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Surface states in Tl/Si(111)-(1 × 1) and β-Bi/Si(111)-(
√

3 × √
3) show non-Rashba-type spin splitting. We

study spin-transport properties in these surface states. First, we construct tight-binding Hamiltonians for Tl/Si
and Bi/Si surfaces, which respect crystallographic symmetries. As a result, we find specific terms in the Tl/Si
surface Hamiltonian responsible for non-Rashba spin splitting. Using this model, we calculate current-induced
spin polarization in the Tl/Si Hamiltonian in order to see the effect of non-Rashba spin-orbit interaction. We found
that the induced spin polarization is in plane and perpendicular to the current, which is consequently the same
with Rashba systems. We find that it follows from crystallographic symmetries. Furthermore, we numerically find
bound states at the junction between two surface regions which have different signs of the spin-orbit interaction
parameters in the Bi/Si system and in the Tl/Si system. We explain these numerical results with the results of our
analytical calculations.

DOI: 10.1103/PhysRevB.91.245428 PACS number(s): 71.70.Ej, 73.20.−r

I. INTRODUCTION

The spin-orbit interaction (SOI) in crystals has various
forms depending on materials and their symmetries. In a
surface of a metal, one of the typical forms of the SOI is
the Rashba SOI (�σ × �k)z [1] and is observed in metal surfaces
such as in Au(111) surface [2]. Here, the Fermi surfaces consist
of two concentric circles, and spins are tangential to the Fermi
surfaces. This spin-splitting effect has been observed on clean
noble metal surfaces [3–6] and heavy group V elements [7–9].
On the other hand, bulk inversion asymmetry gives rise to
another type of the SOI called Dresselhaus SOI [10]. The
Dresselhaus SOI in two dimensions has the form kxσx − kyσy

to the linear order in �k. Its energy band splitting is similar to
that of the Rashba SOI, but the spin direction is unlike the
Rashba SOI, as has been observed in the GaAs(110) surface
[11].

Since there are various types of SOI terms depending on
systems, we can expect rich physics from their interplay. For
example, two-dimensional (2D) systems including both the
Rashba and Dresselhaus SOIs with equal magnitude have
an anomalously enhanced spin lifetime [12]. Because of
nested Fermi surfaces with opposite spins, the spin lifetime
is proposed to be largely enhanced at the nesting wave vector.
This phenomenon was observed in 2D electron gas [13] in
semiconductor quantum wells [14] and is called persistent
spin helix.

Thanks to the low symmetries of material surfaces, they
sometimes allow even other types of SOI. For example, non-
Rashba-type surface states have been measured in Tl/Si(111)-
(1×1) [15] and β-Bi/Si(111)-(

√
3 × √

3) surfaces [16] by
angle-resolved photoemission spectroscopy (ARPES). On the
Tl/Si surface, the spin-split states at the K̄ point have the spins
normal to the surface. In addition, on the Bi/Si surface there
is a “peculiar” Rashba splitting at the K̄ points. It is called
peculiar because the K̄ points are not time-reversal invariant,
whereas the conventional Rashba splitting appears only around
time-reversal-invariant �k points [17,18]. Furthermore, at the M̄

point in the Bi/Si surface, the spin texture is not of Rashba type,
but is similar to that of Dresselhaus type. Such unconventional

systems may have new spin properties which are yet to be
discovered.

In this paper, we theoretically explore new properties due
to the SOI in the Tl/Si(111)-(1×1) [15] and β-Bi/Si(111)-
(
√

3 × √
3) [16] surfaces. First, we construct effective tight-

binding Hamiltonians of the Tl/Si and Bi/Si surfaces. We
verify qualitative agreement for energy bands and spin texture,
between the experimental results and our results. Second, we
explore spin properties in the non-Rashba-type system Tl/Si,
such as the current-induced spin polarization and the persistent
spin helix. We show that a charge current induces spin
polarization in the system with non-Rashba-type spin splitting.
Although the Hamiltonian contains out-of-plane components,
the induced spin is shown to be in plane. In addition,
when the Fermi energy is controlled in the Tl/Si surface so
that there are two nested carrier pockets with opposite spins,
we theoretically show that spin helix states can be realized at
a nesting wave vector.

Additionally, we study a junction between two surface
regions which have different signs of the SOI parameters in
the Bi/Si and the Tl/Si systems. It is motivated by the related
work in topological insulators (TIs) [19]. The junction of TIs
with different sizes of the SOI is shown to exhibit a novel
refraction phenomenon, and in addition it was shown that there
exist topologically protected gapless interface states between
two TIs when the SOI of the two TIs have opposite signs
[19]. Because TIs and Rashba systems have the same form
of the SOI, we expect a similar behavior in Rashba systems.
Motivated by this work, we study a junction between two
surface regions with non-Rashba SOI of opposite signs. We
see that in some cases the junctions support bound states, with
spin directions different from the bulk states.

