
at this flux is slightly smaller than the zero field case, due to a
decrease in the average momentum of the Andreev quasiparticles
with increasing flux. The following parameters were used in both
panels: L = 500 nm,μ = 8.5 meV,R = 30 nm, and T = 100 mK.

subband, namely l = 1, and discuss how the coupling of the
finite angular momentum with the axial field modifies the
subband CPR.

Since the junction length is greater than the healing
length of the populated subbands (L = 500 nm � ξ 0

n,l), the
long-junction limit applies. Many bound states are present
in the junction (∼12). In Fig. 4(a), we show the bound-state
current In,l , continuum current Jn,l , and their sum, for the
subband (n,l) = (0,1) at zero magnetic field. As expected of
a long junction [37,39], In,l and Jn,l are of the same order of
magnitude, and the CPR is triangular in shape. An additional
group of four bound states (�+,�−,�+,�−) appear in the
junction at χ = 0.05, and exit at χ = 0.95, giving rise to
discontinuities in In,l , Jn,l . However, the total subband current
In,l + Jn,l is always a smooth function of χ . It is maximal near
χ = π , (exactly at χ = π at zero temperature) regardless of
the junction length [37]. Note that the continuum current is
zero at χ = π .

In Fig. 4(b), we show the subband current In,l + Jn,l as
a function of the magnetic flux. As the flux is increased
from zero, two discontinuities develop in the subband current
(shown for � = 0.10). The bound-state current is modified as
the eigenenergies corresponding to states (�+,�+) are shifted
in phase in the opposite direction to those of states (�−,�−),
similarly to Fig. 3(b). An equivalent process happens for the
continuum current, as explained in Eq. (15). As a result, the
subband current In,l + Jn,l also shows two discontinuities, and
is no longer necessarily maximal near χ = π .

The amounts of the phase shifts in In,l and Jn,l depend on the
quantity (ke

n,l − kh
n,l)L. The wave numbers ke

n,l ,k
h
n,l are subband

parameters defined in Eq. (6), and the length L is device
dependent. Therefore the fluxes at which phase shifts equal
integer multiples of 2π need not occur at integer multiples
of �0 = (h/e) or �0/2; they can occur at any value of �.
An example is shown in Fig. 4(b) for � = 0.35, where the
phase shifts equal 2π and the CPR recovers its shape at � = 0.
Notice, however, that the maximal value of the subband current
at � = 0.35 is smaller than at � = 0. This can be intuitively
understood as follows: as the flux increases, the effective wave
numbers of the electrons and holes change according to Eq. (6).
It can be seen that the average momentum of the electron-hole
pair and therefore the healing length ξ 0

n,l are always smaller
for higher fluxes. Since the magnitude of Josephson current in
a long junction scales approximately linearly [47] with ξ 0

n,l/L,
it is suppressed at higher fluxes. This suppression is stronger
near the depopulation point of a given subband, where the
average momentum decreases significantly.

B. Interference due to a few subbands

In order to elucidate the mechanism of the Josephson
interference between subbands, we show in Fig. 5(a) the
critical current versus axial flux of the junction studied in
Sec. IV A. The length L = 500 nm is chosen because it
allows for a relatively large amount of phase pickup, since
the phase pickup is proportional to the length of the junction
[(ke

n,l − kh
n,l)L in Eq. (7)]. Hence, several oscillations of the

critical current occur prior to the depopulation of the |l| = 1
subbands at � = 1. The supercurrent of each subband is shown
versus the phase difference χ in Figs. 5(b)–5(f), at particular
values of the magnetic flux. The l = 1 subband current equals
that of l = −1 at all fluxes. At zero flux, the current of each
subband is maximal near χ = π (exactly χ = π for zero
temperature), as discussed in Sec. IV A. This can be clearly
seen in panel (b). The total current of the junction is the sum
of the contributions from the l = −1,0,1 subbands, and is
therefore roughly three times the contribution of each. The
dotted vertical lines show the phase at which the critical current
occurs.

