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Separation of heat and charge currents for boosted thermoelectric conversion
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In a multiterminal device the (electronic) heat and charge currents can follow different paths. In this paper
we introduce and analyze a class of multiterminal devices where this property is pushed to its extreme limits,
with charge and heat currents flowing in different reservoirs. After introducing the main characteristics of this
heat-charge current separation regime, we show how to realize it in a multiterminal device with normal and
superconducting leads. We demonstrate that this regime allows us to control independently heat and charge flows
and to greatly enhance thermoelectric performances at low temperatures. We analyze in detail a three-terminal
setup involving a superconducting lead, a normal lead, and a voltage probe. For a generic scattering region we
show that in the regime of heat-charge current separation both the power factor and the figure of merit ZT are
highly increased with respect to a standard two-terminal system. These results are confirmed for the specific case
of a system consisting of three coupled quantum dots.
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I. INTRODUCTION

Increasing the efficiency of thermoelectric materials for
heat-work conversion is one of the main challenges of present-
day technology [1–6]. In this context the search for efficient
nanoscale heat engines and refrigerators has stimulated a large
body of activity, recently reviewed in Ref. [7]. Progress in
understanding thermoelectricity at the nanoscale will also have
important applications for ultrasensitive all-electric heat and
energy transport detectors, energy transduction, heat rectifiers,
and refrigerators, just to mention a few examples. One of
the keys to success in this field is the ability to modulate,
control, and route heat and charge currents, ideally achieving
their separate control [8–14]. This is however by no means
obvious as the charge and (the electronic contribution to) the
heat are transported by the same carriers. In two-terminal
systems, for example, within the linear response regime,
electrical and thermal currents are strictly interrelated, as
manifested by the emergence at low enough temperatures
of the Wiedemann-Franz law [15]. Indeed, when the tem-
perature is the smallest energy scale in the system (that is,
if the Sommerfeld expansion holds) one finds that the ratio
� = K/(GT ), involving the electrical G and the thermal
K conductances at temperature T is universal and it is given by
the Lorenz number �0 = π2/3 (kB/e)2. The fulfillment of the
Wiedemann-Franz law, one of the triumphs of Sommerfeld’s
theory of metals, has important consequences in determining
the efficiency of thermoelectric engines. For a two terminal
setup the only way to increase the thermoelectric figure of
merit ZT = (GS2/K)T , the dimensionless parameter that
fully describes the efficiency for thermoelectric conversion, is
by increasing the thermopower (S), which is however bounded
to be small at small T [7].

In order to achieve a separate control of heat and charge
currents one should therefore consider more complex (mul-
titerminal) devices. The key issue in this context is to assess

to which extent this control can be achieved and what are
its possible advantages in thermoelectric thermal machines.
In this paper we push to its extreme this type of control
and explore a situation where heat and charge currents flow
in spatially separated parts of the system. Namely, we will
enforce that one of the terminals allows only charge current
and another one allows only heat current, and we name this
regime as heat-charge current separation (HCCS). It is worth
stressing already at this point that the regime of HCCS is
realized notwithstanding the fact that the same carriers are
responsible for heat and charge flow. As we will discuss
in details in the paper, HCCS can be naturally realized
by employing superconducting reservoirs. Nonetheless, this
is not a strict requirement: indeed, in principle one could
spatially separate heat and charge currents in an all-normal
multiterminal device. In this case, however, a fine tuning of the
parameters characterizing the thermoelectric transport needs
to be performed thus making the device not easy to realize
experimentally.

Recent investigations of multiterminal setups [16–33] have
shown that such devices offer great potentialities in terms of
efficient thermoelectric conversion. In the majority of these
works all but two terminals were considered as probes, i.e.,
no net flow of energy and charge through them was allowed.
In other papers a purely bosonic reservoir was added to the
standard two terminals, only exchanging energy with the
system. A generic three-terminal setup, where all reservoirs
are fermionic (possibly exchanging both charges and heat
with the system), was considered in Ref. [34] where it
was shown that the third terminal can be used to increase
both the extracted power and the efficiency of a thermal
machine. So far the impact of superconducting reservoirs
on the performance of thermoelectric devices has not been
considered [35]. We start filling this gap by studying HCCS and
thermoelectric conversion in a three-terminal hybrid normal
metal-superconducting device.
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FIG. 1. (Color online) The heat-charge current separation
scheme. A generic scattering region is connected to three reservoirs
labeled by the letters S (superconducting lead), P (voltage probe),
and N (normal metal lead). In the main text we assume the
superconducting reservoir (S) to be the reference. In any case, as
pointed by the arrows, only charge flows inside lead S whereas only
heat flows inside lead P.

The three-terminal device which implements HCCS, pic-
torially shown in Fig. 1, is composed of a generic conductor
connected to a superconducting reservoir (S), a normal metal
reservoir (N), and a second normal reservoir whose chemical
potential is set to inhibit the flow of electrical current, thus
acting as a voltage probe (P). This setup, to which we
will refer to as SPN, naturally realizes heat-charge current
separation. Indeed, a voltage probe exchanges (on average)
by definition only heat (energy) with the system, whereas the
superconductor, being a poor heat conductor for temperatures
below the gap, can exchange only charges. This way, the
heat and charge currents, flowing together out of the normal
metal reservoir (N), are split and driven either towards the
voltage probe (heat), or towards the superconducting reservoir
(charge). In the linear response regime this setup has the
advantage of admitting an effective description in terms of
a 2 × 2 Onsager matrix, a feature which allows inter alia a
natural way of comparing its performance to that of a standard
two-terminal configuration. Using the scattering approach, we
will show on general grounds that this separation allows,
in the linear response regime and at small temperatures, to
greatly enhance the performance of a thermal machine, namely
increasing both the efficiency and the output power by roughly
one order of magnitude with respect to a standard two-terminal
counterpart. The root of this enhanced efficiency can be traced
back to the possibility to violate in a controlled fashion the
Wiedemann-Franz law in the heat-charge separation regime.
On more general grounds it is worth stressing that the simul-
taneous presence of superconducting and normal terminals,
by selectively controlling the heat and charge flows through
normal and Andreev scattering, introduces additional degrees
of freedom that are worth being explored for thermoelectric
conversion.