II. CONSTRUCTION OF EFFECTIVE MODELS FOR
THE NON-RASHBA SYSTEMS

In this section, we construct effective tight-binding models
for two types of non-Rashba systems. These models are
intended to be minimal models sharing the same symme-
try properties as the original systems. Hence, they do not
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necessarily reproduce the band structures of the original
materials quantitatively.

A. Tl/Si(111) surface

We construct an effective tight-binding Hamiltonian for
the Tl/Si surface [Fig. 1(a-1)]. We consider the model on the
triangular lattice, which represents the Tl atoms as shown in
Fig. 1(a-2). We retain only the nearest-neighbor hoppings,
and the x and y directions are defined as in Fig. 1(a-2). By
taking into account the symmetries of the Tl/Si crystal, such
as threefold rotational symmetry C3z, time-reversal symmetry,
and mirror symmetry with respect to the xz plane Mxz [see
Fig. 1(a-2)], the Hamiltonian is represented as

H =
∑
〈i,j〉

C
†
i [t + iλx(�σ × �dij )z + iλzξij σz]Cj , (1)

where �σ is the vector of the Pauli matrices, �dij is the vector
from site i to j , and Ci is an annihilation operator for an
electron at the ith site in the triangular lattice. ξij takes the
values ±1 depending on the hopping directions: ξij is ±1 for
θ = (4n ∓ 1)π/6 (n: integer), where θ is an angle between
the hopping vector and the +x direction. The second term
of the Hamiltonian involves the in-plane spin perpendicular
to the hopping direction. The third term involves the spin
perpendicular to the plane (‖z), and such term does not exist
in Rashba systems. It causes non-Rashba spin splitting with
spin polarization perpendicular to the crystal surface at the K̄ ,
K̄ ′ points, as we see in the following.

FIG. 1. (Color online) (a-1) Schematic illustration of the Si(111)-
(1×1) surface with adsorption of one monolayer of Tl. The orange
balls indicate the topmost Si atoms and the blue balls indicate the Tl
atoms. (b-1) Schematic illustration of the Si(111)-(

√
3 × √

3) surface
with adsorption of one monolayer of Bi. The purple balls indicate the
Bi atoms. In (a) and (b), the black dashed lines indicate the unit cell of
each surface. (a-2) and (b-2) represent the triangular lattice used for
the tight-binding models. In (a-2) the blue balls denote the Tl atoms,
while in (b-2) each purple ball denotes a set of three Bi atoms. The
red dashed lines indicate the mirror planes (xz plane).

The Hamiltonian (1) is rewritten into a matrix form

H (�k) = d0 + d1σx + d2σy + d3σz, (2)

where

d0 = t(2 cos 2Y + 4 cos X cos Y ), (3)

d1 = λx(2 sin 2Y + 2 cos X sin Y ), (4)

d2 = −λx(2
√

3 sin X cos Y ), (5)

d3 = λz(2 sin 2Y − 4 cos X sin Y ), (6)

where X =
√

3
2 kxa, Y = 1

2kya, and a is the lattice constant. Its
eigenvalue and spin direction are given by

E(�k) = d0 + η

√
d2

1 + d2
2 + d2

3 , (7)

〈�s〉 = ηd̂, (8)

where η = ±1, d̂ is a unit vector along �d = (d1,d2,d3). The
surface Brillouin zone is a hexagon, with its corners K̄(0, 4π

3a
),

K̄ ′(0, − 4π
3a

). As an example, we numerically calculate the
band structure for t = 1, λx,z = 0.1. At K̄ and K̄ ′ points
d1 = d2 = 0, and the Hamiltonian reduces to d0 + d3σz.
Hence, the energy bands around the K̄ , K̄ ′ points have
non-Rashba splitting, with the spin directions perpendicular to
the crystal surface [Fig. 2(a)]. On the other hand, at M̄( 2π√