As the flux is increased, the CPR of the |l| = 1 subbands
are modified, similarly to Fig. 4(a). The critical current of
the junction decreases, since the |l| = 0,1 subbands no longer
interfere constructively [panel (c)]. At � = 0.13, the maximal
current switches from a phase χ < π to χ > π , as shown in
panel (d). This is a feature of the triangular CPR. The critical
current increases until � = 0.18 [panel (e)], at which point
the junction current is maximal near χ = 2π . We call this
a peak a secondary peak as it occurs roughly in the middle
of the main period of oscillations (see discussion below on
periodicity), when the magnetic phase pickup of the |l| = 1
subbands equals roughly π . The magnitude of this peak is
roughly two thirds the total current as zero field, as the l = ±1
subbands contribute maximally, and the l = 0 subband current
is close to zero. The process reverses itself for � > 0.18, until
at � = 0.35 the phase pickup of the |l| = 1 subbands equals
2π and all subbands interfere constructively again [panel (f)].
We refer to the peak at � = 0.35 a primary peak. Other primary
peaks occur at � = 0.66,0.89. As in Fig. 4, the contribution
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FIG. 5. (Color online) (a) Critical current Ic vs normalized axial magnetic flux � of a 500-nm junction with μ = 8.5 meV. The subbands
with l = −1,0,1 are occupied and contribute to Ic. Oscillation of Ic with � is observed, which is not periodic in �: the positions of the peaks
get closer together as � is increased. At flux points indicated with vertical dotted lines, individual subband currents are plotted in (b)–(f) vs the
superconducting phase χ . (b)–(f) CPR for l = 0 (solid lines) and l = ±1 (dash-dotted lines) subbands. The current due to the l = 1 subband
is equal to that of the l = −1 subband for all χ and � values. Here, the contribution due to only one of the two subbands is shown for clarity.
The vertical dotted lines indicate the phase χ at which the critical current occurs. Note the difference in the y-axis scale between panel a and
the other panels. The following parameters were used in all plots: L = 500 nm,μ = 8.5 meV,R = 30 nm, and T = 100 mK.

of the |l| = 1 subbands decrease as � is increased, because
the decrease in the average quasiparticle momentum. This is
the mechanism behind the slow decay of the magnitude of the
primary peaks as flux increases.

Aperiodicity. The |l| = 0,1 subbands interfere construc-
tively when the magnetic phase pickup of the |l| = 1 subbands
equals an integer multiple of 2π . This corresponds to the main
period of the critical current oscillations with �, which we
estimate below. In other words, we want to find � such that(

ke
n,l − kh

n,l

)
L

∣∣
�

− (
ke
n,l − kh

n,l

)
L

∣∣
�=0 = 2jπ, (18)

for integer j . The wave numbers ke
n,l,k

h
n,l are defined in Eq. (6).

For the general case this is not easy to do analytically, as
ke
n,l,k

h
n,l themselves depend on the flux through the effective

chemical potentials μ
e,h
n,l . However, we can get an estimate of

the expected period by invoking the Andreev approximation
[Eq. (8)], and assuming the effective Fermi velocities do not
depend on the flux, so can be evaluated at some fixed �, e.g.,
� = 0. These are reasonable assumptions when the flux is
much smaller than the depopulation point of a given subband
(e.g., � = 1 for |l| = 1 subbands in the example of Fig. 5).
The result for the position of the first primary peak �1 is

�1 = πvn,lm
∗R2/(�lL), (19)

where vn,l is defined below Eq. (8). For the example of Fig. 5,
this evaluates to �1 = 0.36, deviating from the numerically
calculated value by only 3%. However, we see that the
numerical positions of the next primary peaks at 0.66, 0.89

cannot be accurately approximated as integer multiples of �1:
the period becomes shorter as � is increased. This is because
the field dependence of vn,l cannot be ignored at higher values
of �, and the Andreev approximation breaks down. Intuitively,
the effective Fermi velocity is noticeably lower at higher fields,
resulting in more time spent in the junction by the Andreev pair
and more phase pickup, therefore a smaller period for Ic os-
cillations. Consequently, even in the simple case of a few sub-
bands, the oscillations of Ic versus � are not strictly periodic.

C. Interference due to many subbands

A higher chemical potential results in the occupation of
a greater number of angular momentum subbands. The rich
interplay between the different l-subband results in a complex
pattern of the oscillation of Ic with �. Assume subbands with
|l| up to l̃ are occupied. Each |l| subband’s supercurrent oscil-
lates with a flux dependent “period” approximated by Eq. (19),
which depends on the subband velocity vn,l , and is therefore
generally anharmonic with other subbands. Typically, a peak
in Ic as a function of � occurs under one of two circumstances:
(i) when some (at least two) of the subbands with different |l|
values interfere constructively, or (ii) when the critical current
occurs near χ = 2π , a secondary peak is formed as described
in Fig. 5. There are ( l̃

2) choices for pairs of constructively
interfering subbands (parentheses indicate the binomial coef-
ficient). As each |l| subband’s oscillations can be anharmonic
with those of all other subbands, it follows that there are ( l̃

2)
different flux-dependant “periods” in the Ic oscillations due to
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FIG. 6. (Color online) (a) Critical current Ic vs normalized axial magnetic flux � of a 500 nm junction with μ = 20 meV. The subbands
with |l| � 3 are occupied at zero flux. The subbands with |l| = 3,2 depopulate at � = 0.2,1.2, respectively. An aperiodic oscillation of Ic vs
� is observed. At flux points indicated with vertical dotted lines, individual subband currents are plotted in (b)–(f) vs the superconducting
phase χ . (b)–(f) CPR for individual subbands, displaying different configurations which can lead to a peak in Ic vs �. The vertical dotted lines
indicate the phase χ at which the critical current occurs. Note the difference in the y-axis scale between panel a and the other panels. The
following parameters were used in all panels: L = 500 nm,μ = 20 meV,R = 30 nm, and T = 100 mK.

condition (i), with another l̃ due to condition (ii). The Ic curves
therefore can display complex, aperiodic structures.