The paper is organized as follows: In Sec. II we introduce
the necessary formalism and define the regime of heat-

charge current separation. We then show how this regime
can be attained by having one of the three terminals in
the superconducting state. In order to test the performance
of this thermal engine we perform an extensive analysis in
Sec. III, by varying the properties of the scattering region
connecting the three reservoirs. By properly parametrizing
the scattering matrix we sample randomly the scatterer and
compare the efficiency of the HCCS thermal machine with that
of a “conventional” two-terminal setup (Secs. III A and III B).
We complete our analysis in Sec. III C by discussing the
case of systems consisting of quantum dots (QDs). The
reason to study these examples in detail is to show that it
is possible to achieve, in experimentally realizable situations,
those enhanced performances that we found in the first part
of Sec. III B. Indeed we see that our theoretical findings can
be tested with current experimental capabilities. Section IV
is devoted to the concluding remarks. Some technical details
related to the scattering formalism in the presence of Andreev
scattering are summarized in the Appendices.

II. HEAT-CHARGE CURRENT SEPARATION

Let us consider a system composed of a conductor attached
to three leads. Within the linear response regime charge and
heat currents are governed by the Onsager matrix L via the
relation⎛

⎜⎜⎜⎝
J c

N

J h
N

J c
P

J h
P

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

X
μ

N

XT
N

X
μ

P

XT
P

⎞
⎟⎟⎟⎠, (1)

where J c
i (J h

i ) represent the charge (heat) current entering the
conductor from lead i, with i = (N,P), see Fig. 1. We define the
biases X

μ

i = �μi/T = (μ − μi)/T and XT
i = �Ti/T 2 =

(T − Ti)/T 2, where μi and Ti are the chemical potential and
temperature, respectively, relative to reservoir i = N,P and
having chosen the reservoir S as reference with temperature
T and chemical potential μ. Heat and charge currents flowing
in lead S can be determined from the conservation of particle
and energy currents.

As already mentioned, HCCS consists in spatially separat-
ing heat and charge flows. In the example of Fig. 1 heat will
only flow in lead P while charge will only flow in lead S. In
this section we characterize this regime and discuss how to
implement it.

On general grounds HCCS can be realised whenever two
“probe” terminals [36] are present: one for the voltage and one
for the temperature. In fact, a voltage probe is a terminal whose
voltage is adjusted in order for the charge current to vanish,
while a temperature probe is a terminal whose temperature
is adjusted in order for the heat current to vanish (see
Appendix A). Unlike a voltage probe, which is implemented
simply by opening the electric circuit, making a thermal probe
would require the ability to control and measure heat currents
which is still very challenging in practice (although important
advancements in the measurements of heat currents at the
nanoscale have been recently achieved, see Refs. [37,38]). A
natural way of realising HCCS is to replace the thermal probe
with a superconducting lead which intrinsically suppresses

245435-2



SEPARATION OF HEAT AND CHARGE CURRENTS FOR . . . PHYSICAL REVIEW B 91, 245435 (2015)

the heat flow for low enough voltages and temperatures. On
the contrary a normal metal-superconductor interface is an
excellent electrical conductor due to the Andreev process that
allows us to carry charge current in the subgap regime. In
the following we will detail the working principles of this
implementation.

Let us consider Eq. (1) and take the superconducting
reservoir as the reference. Assuming temperatures much
smaller than the superconducting gap and using the scattering
formalism (see Appendix B) one can demonstrate that the
coefficients on the fourth row (column) of the Onsager matrix
Eq. (1) are the opposite of the corresponding coefficients on
the second row (column). This implies that J h

N = −J h
P which,

at first order in linear response, yields J h
S = 0 by virtue of the

energy conservation. In other words, it is an intrinsic property
of the hybrid scattering matrix to have vanishing heat current
in the superconducting lead. These observations allow us to
simplify the Onsager system of equations by eliminating the
redundant forth row and column, thus reducing it to a 3 by 3
problem: ⎛

⎜⎝
J c

N

J h
N

J c
P

⎞
⎟⎠ =

⎛
⎜⎝

L11 L12 L13

L21 L22 L23

L31 L32 L33

⎞
⎟⎠

⎛
⎜⎝

X
μ

N

XT

X
μ

P

⎞
⎟⎠, (2)

where we have introduced XT = XT
N − XT

P (or equivalently
�T = �TN − �TP ). Now we impose the voltage probe
condition J c

P = 0 on reservoir P, which yields

X
μ

P = −L31X
μ

N + L32X
T

L33
. (3)

By substituting Eq. (3) into Eq. (2) one obtains a two-terminal-
like Onsager matrix:(

J c
N

J h
N

)
=

(
L′

11 L′
12

L′
21 L′

22

)(
X

μ

N

XT

)
. (4)

For the sake of simplicity, in the following we drop the primes
for the Onsager coefficients L′

ij in Eq. (4). From the definitions
of the local [7] and nonlocal [34] transport coefficients, one can
introduce (local) conductances and (nonlocal) thermopowers
described by the following two-terminal-like expressions:

G =
(

eJ c
N

�μN

)
�T =0

= L11

T
, (5)

S = −
(

�μN

e �T

)
J c

N =0

= 1

T

L12

L11
, (6)

K =
(

J h
N

�T

)
J c

N =0

= 1

T 2

L11L22 − L21L12

L11
. (7)

Importantly, we can express the efficiency for heat to work
conversion with the standard two-terminal formula [7]

η = −X
μ

NJ c
N

J h
N

= −L11
(
X

μ

N

)2 − L12X
μ

NXT
P

−L21X
μ

N − L22X
T
P

. (8)

One can also define the figure of merit ZT = (GS2/K) T

and the power factor Q = GS2. The former gives information
about the maximum efficiency and the efficiency at maximum

power [39,40] η(Wmax) = (ηC/2) ZT/(ZT + 2), ηC = 1 −
�T/T being the Carnot efficiency, while the latter about the
maximum power Wmax = Q(�T )2/4. With these formulas the
analogy between the SPN system and the two-terminal one is
complete, allowing us to compare their performance.

III. HSSC IN HYBRID DEVICES

As we shall show in this section, the heat-charge separation
implemented through the SPN setup allows us to control G and
K separately. This will be at the origin of the enhancement of
both the figure of merit ZT and the power factor Q with respect
to the two-terminal setup. We will use the Landauer-Büttiker
scattering formalism [41,42], which is summarised in Ap-
pendix B for multiterminal hybrid superconducting systems.
We begin our analysis by considering low temperatures (within
the Sommerfeld expansion) and studying a well-defined
class of scattering matrices. Quasiparticle transmission from
the normal leads into the superconductor is exponentially
suppressed and thus can be ignored. Thus the scattering
probabilities entering Eq. (B3) just involve reservoirs N and P.

In the following we will express the conductances (electri-
cal and thermal) as well as the thermopower as functions of
the parameters characterising the scattering matrix. The aim
is to sample this parameter space in order to make a statistical
analysis of the thermoelectric performance. Assuming a single
channel per spin per lead, in the Bogoliubov-de Gennes
formalism (see Appendix B) the total scattering matrix Stot

is 8 × 8. Supposing that there are no spin-mixing terms, it can
be written in a diagonal block form

Stot =
(

S 0

0 S′

)
,

where the basis is (c↑,N ,c↑,P ,c
†
↓,N ,c

†
↓,P ,c

†
↑,N ,c

†
↑,P ,c↓,N ,c↓,P ),

where the operator cσ,i (c†σ,i) destroys (creates) an electron with
spin σ in lead i = (N,S,P ). The matrices S and S′ are related
by the particle-hole symmetry relations (see Appendix B), so
that assigning the elements of S is sufficient to know the whole
Stot. For sake of simplicity we will consider symmetric unitary
matrices. A parametrization of this class of matrices is given
by

S =
(

g1S1 g2S2

g2S
T
2 g3S3

)
, (9)

where S1 and S3 are 2 × 2 symmetric unitary matrices, S2 is
a 2 × 2 unitary matrix, S3 = ST

2 S∗
1S2, and g1, g2, g3 are such

that the matrix (
g1 g2

g2 g3

)

is unitary. For the sake of simplicity we assume the latter to be
real, i.e., it can be written as(

g(E)
√

1 − g(E)2√
1 − g(E)2 −g(E)

)
,
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where we made explicit the dependence on the energy E.
Furthermore, we parametrize S1 and S2 as

S1 =
(

−ρ1(E) ei(θ1+2β1)
√

1 − ρ1(E)2 eiβ1√
1 − ρ1(E)2 eiβ1 ρ1(E) e−iθ1

)
(10)

and

S2 =
(

−ρ2(E) ei(θ2+β2+γ2)
√

1 − ρ2(E)2 eiβ2√
1 − ρ2(E)2 eiγ2 ρ2(E) e−iθ2

)
, (11)

assuming the phases in the matrices to be energy independent.
The last simplification that we impose is the following
relation between the phases: β2 + θ2 = β1 + θ1 + π

2 . Within
this parametrization we assume θ1, β1, θ2, β2, and γ2 to
be real numbers and g(E), ρ1(E) and ρ2(E) to be real
functions of energy such that 0 � g(E), ρ1(E), ρ2(E) � 1 for
any E. With this notation and using the expressions for the
Onsager coefficients in the Landauer-Büttiker approach given
in Appendix B, the Sommerfeld expansion yields the following
transport coefficients [see Eqs. (5)–(7)]:

G = 8 − 8g(0)2 + 8(−1 + g(0)2)2

−1 − ρ2(0)2 + g(0)2(ρ1(0)2 + (3 − 2ρ1(0)2)ρ2(0)2 + 2( − 1 + ρ1(0)2)ρ2(0)4)
, (12)

S = 2
π2T g(0)ρ2(0)[−ρ2(0)( − 1 + ρ2(0)2)[(−1 + ρ1(0)2)g′(0) + g(0)ρ1(0)ρ ′

1(0)]

−3ρ2(0)2 + 3g(0)2(−1 + ρ1(0)2 + (3 − 2ρ1(0)2)ρ2(0)2 + 2(−1 + ρ1(0)2)ρ2(0)4)

− g(0)(−1 + ρ1(0)2)(−1 + 2ρ2(0)2)ρ ′
2(0)]

−3ρ2(0)2 + 3g(0)2(−1 + ρ1(0)2 + (3 − 2ρ1(0)2)ρ2(0)2 + 2(−1 + ρ1(0)2)ρ2(0)4)
, (13)

K = −2π2T

3
[−1 + ρ2(0)2 + g(0)2(ρ2(0)2 − 2ρ2(0)4 + ρ1(0)2(1 − 2ρ2(0)2 + 2ρ2(0)4))], (14)

where the primed quantities are derivatives with respect to
energy. After the choices we made, we are left with six param-
eters [namely, ρ1(0), ρ ′

1(0), ρ2(0), ρ ′
2(0), g(0), g′(0)] to control

G, S and K . We stress that we do not impose time reversal
symmetry on the scattering matrix S, Eq. (9), although our
parametrization gives rise to a symmetric Onsager matrix [43].