3a
,0),

M̄ ′(− 2π√
3a

,0), and 	̄(0,0), �d becomes zero, and the two bands

FIG. 2. (Color online) Energy bands for effective surface Hamil-
tonian of Tl/Si. Band structures are plotted along (a) the K̄-	̄-K̄ ′ and
(b) the M̄-	̄-M̄ ′ directions. Spins at K̄ and K̄ ′ are shown as blue and
red arrows in (a). (c) Spin configuration of the upper band (η = 1) in
the first Brillouin zone. Arrows represent the in-plane spin direction
(〈Sx〉,〈Sy〉) and the color represents the out-of-plane spin component
〈Sz〉. The black hexagon represents the surface Brillouin zone. The
parameters are set as t = 1, λx,z = 0.1.
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are degenerate. Around M̄ , M̄ ′, and 	̄ points, the vector �d
forms a vortex, and consequently the bands have Rashba
splitting [Fig. 2(b)]. These features of our results qualitatively
agree with the experimental results for the Tl/Si(111) surface
[15]. The spin distribution for the present model in the first
Brillouin zone is shown in Fig. 2(c). This is in agreement with
the above considerations.

Here, we note a previous work on theoretical calculation for
the Tl/Si crystal by a different method [20]. It is based on a four-
band effective model on the honeycomb lattice representing the
Tl atoms and Si atoms in the first layer. The calculated spin
configuration qualitatively agrees with our results. Compared
with the four-band model Hamiltonian, our two-band model is
simpler and useful for analytic calculations and investigations
of new phenomena.

B. β-Bi/Si(111) surface

Next, we take the same procedure for the Bi/Si crystal
surface. We construct an effective tight-binding Hamiltonian
on the triangular lattice, representing the states close to
the Fermi energy. Symmetries of the Bi/Si crystal to be
considered are the C3z symmetry, the time-reversal symmetry,
and the mirror symmetry Mxz [see Fig. 1(b-2)]. The symmetry
properties might look the same with Tl/Si(111), but it is not
the case. As can be seen from Figs. 1(a-2) and (b-2), the
relative positions of mirror planes in the triangular lattice
are different, and it brings about different restrictions for the
effective Hamiltonian. The resulting effective model with only
the nearest-neighbor hoppings is written as

H =
∑
〈i,j〉

C
†
i [t + iλy(�σ × �dij )z]Cj . (9)

This Hamiltonian does not contain a term similar to the third
term in Eq. (1). The Hamiltonian matrix can be written as

H (�k) = d0 + d1σx + d2σy, (10)

where

d0 = t(2 cos 2X + 4 cos X cos Y ), (11)

d1 = λy(2
√

3 cos X sin Y ), (12)

d2 = −λy(2 sin X cos Y + 2 sin 2X), (13)

where X = 1
2kxa, Y =

√
3

2 kya, and a is the lattice constant.
As an example, we calculate the band structure for t = 1 and
λy = 0.1, shown in Fig. 3. Around the K̄ , M̄ , and 	̄ points,
the vector (d1,d2) forms a vortex, and as a result the energy
bands [Figs. 3(a) and 3(b)] have Rashba splitting around K̄,M̄ ,
and 	̄ points. The spin distribution is in plane, and is shown
in Fig. 3(c). Usually, Rashba splitting appears around time-
reversal-invariant momenta, where the spin degeneracy comes
from the Kramers theorem. Nevertheless, in the present case,
there is a Rashba splitting at the K̄ point which is not invariant
under time reversal. It is called peculiar Rashba splitting [16]
which is different from the conventional Rashba splitting
because this peculiar Rashba splitting comes from the C3z

symmetry at the K̄ points which are not time-reversal invariant.
These results qualitatively agree with the experimental results
for β-Bi/Si(111) surface in Ref. [16].

FIG. 3. (Color online) Energy bands and spins for effective sur-
face Hamiltonian of the Bi/Si. Band structures are plotted along (a) the
K̄-	̄-K̄ ′ and (b) the M̄-	̄-M̄ ′ directions. (c) Spin polarization for the
upper band (η = 1). Each arrow represents the in-plane spin direction
(〈Sx〉,〈Sy〉). The black hexagon represents the surface Brillouin zone.
The parameters are set as t = 1, λy = 0.1.

III. CURRENT-INDUCED SPIN POLARIZATION
IN THE TL/SI SURFACE

As is already known, in systems with Rashba SOI, a
charge current induces the spin polarization because an
off-equilibrium electron distribution necessarily induces spin
imbalance. It was theoretically proposed in Refs. [21–23] and
experimentally observed in Refs. [24,25]. For the Rashba
systems, the total spin polarization is in plane, and is
perpendicular to the current in the plane. Here, we consider
this current-induced spin polarization in systems with non-
Rashba-type spin splitting, such as in the Tl/Si model. Because
the third term in the Tl/Si model in the Hamiltonian (1) gives
rise to the spins perpendicular to the crystal surface, we can
naively expect the current-induced spin polarization to have
an out-of-plane component.