In Fig. 6(a), we plot an example of an Ic versus � curve for
a junction with the same parameters as that of Fig. 5, except
the chemical potential is raised from 8.5 to 20 meV. At zero
flux, subbands up to |l| = 3 are occupied. The |l| = 3 states
depopulate at � = 0.2, and the |l| = 2 states at � = 1.2. As
an example of configurations that can give rise to a peak in
Ic, subband CPRs are shown in Figs. 6(b)–6(f), for five peaks
indicated in panel a with vertical dotted lines. The peak at
� = 0.29 [panel (b)] satisfies condition (ii), while the other
examples are due to constructive interference of two subbands,
i.e., condition (i): subbands with |l| = 0,1 at � = 0.57 [panel
(c)], |l| = 0,2 at � = 0.89 [panel (e)], and |l| = 1,2 at � =
0.67 and 1.05 [panels (d) and (f)].

D. Effect of junction length

We now discuss the effect of the junction length L on the
pattern of Ic oscillations. The left column in Figs. 7(a)–7(d)
shows the numerically obtained Ic versus � for a junction with
μ = 8.5 meV, as L is varied. All other junction parameters are
the same as in Fig. 5. The critical current is normalized to its
value at zero magnetic flux. Two processes affect the behavior
of Ic: (i) the depopulation of the |l| = 1 subbands at � = 1,
shown by vertical dotted lines in panels (a)–(d), and (ii) the
Josephson interference effect described above. The first of
these processes results in steplike discontinuities in Ic at � =
1.0, a drop to roughly one-third of the zero-field Ic value as the
l = −1,1 subbands depopulate. Since the l = 0 subband does

not couple to the axial flux, Ic is almost constant above � = 1.
The slow decay of the primary peak heights below � = 1,
and of Ic above � = 1, are both due to the decreasing average
momentum at higher fluxes, as discussed in Sec. IV A. For a
short junction with L = 25 nm [panel (a)] and for � < 1.0,
the phase shifts in the CPR of the |l| = 1 subband are small
(the phase shifts are dependent on (ke

n,l − kh
n,l)L), but become

more significant close to � = 1, where the axial velocities of
the quasiparticles are smaller and the time of flight across the
junction longer. This results in the observed decrease in Ic

before the steplike discontinuity. As L is increased to 50 nm,
the value of this phase shift increases and modulation due to
interference starts to emerge. For L = 200 nm [Fig. 7(c)], the
first primary peak occurs at � = 0.79, and for L = 500 nm
[panel (d)] at � = 0.35. The decrease by a factor of 2.26 in
the position of the first primary peak is approximately equal
(within 11%) to the reciprocal ratio of lengths L, as expected
from the estimate in Eq. (19).

The right column of Figs. 7(e)–7(h) shows the Ic versus
� curves for a junction with μ = 20 meV. The subbands
with |l| = 3,2,1 depopulate at � = 0.2,1.2,2.2, respectively
[vertical dotted lines in panels (e)–(h)], resulting in steplike
discontinuities in Ic at those flux values. Similarly to above, the
behavior of Ic is dominated by this effect for a 25 nm junction
[panel (e)], but as L is increased the Josephson interference
becomes visible [panels (f)–(h)]. Note that between the flux
values � = 1.2 and 2.2 the Ic curves in the right column of
Fig. 7 are qualitatively similar to their counterparts in the left
column, because similarly to the μ = 8.5 meV case, subbands
with |l| � 1 are occupied within this flux window. Note that for
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FIG. 7. Normalized critical current of the junction vs the normal-
ized magnetic flux � = (πB‖R2)/(h/e), for μ = 8.5 meV [(a)–(d)]
and μ = 20 meV [(e)–(h)], and several values of the junction
length L. The following parameters were used: R = 30 nm and T =
100 mK. In (a)–(d), the vertical line at � = 1.0 indicates the
depopulation of the |l| = 1 subbands. Similarly in (e)–(h), the vertical
lines at � = 0.2,1.2,2.2 indicate the depopulation of the |l| = 3,2,1
subbands, respectively.

μ = 20 meV, Ic(0) is much larger than for the μ = 8.5 meV
case; the oscillation amplitude appears to be smaller in panels
(e)–(h) only because the relative contribution of each subband
to the total current is smaller when there are more subbands
occupied.