At this point we would like to draw attention to the fact that
the transport coefficients G, S, and K are independent in a
parameter region that is defined by the constraints imposed by
the unitarity of the scattering matrix and from the Sommerfeld
expansion. The independence of the transport coefficients can
be appreciated from the way the six parameters, needed to
parametrize the scattering matrix, enter Eqs. (12)–(14). Indeed,
if the value of K in Eq. (14) is fixed, the value of G given by
Eq. (12) is not automatically determined, but instead it can
be controlled by exploiting the other parameters. The same
applies to S when G and K are fixed.

We shall now discuss how the performance of the SPN
system depends on these parameters. It is indeed important
to verify if: i) HCCS is an advantage for thermoelectric
conversion, ii) in the regime of HCCS the enhancement of
the performance is generic or it requires additional fine tuning.
In order to assess the above issues we will first analyze to
which extent heat and charge can be controlled independently,
and then we will study the figure of merit as a function of
the parameters characterising the scattering matrix. Since we
have to deal with six free parameters our analysis will be of
statistical nature.

A. Control of heat and charge currents

Our strategy to test our ability to control the currents in
the three-terminal device is to use, in the same spirit as
in the Wiedemann-Franz law, the ratio between heat and
electrical conductances. Using Eqs. (12) and (14) we can

now calculate � = K/(GT ) which can be seen by inspection
not to be a constant, hence violating the Wiedemann-Franz
law. Note that both G and K depend only on the coefficients
ρ1(0), ρ2(0), and g(0). In Fig. 2 we plot, for a fixed value
of K , the dimensionless ratio �/�0 and the thermopower
S as functions of the parameter ρ2(0). More precisely, after
fixing K we extract from Eq. (14) the parameter g(0) which
is a function of K,ρ1(0), ρ2(0) and substitute it into Eq. (12).
Moreover, we impose the condition that the next order in the
Sommerfeld expansion is much smaller than the one we take
into account, restricting the range of admissible values of the
other parameters [e.g., ρ2(0) can at most be 0.7]. For applying
this condition we have to specify the values of the derivatives
g′(0), ρ ′

1(0), and ρ ′
2(0) even though they do not appear in

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρ2(0)

0.0

0.2

0.4

0.6

0.8

1.0
Λ/Λ0

S[kB/e]

FIG. 2. (Color online) Plot of the ratio �/�0 and thermopower
S for fixed K = 10 (3kBT )/π 2h as a function of ρ2(0). Here we show
that using only one parameter [ρ2(0)] we cannot control separately
the thermopower and the ratio � = K/(GT ). The other parameters
are: ρ1(0) = 0.8, g′(0) = 0.001(kBT )−1, ρ ′

1(0) = 0.03(kBT )−1 and
ρ ′

2(0) = 0.3(kBT )−1.
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FIG. 3. (Color online) Thermopower S from Eq. (13), with K =
10 (3kBT )/π 2h as a function of ρ ′

2(0) [in units of (kBT )−1]. Using
the additional degrees of freedom provided by the derivatives of
the parameters [here we use ρ ′

2(0)], we gain the control of the
thermopower S without affecting the ratio �. The other parameters
are: ρ1(0) = 0.8, g′(0) = 0.001(kBT )−1, and ρ ′

1(0) = 0.1(kBT )−1.

Eqs. (12) and (14). We assume higher order derivatives to be
zero for simplicity. The plot shows that � is not a constant, but
it can be controlled by properly tuning the parameters of the
scattering matrix. Moreover, Fig. 2 shows that S changes by
varying ρ2(0) for fixed K . The controllability of the transport
coefficients can be further increased by fixing the values of
both K and � using the parameters ρ1(0) and ρ2(0), and tuning
the derivatives to change the thermopower. This is shown in
Fig. 3 where � andS are plotted as a function of ρ ′

2(0). Notably
S spans a quite large interval of values, even changing sign.
We conclude that the SPN system allows independent control
of G, K , and S. This enhanced control is at the basis of the
better performance that we are going to describe in the next
section.