We numerically calculate the induced spin by the Boltz-
mann equation [26]. We assume that the model is uniform and
that the impurity concentration is very small. In principle, the
Boltzmann semiclassical equation can be obtained from the
Wigner quantum kinetic equation as a semiclassical limit, and
the classical distribution function is written as fσ,σ ′ (�r,�k,t),
which depends on spin indices. In this paper, our goal is
to qualitatively discuss various aspects of the non-Rashba
SOC, and not to quantitatively calculate physical quantities
in specific materials. Therefore, for simplicity of calculation,
we assume the classical distribution function to be spin
independent, f (�r,�k,t). It means that the relaxation time is
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assumed to be independent of spin. In addition, the classical
distribution function f does not depend on �r because we
assume this system to be uniform. The Boltzmann equation
becomes

0 = ∂ �k
∂t

· �∇rf +
(

df

dt

)
collisions

, (14)

where the last term is the temporal change rate by collisions
with impurities. The equation of motion for ∂ �k

∂t
in the absence of

an external magnetic field is given by ∂ �k
∂t

= −e �E. We approx-
imate the collisions term by relaxation-time approximation(

df

dt

)
collisions

= −f (�k) − f0(�k)

τt (�k)
, (15)

where f0(�k) is the Fermi distribution function, and τt (�k) is
the relaxation time. Here, we assumed that the relaxation
is due to impurity scattering, and is independent of spin,
in order to illustrate the role of the non-Rashba SOC in
the current-induced spin polarization in a simpler fashion.
In particular, we neglect scattering by phonons which may
lead to anomalous Cherenkov effect due to the interaction
between electrons and the crystal lattice with SOC [27]
because we assume the electric field not too strong so that
the electrons are subsonic and, thus, the scattering rate on
impurities may dominate over the Cherenkov dissipation. By
taking an approximation of replacing f by f0 in the first term
of Eq. (14), the distribution function under an electric field is
written as

f (�k) ≈ f0(�k) − eτt (�k) �E · �∇�kf0(k). (16)

The spin polarization is written as

〈Si〉 = 1

2

∫
d�k

(2π )2
〈si〉(−eτt (�k) �E · �∇�kf0(�k)), (17)

where 〈si〉 = ηd̂i is the spin expectation value.
The numerical results are plotted in Fig. 4, where we take

t = 1 and λx = λz = 0.1 and set τt to be a constant τ . Here,
we note that the nonzero spin polarization in Fig. 4 arises from
the spin expectation values for spin-split bands because the
relaxation time is set as a constant, and the spin dependence
is considered only through the spin expectation value. It is
also the case for the conventional spin-orbit-coupled systems
such as Rashba systems [21–23]. The electric field is taken
along the x direction in Fig. 4(a) and along the y direction
in Fig. 4(b). The result is shown as the dimensionless spin

FIG. 4. (Color online) Spin polarization induced by the electric
field along the (a) x direction and (b) y direction. Spin polarization
is shown in a unit of eτEi

2(2π )2 .

polarization which is the spin polarization divided by eτEi

2(2π)2

(i = x,y), as a function of the Fermi energy Ef . We see
that for both cases the induced spins are along the direction
which is the direction rotated by −90◦ from the electric field,
which follows from symmetry as we show later. From these
results, in spite of the presence of the third term in Eq. (2)
having the out-of-plane spins, the current does not induce
out-of-plane spin polarization within linear response. It means
that the contributions from the K̄ and K̄ ′ points cancel each
other.

The results in Fig. 4 have three characteristic energies:
E

(1)
f = −3.5 where the spin polarization arises, E

(2)
f = −2.3

for the kink, and E
(3)
f = −2 for the peak. From the energy

band (Fig. 2), E
(1)
f = −3.5 and E

(2)
f = −2.3 correspond to

band bottoms of the spin-split bands near the the K̄ point
[Fig. 2(a)]. At E

(3)
f = −2, there are band bottoms of spin-split

bands at the M̄ point [Fig. 2(b)]. To see the reasons for the
characteristic values of the Fermi energy Ef in Fig. 2, we
calculate the contribution of the induced spin polarization,
coming from the states near the K̄ and that from the M̄ points.
The results for the spin polarization are shown in Fig. 5. We
take the numerical calculation range of Fermi energy set as
−2 � Ef because the approximate Hamiltonian is effective
only in the vicinity of each point.