In summary, for a short junction, the depopulation of sub-
bands is more visible than the Josephson interference effect.
However, as the junction length is increased, the interference
effect becomes apparent. The periods of oscillation decrease
slightly as flux is increased. For a junction with a low chemical
potential (only a few transverse subbands occupied, e.g., an
SNS point contact [32,48,49]), the pattern of Ic modulation
is simpler and the period longer than the case of a high
chemical potential (many transverse subbands occupied). A
long, low-μ junction is optimal for experimental observation
of this Josephson interference effect.

V. DISCUSSION

We have described the theory of a previously unstudied
form of the Josephson interference effect that can occur in

nanoscale SNS junctions due to the coupling of the orbital
angular momentum of transverse electronic subbands with
an axial magnetic flux. We found in Sec. IV D the regimes
in which this interference effect dominates the Ic versus �

characteristics of the junction. An idealized model of an SNS
junction was used, with several simplifying assumptions, in
order to elucidate the mechanism of the effect. We discuss
generalizations of the model below, in particular those modifi-
cations that may be necessary to directly model experimental
devices.

FWVM and barriers at the interfaces. No barriers were
assumed at the S-N interfaces, and FWVM was neglected.
The effective mass for electrons m∗ was assumed to be uniform
throughout the junction. These assumptions allowed Kulik’s
method of matching the wave functions at the interfaces to be
used to calculate the bound-state and the continuum currents.
We stress that the basic mechanism of the orbital interference
effect, i.e., the modification of the N -section wave numbers
in the presence of the axial field, is independent of FWVM
and interfacial barriers. Therefore the main features of the Ic

oscillations (periodicity, amplitude) should only be modified
by FWVM and barriers as higher-order corrections. The exact
shape of the junction CPR and the Ic versus � curves, however,
depends on the details of the interfaces. Accurate modeling of
experiments must take this into account, based on the material
and interfacial properties specific to a particular experimental
implementation.

As was discovered in studies of Andreev reflection at
Nb-InAs interfaces [40,44], FWVM modifies the CPR of
superconductor/semiconductor/superconductor junctions. In
the general case, where FWVM and barriers are included at the
S-N interfaces, the bound-state energies and the continuum
current must be calculated from the transmission matrix
formalism [46], in which the transmission matrix includes a
normal (specular) reflection coefficient as well as an Andreev
(retro) reflection coefficient. The values of these coefficients
depend on the material details of the junction. The CPRs
of junctions with FWVM [46] and barriers [37,49,50] have
been previously calculated (numerically) at zero magnetic
field. The effect of both mechanisms is to make the CPR
more closely resemble a sinusoidal curve. Since the N -section
wave numbers have the same coupling to the axial field
shown in Eq. (6) regardless of FWVM or barriers, we expect
the phase-shift mechanism leading to interference to remain.
However, the shape of the oscillations in Ic should appear more
sinusoidal, following the shape of the CPR.

Normal reflection of the quasiparticle wave functions from
the S-N barriers will result in a higher order correction to the
periodicity of the interference effect. This is due to an increased
average phase pickup as the quasiparticle spends more time
in the junction. On the other hand, this should also lead to
some randomization of the phase. The former would lead
to shorter period oscillations (i.e., the effect occurs at lower
fields), while the latter will partially smear out the interference
effect, reducing the amplitude of oscillations. Similar effects
are expected from elastic backscattering occurring in the N

section in nonballistic junctions. These considerations are
beyond the scope of this paper and are left to future work.

General form of �. A spatially uniform pairing potential
was assumed in the S sections at all magnetic fields [Eq. (2)].
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This was justified by assuming cylindrical S sections, and
restricting the cylinder diameter to be smaller than the
superconducting coherence length in the S sections. However,
experimental fabrication of nanoscale SNS junctions is usually
done by evaporating or sputtering metallic (e.g., Al or Nb)
thin film contacts onto a semiconducting nanowire. In this
case, the geometry of the S section is not cylindrical but
� shaped. The lack of cylindrical symmetry necessitates, in
principle, a three-dimensional numerical calculation of �(r)
using self-consistent methods. However, as long as the N

section can be assumed to be cylindrically symmetric, our
model should closely approximate the experimental situation.
This is because the interference effect depends mainly on
the eigensolutions in the N section, particularly the orbital
angular momentum states and their coupling to the flux. The
details of the eigensolutions in the S section do not play a
direct role, other than asserting the form of the wave function
ansatz [Eq. (5)] is valid. Similarly, the axial field can induce
a nonuniformity in �. If the thickness of the metallic film
becomes larger than the S-section coherence length, fluxoid
quantization can result in a θ -dependent phase for � in the
presence of the field. Inserting a θ -dependent � in the BdG
equations [Eq. (3)] will affect the bound-state solutions, likely
requiring a three-dimensional numerical solution. However,
we still expect the interference effect to depend mainly on the
states in the N section.