B. Thermoelectric performance

In this section we compare on a statistical ground the
thermoelectric performance of the SPN system with that of a
generic two-terminal normal system by randomly generating
the parameters of the scattering matrices and calculating
the corresponding power factor Q and figure of merit ZT .
Within the low temperature limit (Sommerfeld expansion),
we perform a numerical simulation generating the parameters
of the scattering matrix of both the two-terminal and the
SPN systems. Such parameters are picked within a uniform
distribution in the allowed ranges given by the conditions
imposed by the unitarity of the scattering matrix [44] and
the Sommerfeld expansion. In Fig. 4 we plot the probability of
occurrence of a certain value of Q (left panel) and ZT (right
panel). The plot shows that the SPN system (black histograms)
has better performance than the normal two-terminal system
(red histograms) for both the power factor Q and the figure
of merit ZT . Indeed, the maximum value of Q for the SPN
system is about 0.5 k2

B/h, while it is about 0.2 k2
B/h for the

two-terminal one. The maximum of ZT for the SPN system
is just above 0.1, while it is about 0.05 for the two-terminal
system. In Fig. 5 we plot the correlations between Q and ZT

for the same random data. Each point in the plot corresponds
to a particular realization of the scattering matrix of the

FIG. 4. (Color online) (left) Probability histogram of the power
factor Q = GS2 [in units of k2

B/h] for the SPN system (black curve)
and for the corresponding normal two-terminal system (red curve).
The maximum value of Q for the SPN setup is about 0.5 k2

B/h, while
it is about 0.2 k2

B/h for the two-terminal case. (right) Probability
histogram of the figure of merit ZT for the SPN system (black curve)
and for the corresponding normal two-terminal case (red curve). The
maximum of the SPN setup is just above 0.1, while it is about 0.05
for the two-terminal system.

two-terminal or the SPN system, for which the power factor
and the figure of merit are calculated.

Figure 5 shows that the distribution of points presents
a triangularlike shape for the two-terminal setup. An upper
bound on the power factor Q is given by the unitarity of the
scattering matrix. In fact, Q and ZT are related by the thermal
conductance as Q = (K/T )ZT and, under the Sommerfeld
expansion, K is proportional to the probability of transmission
of an electron from lead N to P, which cannot exceed unity.
This yields an upper bound given by

Q � 2π2k2
BZT

3h
. (15)

This is actually true for both the two-terminal and the SPN
systems. For the two-terminal system a stronger bound, which
produces the curvature of the upper side of the “triangle,” is
given by the constraint that must be imposed on the derivative
of the transmission amplitude with respect to energy imposed

FIG. 5. (Color online) Correlation between the values of Q and
ZT for the same data as for Fig. 4: Each point corresponds to a given
random realization. Red (black) points are relative to the two-terminal
(SPN) setup. The green dashed curve represents the bound of Eq. (15)
that holds for both the SPN and the two-terminal system. The green
solid curve, instead, represents the bound of Eq. (16) that is the
stronger bound given by the unitarity on the two-terminal system.
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by unitarity of the scattering matrix [44]. This implies the
following expression for the maximum of Q:

Qmax = 2e2

h
�0ZT

(
1 + c

eT

√
ZT

�2
0

)−2

, (16)

where c is a given energy scale of the order of kBT .
Furthermore, for the two-terminal system the power factor
Q can take all the values between 0 and Qmax, thus filling the
red “triangle” of Fig. 5. On the other hand, in the case of the
SPN system the points are concentrated just below the line of
the maximum. This is due to the fact that the value of K/T ,
given by Eq. (14), cannot take all the values between 0 and
2π2k2

B/(3h) because of the constraints imposed on, and the
relations between, the parameters appearing in the expression.

The bound on the maximum value of ZT , instead, is
given by the conditions on the higher orders of Sommerfeld
expansion, that here we impose to be at least 10 times smaller
that the leading orders for both the two-terminal and the SPN
system. It is interesting to notice that for the SPN system the
points with the highest power factor Q are also the points
with the highest figure of merit ZT : The maximum power
automatically gives the maximum efficiency. In particular the
points with the best thermoelectric performance for the SPN
system roughly correspond to the following values of the
scattering probabilities: normal reflection in lead N, R � 0;
normal transmission from lead N to lead P, T � 1

4 ; Andreev
reflection in lead N, RA � 3

16 ; Andreev transmission from lead
N to lead P, TA � 9

16 .

C. Coupled QDs in the SPN setup

We complete our analysis by assessing the thermoelectric
performance of a specific SPN system composed of three
coupled single-level (noninteracting) QDs (“tridot”) connected
to a normal lead (N), a voltage probe (P) and a superconducting
lead (S), see Fig. 6. The Hamiltonian describing the “tridot”
reads

H =
(

He 1�

1�∗ Hh

)
, (17)

S
γN γP

N P

1

23

t12t13

t23

FIG. 6. (Color online) A three coupled QDs (“tridot”) system in
the SPN setup. γN and γP label the coupling to the reservoirs N and
P, respectively. The three QDs are coupled to a superconducting lead
(S), with a fixed chemical potential.

where He is the Hamiltonian relative to the electrons degree
of freedom and is given by

He =

⎛
⎜⎝

ε1 t12 t13

t∗12 ε2 t23

t∗13 t∗23 ε3

⎞
⎟⎠, (18)

where εi , i = (1,2,3) is the onsite energy of the ith dot, while
tij , {i,j} = (1,2,3), is the coupling between the ith and the
j th dot. Notice that Hh = −H ∗

e is the Hamiltonian relative to
the holes, while � = 100 kBT is the superconducting gap.
Note that the presence of the S lead is introduced in an
effective way, whereby superconductivity is directly included
in the Hamiltonian of the “tridot.” The crucial point is that the
superconductor chemical potential μ is fixed. Furthermore, for
simplicity, we have assumed that the superconducting pairing
for all the QDs is equal as though originating from the fact that
all QDs are equally coupled to the S lead. In Fig. 6, γN and γP

are the coupling energies to the N and P lead, respectively.
In order to make a statistical analysis we focus on random