The contribution from the states near M̄ point [Fig. 5(a-1)]
has a peak at Ef = −2. Thus, the peak of the spin polarization
in Fig. 4 is due to the contribution from the states close to the
M̄ points. The strong peak due to the states close to the M̄

point might be attributed to a relatively flat dispersion around
the M̄ point, giving rise to a high density of states. On the other
hand, the contribution from the K̄ point [Fig. 5(a-2)] has a kink
at Ef = −2.3. The kink at E

(2)
f is due to the contribution from

the states close to the K̄ points.
To see the reason for the absence of out-of-plane spin

polarization in Fig. 4, we express the linear response of the
spin polarization to the current as

〈Si〉 = φijJj , (18)

where φij represents response coefficients and Jj (j = x,y) is
the current. By imposing crystal symmetries to Eq. (18), we
obtain φxy = −φyx and φij = 0 otherwise. Thus, it is written
as

〈�S〉 = φ( �J × �z), (19)

FIG. 5. (Color online) Spin polarization induced by the current
for the states around (a-1) M̄ and (a-2) K̄ in response to Ex . Spin
polarization is shown in a unit of eτEi

2(2π )2 .
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where φ is a real constant. From this calculation, we find
that the spin polarization is always in plane, and is always
perpendicular to the in-plane current. It agrees with our
numerical calculations and with the calculation by Liu et al.
[20] with four-band model. Therefore, in the present case the
crystal symmetries prohibit the out-of-plane spin polarization,
despite the nonzero out-of-plane spins for the states near K̄

and K̄ ′ points.

IV. PERSISTENT SPIN HELIX IN THE TL/SI

In the model of Tl/Si, the spin splitting around the K̄ and K̄ ′
points brings about an out-of-plane spin texture around these
points, similar to thin films of transition-metal dichalcogenides
[28–30]. In such cases, nesting between the two pockets at
K̄ and K̄ ′ brings about an anomalously long lifetime of a
spin excitation at the nesting wave vector, as proposed in the
two-dimensional electron gas with equal size of the Rashba and
Dresselhaus spin-orbit couplings [12]. The key ingredients of
this phenomenon are the two nested Fermi surfaces by the
magic shifting vector having the opposite spins. In addition,
the enhanced spin lifetime has been confirmed experimentally
in semiconductor heterostructures [13,14].

We apply this theory to the Tl/Si model. We assume that
the Fermi energy is controlled by doping, so that there are
small electron pockets around K̄ and K̄ ′. Then the system has
the Fermi surfaces shifted by the magic shifting vector �Q =
[0, − 8π/(3a)] from the K̄ point to the K̄ ′ point [Fig. 6(a)]
and the spins have the opposite direction perpendicular to the
xy plane at the K̄ and K̄ ′ points [Fig. 2(a)]. For example, let
us take a state with the spin along the x direction at �x = �0,
described by

|ψ〉	̄ = ei( �k0− �Q
2 )·�x

(
1
0

)
+ ei( �k0+ �Q

2 )·�x
(

0
1

)
, (20)

where the �k0 (|�k0| � π/a) is a wave vector. It is a su-
perposition of two eigenstates at K̄ and at K̄ ′, which are
degenerate. The spin expectation value at arbitrary �x is written

FIG. 6. (Color online) (a) The surface Brillouin zone (SBZ) in
Tl/Si and the Fermi surfaces (blue circles) around K̄ and K̄ ′ points
near Ef = −2. The red arrow indicates the magic shifting vector �Q.
(b) Schematic illustration of the spin helix. The orange arrows indicate
the spin on the Tl atoms (blue balls). The directions of the red arrows
represent the in-plane spin directions forming the spin helix. The
vectors of �a1, �a2 (green arrows) indicate primitive translation vectors.

as

〈Sx〉 = 1
2 〈ψ |σx |ψ〉 = cos( �Q · �x), (21)

〈Sy〉 = 1
2 〈ψ |σy |ψ〉 = −sin( �Q · �x), (22)

〈Sz〉 = 1
2 〈ψ |σz|ψ〉 = 0. (23)

Hence, the rotation angle of spin moving from �x = �0 to �x = 0
is �Q · �x. Therefore, the rotation angles of spin from �x = �0 to
�x = �a1 and �a2 are

�Q · �a1 = 4π

3
, �Q · �a2 = −4π

3
. (24)

From this calculation we obtain Fig. 6(b) as a spin texture
on the Tl atoms forming a triangular lattice. It is a spin helix
with the wave vector �Q. As is similar to the spin helix in Ref.
[12], it is expected to have enhanced spin lifetime because of
the degeneracy of the states around K̄ and those around K̄ ′.
Therefore, the spin helix in the Tl/Si model has in-plane spin
texture with neighboring spins being different by 120◦. This
is different from the spin helix in the 2D Rashba-Dresselhaus
system [12], where the spin helix is perpendicular to the surface
and a value of the magic shifting vector is much smaller
than ours. To realize the persistent spin helix in the Tl/Si
system, hole doping [31] leads to emergence of two nested
hole pockets with opposite spins at the K and K ′ points. Once
the spin texture is created, it will survive for a relatively long
period.