General radial wave functions. The shell-conduction model
was used in order to simplify computations, and to help gain
intuitive insight into the problem; it is not strictly necessary for
the main arguments of the paper. Indeed, we found in Sec. III D
that the semiclassical phase shift δsc is only weakly dependent
on the radius R, so the interference effect should be present
for general radial wave functions. In future work, the radial
wave functions in the N section, φn,l , and the corresponding
single particle energies in the presence of the field will be
numerically calculated, yielding the appropriate wave numbers
ke
n,l,k

h
n,l for electron- and holelike solutions. We expect the term

(ke
n,l − kh

n,l)L appearing in Eqs. (7) and (13) will continue to
result in phase shifts similar to those seen in the present model.

Zeeman and spin-orbit effects. In order to study the
orbital Josephson interference effect in isolation, Zeeman and
spin-orbit effects were neglected in our analysis. It is useful
to ask under what circumstances should the orbital effects
or the Zeeman + spin-orbit effects dominate? The critical
current of a short, InSb SNS junction, including spin-orbit and
Zeeman effects, was studied in Ref. [26]. The bound-state
energies were solved, and a phase-shift was observed in the
energy-versus-phase curves due to the Zeeman effect. Similar
to the mechanism described in our analysis, the Zeeman effect
modifies the N -section wave numbers, but based on the spin
state rather than the orbital state. This results in an oscillation of
Ic, with the first minimum occurring at Bmin = �vF /(gμBL),
where vF is the Fermi velocity, g is the effective Landé g-factor,
and μB is the Bohr magneton. For a 200-nm InSb junction with
|g| = 50, this evaluates to Bmin = 0.5 T for vF corresponding
to μ = 10 meV, but for other materials Bmin is typically much
larger. Considering InAs with a moderately large |g| = 10
gives Bmin = 2.1 T (again for L = 200 nm and μ = 10 meV).
Since we used the effective mass for InAs in our calculations,
we can directly compare with the results of Fig. 7(c) for a

200-nm-long junction. The orbital effect should dominate in
this case, as the first minimum of Ic is at a flux corresponding to
B‖ 
 0.4 T. The consequence of the inclusion of the spin-orbit
coupling is a smaller correction: the so called anomalous
Josephson effect, in which the current is no longer an even
function of the superconducting phase: I (χ ) �= I (−χ ).

We conclude that for InSb devices, the Zeeman effect
could easily dominate. This is especially true if either of
the following conditions hold: (i) if only l = 0 subbands
are occupied (i.e. small chemical potential), or (ii) in a
perpendicular field, where the Zeeman effect is present but
the orbital effect is suppressed. On the other hand, for most
low spin-orbit semiconductor materials, g ∼ 2 and we would
expect the orbital subband effect to dominate in an axial field
experiment, unless only l = 0 subbands are occupied.

Magnetic depairing. Field-induced depairing suppresses
both superconductivity in the S sections and proximity super-
conductivity in the N section [13,14]. For a type-II supercon-
ductor with a relatively large gap such as Nb, we can assume
depairing in the N section should dominate. For diffusive
junctions in the narrow junction limit, the Usadel equations
predict a monotonic Gaussian decay Ic ∝ exp(−α�2/�2

0) for
a perpendicular magnetic flux � through the N section [23],
where α ≈ 0.24 is a numerical constant. A similar effect
should apply to the axial field case, except with a slower mag-
netic field decay due to a smaller cross-sectional area (smaller
flux). This is expected to produce a monotonic decay envelope
superimposed on the critical current oscillations, and should
be taken into account when modeling experimental data.

Summary. The idealized model studied here serves to
demonstrate a novel form of Josephson interference due to
orbital angular momentum states, with the unusual property
of flux-aperiodic oscillations. Extensions to the model dis-
cussed above, most importantly FWVM and barriers at the
S-N interfaces, will be useful for describing experimental
implementations.
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APPENDIX: TRANSMISSION FORMALISM
FOR THE CONTINUUM CURRENT

The electrical current transmission amplitudes for the
continuum states are obtained by matching the solutions
of the BdG equation [Eq. (3)] in the three regions of the
cylinder (x < −L/2, |x| < L/2, x > L/2), while assuming
an incident “source term” on the S-N interface at x = −L/2
with energy |E| > �0. These transmission amplitudes are then
used to calculate the continuum current. This section follows
Appendixes A and B in Ref. [37], but is generalized to account
for finite magnetic field and orbital angular momenta.