Hamiltonians, for the electron sector He, drawn from the
Gaussian orthogonal ensemble (GOE) and from the Gaussian
unitary ensemble (GUE). The former describe complex phys-
ical systems with time reversal symmetry (TRS), while the
latter describe complex systems with broken TRS [45,46,47].
The TRS breaking is encoded in the complex part of the
Hamiltonian (18). However this does not imply the spin
degeneracy breaking, since we can apply a small Aharanov-
Bohm flux through the plane of the “tridot” (that breaks TRS),
without a Zeeman component (that would have removed the
spin degeneracy). In both cases (with and without TRS),
the elements of He are drawn from a Gaussian probability
distribution N (x,�x), where x is the mean and �x is the
variance. We use distributions with different mean for the
diagonal elements (QD energy levels) and for the off diagonal
elements (couplings between QDs), in order to have a band
shift. The former are drawn from a Gaussian probability dis-
tribution N (kBT ,103kBT ) (mean equal to kBT , and variance
equal to 103kBT ). The latter are drawn from a Gaussian
probability distribution N (0,103kBT ). The variance is chosen
in order to obtain a smooth energy profile for the transmission
probabilities and to be under the Sommerfeld expansion. From
the Hamiltonian (17) the Green function of the system is
calculated for fixed values of γN and γP . The 4 × 4 scattering
matrix (there is spin degeneracy) is finally calculated from the
Green function using the Fisher-Lee relation [48]. Note that
the two-terminal system, to be compared with the SPN setup,
is simply described by the Hamiltonian He. For each random
realization of the Hamiltonian of Eq. (17) we compute the
power factor Q and the figure of merit ZT . The results are
shown in Fig. 7; in both the panels each point in the Q-ZT

plane represents a single realization. We notice that both Q

and ZT are one order of magnitude larger in the SPN case
with respect to the two-terminal configuration for both the
GOE Hamiltonian in Fig. 7(a) and the GUE Hamiltonian in
Fig. 7(b). This shows a significant enhancement, on a statistical
ground, in the performance of the SPN with respect to the
two-terminal system (the parameters of the system that realize
the maxima of Q and ZT for both the two-terminal and the
SPN system are given in Appendix C). The distribution of the
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FIG. 7. (Color online) Correlation between the power factor Q =
GS2 and the figure of merit ZT relative to “tridot” systems for the
SPN setup (black points) and the two-terminal setup (red points).
The green curve corresponds to the bound of Eq. (15), given by the
unitarity of the scattering matrix, and sets a maximum value for Q as
a function of ZT . In panel (a) we show the correlation for the GOE
and in panel (b) for the GUE. Both plots show that for the SPN setup
both Q and ZT are one order of magnitude larger with respect to
the corresponding values for the two-terminal system. Moreover it is
possible to see that the increase of the performance is not due to the
breaking of the TRS. The plot refers to 105 Hamiltonian realizations,
taking γN = γP = γ = 103 kBT .

points is similar to that of Fig. 5. Since for the “tridot” model
the allowed values of ZT (under Sommerfeld expansion) are
much smaller than the values that we obtained from the model
in the previous section (see Fig. 5), the bound on Q of Eq. (16)
reduces to that of Eq. (15). Instead, the bound on ZT is again
set by the Sommerfeld approximation. Here we notice that
for the two-terminal system we cannot see the bound given in
Eq. (16) because of the small values of ZT . As the temperature
increases and the Sommerfeld expansion loses its validity, we
have observed that the performance (for both Q and ZT ) of
the SPN setup gets worse, eventually becoming comparable to
that of the corresponding two-terminal setup.

IV. CONCLUSIONS

In this paper we have analyzed the performance of a thermal
machine which, by involving three reservoirs, allows for the
implementation of a spatial separation between heat and charge
currents in linear response. This machine can be naturally
realized by connecting a conductor to a superconducting lead,
a voltage probe, and a normal lead (SPN system). Interestingly,
the linear-response transport equations, written in terms of the
Onsager matrix, turn out to be formally equal to those of
a two-terminal conventional system. Using this property we
have made a comparison between the performance of these
two thermal machines in terms of the power factor Q (that
controls the maximum extracted power), and the figure of
merit ZT (that controls the efficiency at maximum power and

the maximum efficiency). Within the scattering approach we
have described the SPN system with a parametrized scattering
matrix. We have shown that in the low temperature limit (where
the Sommerfeld expansion holds) the SPN system violates
the Wiedemann-Franz law and allows, to some extent, an
independent control of electrical conductance, thermal con-
ductance, and thermopower (i.e., of heat and charge currents).
To assess the consequences of this on the thermoelectric
performance of the SPN system we have made a statistical
analysis by taking random values, over a uniform distribution,
of the parameters contained in the scattering matrix. We
have thus shown, on statistical grounds, that the SPN system
exhibits much larger values of Q and ZT with respect to the
two-terminal counterpart. Further improvements (more than
one order of magnitude) of the thermoelectric performance
of the SPN setup have been confirmed on a specific physical
system composed of three coupled quantum dots. We believe
that our results can be relevant in the experimental activity on
thermoelectricity of nanoscale structures, which are typically
conducted at low temperatures.
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APPENDIX A: VOLTAGE- AND
TEMPERATURE-PROBE SETUP

By imposing the thermal probe condition J h
N = 0 on

reservoir N and the voltage probe condition J c
P = 0 on

reservoir P, one can solve the second and third rows of Eq. (1)
for the two biases XT

N and X
μ

P , that will not depend directly on
the currents J c

N and J h
P , and find:(

XT
N

X
μ

P

)
= −

(
L22 L23

L32 L33

)−1(
L21 L24

L31 L34

)(
X

μ

N

XT
P

)
. (A1)

From the first and forth rows of Eq. (1) one can define an
effective two-terminal-like Onsager matrix, with(

J c
N

J h
P

)
=

(
L′

11 L′
12

L′
21 L′

22

)(
X

μ

N

XT
P

)
, (A2)

where the primed Onsager coefficients are obtained by
substituting the expressions of Eq. (A1) into Eq. (1). What
was given above should be considered as a definition of HCCS
and not a way to implement it.