V. BOUND STATE AT A JUNCTION BETWEEN
TWO SURFACE REGIONS

Next, we discuss bound states at a junction between two
regions which have different signs of the SOI parameter, as in
Fig. 7(a). We consider the two models discussed in this paper,
i.e., the Tl/Si system described by Eq. (1) without second term
and the Bi/Si system described by Eq. (9). For the direction
of the junction between two regions, we consider two cases
shown in Figs. 7(b) and 7(c). In the junction models, the SOI
parameter (λz in Tl/Si and λy in Bi/Si) is set as +λ and −λ

in the regions I and II, respectively. To extract interface states,
we compare the results with 2D bulk models, where the SOI
parameter is set as λ for the whole system.

A. Bi/Si junction model

We calculated the band structures for two types of Bi/Si
junction models shown in Figs. 7(b) and 7(c). For Fig. 7(c),
we could not find bound states at the junction. In contrast,
for Fig. 7(b), we obtain the result in Fig. 8(a), which shows
that there are bound states (red lines) below all the 2D bulk
states (gray area) in Fig. 8(a). The decay length depends on the
SOI parameter example, it is 10.0 times the lattice spacing for
the parameters |λy | = t . Additionally, we find that the energy
difference between the bound states and the bulk band edge is
larger for a larger value of the SOI parameter, as seen from the
results with the SOI parameter |λy | = 0.2t , |λy | = 0.5t , and
|λy | = t [Figs. 8(b)–8(d)].

Furthermore, in Fig. 8(a), there are four bound states
forming two Kramers pairs. The Kramers degeneracy appears
because the system restores spatial inversion symmetry when
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FIG. 7. (Color online) (a) Schematic illustration of the junction
model. The blue (I) [green (II)] area indicates the region of the Bi or
Tl layer where the SOI parameter has a negative (positive) value. The
yellow area indicates the Si substrate. In (b) and (c), two choices of
junctions are shown as a top view. The primitive translation vectors
(red arrow) are (b) (

√
3a,0,0) and (c) (a,0,0), respectively. The purple

dashed line indicates the junction.

FIG. 8. (Color online) Energy bands of the 2D bulk states and
the junction model for Bi/Si with different SOI parameter such as (b)
|λy | = 0.2t , (c) |λy | = 0.5t , and (a), (d) |λy | = t . (a) The red lines
indicate the states when the SOI parameter is set as +t in the blue
region (I), 0 on the junction boundary, and −t in the green region
(II) (Fig. 7). The gray areas indicate the bulk bands with the SOI
parameter set as +t .

the SOI parameter are set as −λy(y < 0) = λy(y > 0). In
contrast, when the SOI parameter is set as −λy(y < 0) =
λy(y > 0), the degeneracy of the bound states are lifted at
�k points other than the M̄ points.

Additionally, spin directions of these bound states are
almost along the z axis, with a small value of y component.
This is expected from the crystal symmetries. Because this
Bi/Si junction model [Fig. 7(b)] has Myz and the time-reversal
symmetries, the x component of spin necessarily vanishes. The
out-of-plane spin directions of the bound states are in sharp
contrast to the in-plane spin directions of the bulk states. We
note that these interesting bound states cannot be reproduced
by continuum models as we discuss later.

Next, we try to analytically calculate bound states for junc-
tion systems in order to compare with the above numerical re-
sults. First, we note that in the Bi/Si junction model, the bound
state of Fig. 8(a) appears around the M̄ or M̄ ′ points. These
points are shown as green and blue arrows in Fig. 8(a), corre-
sponding to the dotted lines in Fig. 7(a) and at these points the
spin splitting is of the non-Rashba type. Therefore, we take the
Hamiltonian from an expansion of Eq. (9) around the M̄ point:

H (k) = k2

2m
+ λy(σxky + σykx). (25)

We then consider a junction between two surface regions, de-
scribed by the Hamiltonian (25) with the SOI parameter chang-
ing along the y direction λy = λ(y). We tried the calculation
of the bound states of this model, with two different choices
of the function λ(y): the step function and the hyperbolic
tangent function, as explained in the Appendix. As a result, the
continuum model in the Bi/Si junction model cannot reproduce
the bound states. The reason for this is yet to be clarified, and
left as a future work. We note that for an interface between
two regions of the one-dimensional nanowire with different
directions of the SOI vector, bound states are found analytically
[32], whereas the system considered is different from ours.