Hereafter, all quantities are presumed to pertain to one
subband, (n,l), unless explicitly stated otherwise. We drop
the subscripts n,l for simplicity. Consider the quasiparticle
excitation spectrum of the BdG Hamiltonian. In the left S

section (x < −L/2), the electronlike solutions with energy
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E > �0 > 0 are given by

�e =
(

u(x,ρ,θ )
v(x,ρ,θ )

)
=

(
u0e

iχL

v0

)
ψL,e(x,ρ)eilθ (A1)

and the holelike solutions by

�h =
(

u(x,ρ,θ )
v(x,ρ,θ )

)
=

(
v0e

iχL

u0

)
ψL,h(x,ρ)eilθ . (A2)

Here, u0,v0 are given in Eq. (14), and ψL,e,ψL,h have the
form given in Eq. (5). Let the source term �e be incident
from the left on the S-N interface at x = −L/2. The wave
functions generated due to this source term are grouped into
two categories (depending on which S section they belong
to), with coefficients B,C, following Bagwell’s notation [37].
The first group pertains to the left S section. The electronlike
source term incident on the S-N interface is(

u0e
iχL

v0

)
ψL,e

(
x + L

2
,ρ

)
eilθ

(
x < −L

2

)
. (A3)

The Andreev reflected holelike wave function is(
B − v0

u0

)(
v0e

iχL

u0

)
ψL,h

(
x + L

2
,ρ

)
eilθ

(
x < −L

2

)
.

(A4)

For the electrons in the normal region, the wave function is(
B− v0

u0
+ u0

v0

)(
v0e

iχL

0

)
ei(ke(E))×(x+ L

2 )φ(ρ)eilθ

(
|x| <

L

2

)
(A5)

and, for the holes,

B

(
0
u0

)
ei(kh(E))×(x+ L

2 )φ(ρ)eilθ

(
|x| <

L

2

)
. (A6)

Here, φ is radial part of the wave function in the N section,
defined below Eq. (3). The explicit energy dependence of the
wave numbers ke,kh is given in Eq. (6).

The transmitted wave function into the right contact is

C

(
u0e

iχR

v0

)
ψL,e

(
x − L

2
,ρ

)
eilθ

(
x >

L

2

)
. (A7)

This is supported by electrons in the N section with the wave
function

C

(
u0e

iχR

0

)
ei(ke(E)) (x− L

2 )φ(ρ)eilθ

(
|x| <

L

2

)
, (A8)

and holes

C

(
0
v0

)
ei(kh(E)) (x− L

2 )φ(ρ)eilθ

(
|x| <

L

2

)
. (A9)

The normal reflection processes have not been considered, as
no FWVM or barriers are assumed at the S-N interfaces.

The coefficients B,C can be found by connecting together
Eqs. (A5), (A8), and Eqs. (A6), (A9) at any point x = a within
the N section or at the S-N interfaces. We use a = −L/2. The

result is

C =
1 − v2

0

u2
0

eiχe−ike(E)L − v2
0

u2
0
e−ikh(E)L

, (A10)

where χ = χR − χL. By definition, C is the transmission
amplitude from the left contact to the right contact due to
an electronlike incident source term with energy E > 0. The
corresponding transmission coefficient T e

L→R(E,χ ) is

T e
L→R(E,χ ) = |C|2 =

∣∣u2
0 − v2

0

∣∣2

F+(E,−χ )
, (A11)

with the function F+ given below Eq. (14).
The coefficient for transmission from right to left (due to a

left-moving source) can be found by making the transforma-
tion χ → −χ in the above formula. That is,

T e
R→L(E,χ ) =

∣∣u2
0 − v2

0

∣∣2

F+(E,χ )
. (A12)

Repeating these calculations for an electronlike source term
with energy E < −�0 < 0 shows that Eqs. (A11) and (A12)
give the correct transmission coefficients for the negative
energy case as well.

Similar to the case of the bound states, if (u,v)T is a solution
at energy E, then (−v∗,u∗)T gives a solution at energy −E.
Both types of solutions must be taken into account when
calculating the total transmission coefficients. Consider the
(left-moving) source term �e obtained by applying the above
transformation on Eq. (A1):

�e =
( −v0

u0e
−iχL

)
(ψL,e(x,ρ))∗e−ilθ . (A13)

All relevant wave functions due to this source term (i.e.,
the Andreev reflected, N -section electron- and holelike, and
transmitted wave functions) can be constructed by applying
the transformation (u,v)T → (−v∗,u∗)T to Eqs. (A4)–(A9).
Crucially, the resulting wave functions contain the wave
numbers ke(E),kh(E), while having energy −E. Repeating
the above calculation, the transmission coefficient T e

R→L due
to the source term �e is found:

T e
R→L(−E,χ ) =

∣∣u2
0 − v2

0

∣∣2

F+(E,−χ )
(A14)

or, equivalently,

T e
L→R(E,χ ) =

∣∣u2
0 − v2

0

∣∣2

F−(E,χ )
, (A15)