APPENDIX B: LANDAUER-BÜTTIKER FORMALISM FOR
HYBRID SUPERCONDUCTING SYSTEMS

Let us consider a mesoscopic system composed of a
conductor to which n > 1 leads are attached. Each lead
is in equilibrium with a fermionic reservoir to which a
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Fermi distribution function is associated, so that a lead is
characterized by a temperature and a chemical potential. At
energy E the ith lead has Ni(E) open transverse channels. We
allow the possibility to have superconductivity in the system,
and for simplicity we describe it using the Bogoliubov-de
Gennes (BdG) formalism [49], which doubles the degrees of
freedom by introducing “hole” states. The BdG Hamiltonian
is particle-hole symmetric by construction, i.e., it is such that
{HBdG,C} = 0, where C is the charge-conjugation operator and
the curly parentheses stand for the anticommutator. A hole
state is the charge conjugate of an electronic state, e.g., if the
operator ck,σ destroys an electron of momentum k and spin σ ,
the operator Cck,σC = c

†
k,σ destroys a hole of momentum k and

spin σ . For completeness we mention that C is an antiunitary
operator, hence besides exchanging creation and annihilation
operators one must also take the complex conjugate of the
numeric coefficients.

Particle-hole symmetry implies that the occupation of a
hole state is complementary to the occupation of an electronic

state with opposite energy:

f −
j (E) = 1 − f +

j (−E), (B1)

where f −
j is the distribution function for a hole in lead j

and f +
j is the analogous for electrons. We can then write a

generalized expression for the Fermi distribution function as
follows:

f α
j (E) = 1

1 + exp[βj (E − α(μj − μs))]
, (B2)

where μj is the chemical potential of the j th lead, μs is
the chemical potential of the superconductors which we take
as a reference for the energies, βj = (kBTj )−1 is the inverse
temperature of the j th lead, and α is equal to + for electrons
and − for holes. Assuming coherent transport in the conductor,
one can express the charge and energy currents flowing
through the normal leads in terms of scattering probabilities
using the Landauer-Büttiker formalism generalized to include
superconductivity:

J c
i =

n∑
j

(
− e

h

) ∑
ασβσ ′

α

∫ +∞

0
dE P

ασβσ ′
ij (E)f β

j (E) + e

h

∑
ασ

α

∫ +∞

0
dE Nασ

i (E)f α
i (E),

(B3)

J u
i =

n∑
j

(
− 1

h

) ∑
ασβσ ′

∫ +∞

0
dE (E + αμs)P

ασβσ ′
ij (E)f β

j (E) + 1

h

∑
ασ

∫ +∞

0
dE (E + αμs)N

ασ
i (E)f α

i (E),

where J c
i is the charge current in the ith lead, J u

i is the energy current in the ith lead, e is the electron charge, h is the Planck

constant, and Nασ
i (E) is the number of open channels at energy E for particles of type α and spin σ . In Eq. (B3) P

ασβσ ′
ij (E) is the

probability for a particle of type β, spin σ ′, and energy E incoming from lead j to be elastically scattered as a particle of type α

and spin σ into the ith lead. The probability of scattering is related to the scattering matrix by P
ασβσ ′
ij (E) = ∑

a,b |Sασ,βσ ′
(i,a),(j,b)(E)|2,

where a and b are the transverse channels in lead i and j , respectively. To avoid double counting that would have been introduced
by the BdG formalism, the integrals over the energies run from 0 to +∞ instead of starting from −∞. Here zero energy
corresponds to the Fermi energy of the superconductors. Due to particle-hole symmetry the probability of scattering from lead i

to lead j satisfies the relation

P
ασ,βσ ′
ij (E) = P

−ασ,−βσ ′
ij (−E). (B4)

The unitarity of the scattering matrix yields the following sum rules:∑
j,σ ′,β

P
ασ,βσ ′
ij (E) = N

α,σ
i ,

∑
i,σ,α

P
ασ,βσ ′
ij (E) = N

β,σ ′
j . (B5)

The expressions of Eq. (B3) can be simplified by substituting Eqs. (B1), (B4), and (B5) resulting in

J c
i = e

h

∑
jσβσ ′

∫ +∞

−∞
dE

[
N+σ

i (E)δij δσσ ′δβ+ − P
+σβσ ′
ij (E)

]
f

β

j (E),

(B6)

J u
i = 1

h

∑
jσβσ ′

∫ +∞

−∞
dE (E + μs)

[
N+σ

i (E)δij δσσ ′δβ+ − P
+σβσ ′
ij (E)

]
f

β

j (E).