To realize this junction system, we note that the SOI
parameter in this system originates from the broken inversion
symmetry due to the surface, similar to the Rashba SOI.
Therefore, realization of our junction model with different
signs of SOI parameters would be similar to the case for the
Rashba SOI. Here, we note an example of a related system,
a noncentrosymmetric semiconductor BiTeI. In BiTeI, the
stacking order of atomic layers Bi-Te-I or I-Te-Bi determines
the sign of the Rashba parameter in this system, and by
changing the stacking order it is possible to achieve a different
sign of Rashba SOI [33]. Although the present system is
different from BiTeI, it might be possible to achieve a junction
between two regions with different signs of SOI parameters
by controlling the atomic arrangement in each region.

B. Tl/Si junction model

Next, we numerically analyze two types of Tl/Si junction
models shown in Figs. 7(b) and 7(c). There are no bound
states in the Tl/Si junction model of Fig. 7(c). Meanwhile,
in the Tl/Si junction model of Fig. 7(b) there appear bound
states (red lines) above all the 2D bulk states (gray area) in
Fig. 9(a). The results for various values of the SOI parameter
are shown in Figs. 9(b)–9(d). From these results, the energy
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FIG. 9. (Color online) Energy bands of the 2D bulk states and
the junction model for Tl/Si with different SOI parameter such as (a),
(b) |λz| = t , (c) |λz| = 1.73t , and (d) |λz| = 2.5t . (a) The red lines
indicate the states when the SOI parameter is set as +t in the blue
region (I), 0 in the junction boundary, and −t in the green region
(II) (Fig. 7). The gray areas indicate the bulk bands with the SOI
parameter set as +t .

difference between the bound states and the bulk band edge
is nonmonotonic and it is maximized at about |λz| = 1.73t

[Fig. 9(c)] in our case. The decay length of the bound states
also depends on the SOI parameter, and it is 38.5 times the
lattice spacing, for the parameters |λz| = t .

As is similar to the Bi/Si junction in the previous section,
the four bound states in Fig. 9(a) form two Kramers pairs,
stemming from the restored spatial inversion symmetry when
−λz(y < 0) = λz(y > 0) holds. This degeneracy at �k points
other than the 	̄ point is lifted when −λz(y < 0) = λz(y > 0).
We also note that the spin of the bound states is along the z

axis because the effective Hamiltonian (1) without the second
term only has the σz term.

Next, we construct a continuum model for the present
system and calculate bound states for the junction system in
order to compare with the numerical results of the tight-binding
models. The bound states for Fig. 7(b) at kx = 0 [orange arrow
at Fig. 9(a)] should correspond to K̄ , M̄ , or 	̄ points [orange
dotted line at Fig. 7(b-2)], whereas in Fig. 7(c) at kx = 0
corresponding to M̄ and 	̄ points there are no bound states
[orange dotted line at Fig. 7(c-2)]. Therefore, the bound states
of Fig. 9(a) are expected to come from the K̄ point. For this
reason, by expanding Eq. (1) around the K̄ point we take the
following continuum Hamiltonian:

H (k) = k2

2m
+ λzσz

(
k2
y + k2

x

)
. (26)

We take the same procedure for calculation of the bound states
for this continuum model [Eq. (26)] in the Appendix. As a
result, the continuum model cannot reproduce the bound states.

Thus, we conclude that the bound states found in the junction
system are unique to the lattice model.

VI. CONCLUSION

In conclusion, we derive effective nearest-neighbor tight-
binding Hamiltonians for surfaces of Tl/Si and Bi/Si by taking
into account the crystal symmetries. The energy band of the
Tl/Si model has non-Rashba splitting and the spin direction
for each band is perpendicular to the crystal surface at the K̄

point. The energy band of the Bi/Si model has peculiar Rashba
splitting at the K̄ point because the Rashba splitting occurs
around the K̄ points which are not time-reversal invariant.
Our results of the model calculation qualitatively agree with
the experimental results. In addition, differences between the
Tl/Si model and the Bi/Si model lie in the out-of-plane spin
at the K̄ points in the Tl/Si model. This difference originates
from the non-Rashba term involving the out-of-plane spins in
Eq. (1).

Additionally, as one of our theoretical explorations towards
novel spin properties, we calculate current-induced spin
polarization for the Tl/Si model. Although the third term
in the Tl/Si model in the Hamiltonian (1) has a spin com-
ponent perpendicular to the crystal surface, the out-of-plane
component of current-induced spin polarization within linear
response is zero, as prohibited by the crystal symmetries. As a
result, the current-induced spin polarization of the non-Rashba
model is in plane, and perpendicular to the current, which is
qualitatively similar to that of Rashba model.