T e
R→L(E,χ ) =

∣∣u2
0 − v2

0

∣∣2

F−(E,−χ )
, (A16)

with F−(E,χ ) := F+(−E,χ ).
The current J e due to electronlike excitation source terms

is calculated [37] using the formula

J e(χ ) = e

h

(∫ −�0

−∞
+

∫ ∞

�0

)
1∣∣u2

0 − v2
0

∣∣
× [

T e
L→R(E,χ ) − T e

R→L(E,χ ) + T e
L→R(E,χ )

− T e
R→L(E,χ )

]
f (E)dE. (A17)
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Here, f (E) is the Fermi-Dirac distribution at temperature T .
It can be seen that Eq. (A17) is equal to Eq. (13). In deriving
Eq. (A17), we used only the electrical current transmitted due
to electronlike source terms. Repeating the above calculations
for holelike source terms results in a current J h which is equal
to J e. Naively, one might then think the total continuum current
obtained is too large by a factor of two. However, note that
the density of excitations (electronlike plus holelike) in the
S section is twice as large as the density of states in the N

section. Consequently, the subband’s continuum current is

J (χ ) = 1
2 (J e(χ ) + J h(χ )), (A18)

and we recover Eq. (13). This disparity in the density of states
in the S and N sections was noted in Ref. [37], see Eq. (B8)
in that paper.

Equation (A17) is used in Sec. IV to numerically calculate
the continuum current J due to each subband. For a junction
much shorter than the subband’s healing length, L 	 ξ 0, the
bound-state current I is much larger than J . When L � ξ 0,
In,l and Jn,l are of the same order of magnitude, and we obtain

a triangular CPR. At finite magnetic fields, phase shifts appear
in both I and J as described in Sec. IV A, but the CPR retains
its triangular shape.

Notice that at zero magnetic field, we have ke(−E) =
kh(E), so J simplifies and can be written as

J (χ ) =2e

h

(∫ −�0

−∞
+

∫ ∞

�0

)
1∣∣u2

0 − v2
0

∣∣
× [

T e
L→R(E,χ ) − T e

R→L(E,χ )
]
f (E)dE. (A19)

The extra factor of 2 here is usually attributed to the spin degree
of freedom of the electrons/holes. By including both types of
coefficients T e,T e in Eq. (A17), we are taking into account this
degree of freedom. This can be further elucidated by noting
that in the spinful version of this problem, the particle-hole
symmetry is manifested as two (Nambu-spinor type) solutions
� and (σyτy�)∗ with opposite energies, spins, and coherence
factors (the Pauli matrices σ,τ act on the spin and particle-
hole manifolds, respectively). That is, (u,v)T and (−v∗,u∗)T

generalize to states of opposite spin, and the spin degree of
freedom is correctly accounted for by considering both types
of solutions.
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[16] O. Gül, H. Y. Günel, H. Lüth, T. Rieger, T. Wenz, F. Haas,
M. Lepsa, G. Panaitov, D. Grützmacher, and T. Schäpers,
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[35] T. Schäpers, in Superconductor/Semiconductor Junctions,
Springer Tracts in Modern Physics No. 174 (Springer, Berlin,
2001), p. 8.