Once the charge and energy currents are determined in the normal leads, the sum of the currents in the superconducting leads
J c

SC = ∑SC
j J c

j and J u
SC = ∑SC

j J u
j can be calculated exploiting Kirchhoff’s sum rules

∑
i J

c
i = 0 and

∑
i J

u
i = 0, which are a

consequence of charge and energy conservation. From the first law of thermodynamics one can also define a heat current J
Q
i in

the ith lead as

J h
i = J u

i − μi

e
J c

i . (B7)

Let us remark that in a general case there is no sum rule for the heat currents. However, one can notice that in the superconducting
leads the heat current is J h

i = J u
i − μs

e
J c

i , hence the sum of the heat currents over the superconducting leads is
∑SC

j J h
j = J h

SC =
J u

SC − μs

e
J c

SC which can be determined by Kirchhoff’s sum rules on charge and energy currents. A hybrid mesoscopic device
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can be thought of as a thermal machine, for example for heat to work conversion. One can define the efficiency of the thermal
machine as the ratio between the work W extracted from the engine when it absorbs heat Q. By convention we assume positive
heat flowing into the system, hence in the steady state the definition of the efficiency is equivalent to

η = Ẇ

Q̇
=

∑
i J

h
i∑+

i J h
i

= −∑
i �μiJ

c
i

e
∑+

i J h
i

, (B8)

where the dot indicates a derivative with respect to time and the apex + in the denominator means that the sum is restricted
to positive heat currents. Time derivative of the work Ẇ must be positive for the machine to work as a heat to work converter,
otherwise we are dealing with a refrigerator and the definition of η is no longer valid.

Assuming small temperature and voltage biases, we can expand the Fermi distribution function of Eq. (B2) at first order in
such quantities:

f α
j (E) � f (E) + ∂f α

j

∂XT
j

∣∣∣∣
(E,T )

XT
j + ∂f α

j

∂X
μ

j

∣∣∣∣
(E,T )

X
μ

j ,
∂f α

j

∂XT
j

∣∣∣∣
(E,T )

= −E

T

∂f

∂E
,

∂f α
j

∂X
μ

j

∣∣∣∣
(E,T )

= −αe
∂f

∂E
, (B9)

where we defined f (E) = (1 + e
E

kB T )−1. Since the scattering matrix is independent of the biases, we can use Eq. (B9) to linearize
the currents of Eqs. (B6) and (B7) as follows:

J c
i =

∑
j

Gij�Vj +
∑

j

Dij�Tj , J h
i =

∑
j

Mij�Vj +
∑

j

Kij�Tj , (B10)

where we defined the quantities

Gij = e2

h

∑
σσ ′

∫ +∞

−∞
dE

[
N+σ

i (E)δij δσσ ′ − P +σ+σ ′
ij (E) + P +σ−σ ′

ij (E)
](− ∂f

∂E

)
,

Dij = e

h

∑
σσ ′

∫ +∞

−∞
dE

E

T

[
N+σ

i (E)δij δσσ ′ − P +σ+σ ′
ij (E) − P +σ−σ ′

ij (E)
](− ∂f

∂E

)
,

(B11)

Mij = e

h

∑
σσ ′

∫ +∞

−∞
dE E

[
N+σ

i (E)δij δσσ ′ − P +σ+σ ′
ij (E) + P +σ−σ ′

ij (E)
](− ∂f

∂E

)
,

Kij = 1

h

∑
σσ ′

∫ +∞

−∞
dE

E2

T

[
N+σ

i (E)δij δσσ ′ − P +σ+σ ′
ij (E) − P +σ−σ ′

ij (E)
](− ∂f

∂E

)
.

Notice that the contributions from energies above the gap to the integrals defining the Onsager coefficients of Eqs. (B11) are
exponentially suppressed by the Fermi factor and will be neglected in the following. Let us notice that from the unitarity of the
scattering matrix it follows that the diagonal coefficients are always positive or zero. The coefficients Gij , Dij , Mij , and Kij are
related to the usual Onsager coefficients [7] Lij via the following identifications:⎛

⎜⎜⎜⎝
L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎞
⎟⎟⎟⎠ = T

⎛
⎜⎜⎜⎝
G11 TD11 G12 TD12

M11 TK11 M12 TK12

G21 TD21 G22 TD22

M21 TK21 M22 TK22

⎞
⎟⎟⎟⎠. (B12)

APPENDIX C: HAMILTONIANS OF THE MAXIMA OF Q AND ZT FOR THE “TRIDOT SYSTEM”

In this section we provide the parameters of the electronic Hamiltonians He that realize the maximum values of Q and ZT

for the two-terminal and SPN systems. The Hamiltonians that give the maxima for the Gaussian orthogonal ensemble are

H 2 term, GOE
e =

⎛
⎜⎝

1.556 −0.983 −0.046

−0.983 0.109 0.18

−0.0458 0.18 −0.001

⎞
⎟⎠γ, (C1)

H SPN, GOE
e =

⎛
⎜⎝

−1.888 −1.074 0.209

−1.074 0.724 −0.834

0.209 −0.834 0.387

⎞
⎟⎠γ. (C2)
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The Hamiltonians for the maxima for the Gaussian unitary ensemble are

H 2 term, GUE
e =

⎛
⎜⎝

0.729 0.583 + 2.375 i 0.273 + 0.115 i

0.583 − 2.375 i 0.425 0.062 − 0.226 i

0.273 − 0.115 i 0.062 + 0.226 i 0.039

⎞
⎟⎠γ, (C3)

H SPN, GUE
e =

⎛
⎜⎝

0.064 −0.923 + 0.484 i −0.16 − 0.921 i

−0.923 − 0.484 i 1.213 −0.39 + 0.752 i

−0.16 + 921.13 i −0.39 − 0.752 i 0.481

⎞
⎟⎠γ, (C4)

where all the energies are expressed in terms of the coupling energy γ . Note that, although the values of the Hamiltonian
parameters are much greater than the temperature, the large value of the coupling energy γ makes the linear response coefficients
significantly affected by such parameters. Indeed, the transmission profiles corresponding to these Hamiltonians turn out to be
stretched on a (large) scale set by γ , and hence they are almost flat within the transport window (that in the linear response regime
is given by the width of the derivative of the Fermi function and is of the order of a few kBT ).
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