Furthermore, we apply the theory of persistent spin helix
to the Tl/Si model. We find that in the spin helix in the Tl/Si
model, the spins are shifted by 120◦ between the neighboring
sites and are in plane, which is different from the spin helix in
semiconductor heterostructure.

Finally, we numerically find bound states at the junctions
between the two surface regions which have different signs
of the SOI parameters in the Bi/Si system and in the Tl/Si
system. For the junction shown in Fig. 7(b) we found bound
states at the junction. From the lattice model we find that
the spins of the bound states in the Bi/Si model is out of
plane, which is in contrast with in-plane spin distribution in the
bulk.

To summarize the whole results, surface states allow various
types of non-Rashba-type SOI due to low symmetries, and they
are expected to lead to new spin properties which are absent in
conventional Rashba systems, and they have much room for
future research.
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APPENDIX

In this appendix, we analytically calculate the bound states
for the Bi/Si junction model of Fig. 7(b). First, we consider
a junction between two surface regions described by the
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Hamiltonian (25) with different signs of the SOI parameter
λy(y) → ±λ0 for y → ±∞. Several choices of λy(y) are
possible. First, we take λy(y) to have the form of the step
function along the y direction λy(y) = λ0θ (y), where θ (y)
is step function. The system is set to be infinite along the
x direction. We should replace ky by −i∂y because there
is no translational symmetry along the y axis. Furthermore,
we replace λy(y)[σx(−i∂y)] by −i 1

2σx[λy(y)∂y + ∂yλy(y)] to
preserve Hermiticity of the Hamiltonian.

Along the y direction, we call the two regions I (y > 0)
and II (y < 0). From the Hamiltonian rewritten from Eq. (25),
boundary conditions are written as

ψI(0) = ψII(0), (A1)

1

2m
{∂yψI(0) − ∂yψII(0)} = −iσxλ0ψI(0). (A2)

Meanwhile, when the wave function of the bound states decays
exponentially as e±κ±y , the eigenenergy is

E± = 1

2m

(
k2
x − κ2

±
) ± λ0

√
k2
x − κ2±, = C2

±
2m

± λ0C±, (A3)

where C± ≡
√

k2
x − κ2±. Here, because the values of λy(y) for

the regions I and II have the same size with different signs, the
decay of the wave functions in region II is characterized by κ±,
as is the same with region I. Therefore, EI± = EII∓ follows,
and the bound states of two regions are written as

ψI = α

(
i(κ+ − kx)

C+

)
e−κ+y+ikxx

+β

(
i(κ− − kx)

−C−

)
e−κ−y+ikxx, (A4)

ψII = α′
(

i(κ+ + kx)
C+

)
eκ+y+ikxx

+β ′
(

i(κ− + kx)
−C−

)
eκ−y+ikxx, (A5)

FIG. 10. (Color online) Energy band of the 2D bulk states and
the junction model for (a) Bi/Si and (b) Tl/Si. The red lines indicate
the states when the SOI parameter is set as λ0 tanh( y

a
). The gray area

indicates 2D bulk states when the SOI parameter is set as λ0 in all
the regions. The other parameters are set as λ0 = 40, m = 0.5, and
a = 0.001.

where α, β, α′, and β ′ are constants. We then impose the
boundary conditions to derive α, β, α′, and β ′ of Eqs. (A4)
and (A5). As a result, we found that there are no such values
which satisfy the boundary conditions.

Second, we try with the SOC parameter λy(y) to have
the form λy(y) = λ0 tanh( y

a
), where a represents a width of

the domain wall. The results of the Bi/Si junction model are
drawn as red lines and the bulk band is drawn as a gray area
in Fig. 10(a). According to Fig. 10(a), there are no states
below all 2D bulk states around M̄ point (kx = 0). Altogether,
we cannot reproduce the bound states by this continuum
model.

Next, we analytically calculate the bound states for Tl/Si
junction model of Fig. 8(b). We consider a junction between
two surface regions described by Hamiltonian (26) with
different signs of the SOI parameter along the y direction. We
try with the SOI parameter λz to have the form λz = λ0 tanh( y

a
).

We take the calculation procedure used for the Tl/Si junction
model and obtain the energy band in Fig. 10(b). According to
Fig. 10(b), there are no states above all 2D bulk states around
K̄ point (kx = 0). Altogether, we cannot reproduce the bound
states by this continuum model.
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