245436-13

http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://dx.doi.org/10.1007/s10948-004-0773-0
http://dx.doi.org/10.1007/s10948-004-0773-0
http://dx.doi.org/10.1007/s10948-004-0773-0
http://dx.doi.org/10.1007/s10948-004-0773-0
http://dx.doi.org/10.1023/A:1004635226825
http://dx.doi.org/10.1023/A:1004635226825
http://dx.doi.org/10.1023/A:1004635226825
http://dx.doi.org/10.1023/A:1004635226825
http://dx.doi.org/10.1103/PhysRevB.86.064510
http://dx.doi.org/10.1103/PhysRevB.86.064510
http://dx.doi.org/10.1103/PhysRevB.86.064510
http://dx.doi.org/10.1103/PhysRevB.86.064510
http://dx.doi.org/10.1103/PhysRevB.25.6012
http://dx.doi.org/10.1103/PhysRevB.25.6012
http://dx.doi.org/10.1103/PhysRevB.25.6012
http://dx.doi.org/10.1103/PhysRevB.25.6012
http://dx.doi.org/10.1103/PhysRevB.30.1260
http://dx.doi.org/10.1103/PhysRevB.30.1260
http://dx.doi.org/10.1103/PhysRevB.30.1260
http://dx.doi.org/10.1103/PhysRevB.30.1260
http://dx.doi.org/10.1007/s10909-008-9826-2
http://dx.doi.org/10.1007/s10909-008-9826-2
http://dx.doi.org/10.1007/s10909-008-9826-2
http://dx.doi.org/10.1007/s10909-008-9826-2
http://dx.doi.org/10.1103/PhysRevB.87.024514
http://dx.doi.org/10.1103/PhysRevB.87.024514
http://dx.doi.org/10.1103/PhysRevB.87.024514
http://dx.doi.org/10.1103/PhysRevB.87.024514
http://dx.doi.org/10.1126/science.1113523
http://dx.doi.org/10.1126/science.1113523
http://dx.doi.org/10.1126/science.1113523
http://dx.doi.org/10.1126/science.1113523
http://dx.doi.org/10.1063/1.3377897
http://dx.doi.org/10.1063/1.3377897
http://dx.doi.org/10.1063/1.3377897
http://dx.doi.org/10.1063/1.3377897
http://dx.doi.org/10.1063/1.4745024
http://dx.doi.org/10.1063/1.4745024
http://dx.doi.org/10.1063/1.4745024
http://dx.doi.org/10.1063/1.4745024
http://dx.doi.org/10.1021/nl203380w
http://dx.doi.org/10.1021/nl203380w
http://dx.doi.org/10.1021/nl203380w
http://dx.doi.org/10.1021/nl203380w
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1021/nl502598s
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1021/nl303758w
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1038/nphys2479
http://dx.doi.org/10.1103/PhysRevLett.112.137001
http://dx.doi.org/10.1103/PhysRevLett.112.137001
http://dx.doi.org/10.1103/PhysRevLett.112.137001
http://dx.doi.org/10.1103/PhysRevLett.112.137001
http://dx.doi.org/10.1103/PhysRevLett.99.217002
http://dx.doi.org/10.1103/PhysRevLett.99.217002
http://dx.doi.org/10.1103/PhysRevLett.99.217002
http://dx.doi.org/10.1103/PhysRevLett.99.217002
http://dx.doi.org/10.1103/PhysRevB.76.064514
http://dx.doi.org/10.1103/PhysRevB.76.064514
http://dx.doi.org/10.1103/PhysRevB.76.064514
http://dx.doi.org/10.1103/PhysRevB.76.064514
http://dx.doi.org/10.1103/PhysRevLett.7.46
http://dx.doi.org/10.1103/PhysRevLett.7.46
http://dx.doi.org/10.1103/PhysRevLett.7.46
http://dx.doi.org/10.1103/PhysRevLett.7.46
http://dx.doi.org/10.1103/PhysRevB.89.195407
http://dx.doi.org/10.1103/PhysRevB.89.195407
http://dx.doi.org/10.1103/PhysRevB.89.195407
http://dx.doi.org/10.1103/PhysRevB.89.195407
http://dx.doi.org/10.1002/smll.200800969
http://dx.doi.org/10.1002/smll.200800969
http://dx.doi.org/10.1002/smll.200800969
http://dx.doi.org/10.1002/smll.200800969
http://dx.doi.org/10.1063/1.3483758
http://dx.doi.org/10.1063/1.3483758
http://dx.doi.org/10.1063/1.3483758
http://dx.doi.org/10.1063/1.3483758
http://dx.doi.org/10.1002/pssa.201300302
http://dx.doi.org/10.1002/pssa.201300302
http://dx.doi.org/10.1002/pssa.201300302
http://dx.doi.org/10.1002/pssa.201300302
http://dx.doi.org/10.1103/PhysRevB.54.16082
http://dx.doi.org/10.1103/PhysRevB.54.16082
http://dx.doi.org/10.1103/PhysRevB.54.16082
http://dx.doi.org/10.1103/PhysRevB.54.16082
http://dx.doi.org/10.1103/PhysRevB.69.214526
http://dx.doi.org/10.1103/PhysRevB.69.214526
http://dx.doi.org/10.1103/PhysRevB.69.214526
http://dx.doi.org/10.1103/PhysRevB.69.214526
http://dx.doi.org/10.1103/PhysRevB.81.134523
http://dx.doi.org/10.1103/PhysRevB.81.134523
http://dx.doi.org/10.1103/PhysRevB.81.134523
http://dx.doi.org/10.1103/PhysRevB.81.134523


KAVEH GHARAVI AND JONATHAN BAUGH PHYSICAL REVIEW B 91, 245436 (2015)

[36] M. Ashida, S. Aoyama, J. Hara, and K. Nagai, Phys. Rev. B 40,
8673 (1989).

[37] P. F. Bagwell, Phys. Rev. B 46, 12573 (1992).
[38] V. C. Y. Chang and C. S. Chu, Phys. Rev. B 55, 6004

(1997).
[39] J. Bardeen and J. L. Johnson, Phys. Rev. B 5, 72

(1972).
[40] A. Chrestin, T. Matsuyama, and U. Merkt, Phys. Rev. B 49, 498

(1994).
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