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Magnetic exchange and nonequilibrium spin current through interacting quantum dots
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We develop a theory for charge and spin currents between two canted magnetic leads flowing through a quantum
dot with an arbitrary local interaction. For a noncollinear magnetic configuration, we calculate equilibrium and
nonequilibrium currents biased by voltage or temperature difference or pumped by magnetic dynamics. We are
able to explicitly separate the equilibrium and nonequilibrium contributions to the spin current, both of which can
be written in terms of the full retarded Green’s function on the dot. Taking the specific example of a single-level
quantum dot with a large on-site Coulomb interaction, we calculate the total spin current near the Kondo regime,
which we find to be generally enhanced in magnitude as compared to the noninteracting case.
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I. INTRODUCTION

Electron transport is an important tool for probing and
manipulating magnetic heterostructures. In a ferromagnet
|insulator| ferromagnet (F|I|F) junction, the charge conduc-
tance can be used to measure the magnetic misalignment in
the ferromagnetic layers using tunnel magnetoresistance [1];
equilibrium spin current between the two magnets character-
izes their interlayer exchange coupling [2]; and nonequilibrium
spin current induces a spin-transfer torque on a ferromagnetic
layer noncollinear with the direction of spin polarization of
the current [2,3].

When impurities are present in the tunneling layer of
a magnetic tunnel junction, both equilibrium [4,5] and
nonequilibrium [6,7] spin current can be strongly modified.
Specifically, there is an enhancement of spin current when
the voltage is tuned to the energy level of the impurity [5,7].
Magnetic impurities strongly tunnel coupled to metallic leads
are known to generate a peak in the density of states of the
impurity, called the Kondo resonance, at the Fermi level of the
leads [8], thereby inducing a peak in charge conductance at
zero bias. If the leads are magnetic, the Kondo resonance is
perturbed by the exchange interaction in the leads [9], splitting
the zero-bias anomaly in the differential conductance in both
collinear [10] and noncollinear [11] orientations of the leads. It
was, furthermore, theoretically shown that spin accumulation
associated with a spin-dependent bias also splits the Kondo
resonance, which manifests in the charge and spin current
[12,13].

In this paper, we consider equilibrium as well as nonequi-
librium charge and spin currents through quantum-dot islands
or impurities connecting noncollinear ferromagnetic leads.
When the magnetic leads are aligned along the same axis,
the equilibrium spin current vanishes (neglecting spin-orbit
interactions). However, for a noncollinear alignment, the spin
current is generally finite even in equilibrium. Out of equilib-
rium, exchange interactions lead to additional voltage-induced
torques on the leads. Furthermore, a dynamic reorientation
of magnetic leads contributes to an effective spin-dependent
chemical potential in the leads in addition to spin accumulation
[14]. We calculate the full out-of-equilibrium spin and charge
currents between two canted magnetic leads separated by
a quantum dot with a spin-independent on-site interaction

including nonlinear effects in tunneling [15] and bias [16].
Although related expressions have been derived for charge [17]
and spin currents [18,19], our generalization accommodates
spin-dependent bias and microwave precession of magnetic
contacts, in addition to voltage and temperature difference
applied to the leads.

To illustrate our formalism, we specialize to two extreme
cases: a dot with (1) no on-site interaction and (2) large
Coulomb repulsion. As compared with the noninteracting
case, we find a large enhancement in equilibrium and
nonequilibrium spin currents for the interacting dot. We find
several qualitative features, which are our main interest, in
the interacting case: In addition to the peaks in the differential
charge conductance as a function of voltage bias at the standard
spin-split Kondo resonances, we find subsidiary peaks at twice
the corresponding bias due to a partial restoration of the
original Kondo resonance, a discussion of which is absent
in the literature. Apart from the analogous features at these
biases, the spin conductance has an additional zero-bias feature
when the leads are noncollinear. Charge and spin pumping
driven by magnetic dynamics are, likewise, strongly modified
by the presence of on-site Coulombic interaction which we
discuss in detail below.

The paper is organized as follows: In the next section,
we describe our formalism and derive general expressions
used to calculate charge and spin current. Section III fleshes
out the retarded Green’s functions for the special cases of
the free and Kondo dots, recapping standard results from
the literature. In Sec. IV, these Green’s functions are used
to calculate the polarization of the dot and spin current in
equilibrium, as a function of relative angle between the mag-
netic leads, comparing the interacting and noninteracting dots.
The nonequilibrium nonlinear charge and spin differential
conductances are calculated in Secs. V and VI, as a function
of applied voltage and frequency of the microwave precession,
respectively. We summarize our results and suggest additional
systems that may be amenable to our formalism in Sec. VII.

II. GENERAL SPIN-CURRENT EXPRESSION

We consider a Hamiltonian of the form

H = HL + HD + HT , (1)
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FIG. 1. (Color online) Schematic of our model, in which two
noncollinear magnetic leads are held at separate temperatures (Tl

and Tr ) and spin-dependent chemical potentials (μσl and μσr , with
σ = ↑,↓). When in contact with a quantum dot, tunneling (with
amplitudes Vl and Vr from the left and right leads, respectively)
facilitates charge current, J , and spin current, J, flowing through the
dot. The left (right) lead is canted clockwise in the xz plane at an
angle θl (θr ) with respect to the z axis. In Sec. VI, we, additionally,
allow the magnetization in the left lead to precess with frequency �.

which describes Fermi-liquid leads (HL) coupled to a quantum
dot (HD) by tunneling (HT ), defined as follows:

HL =
∑
σkγ

εσkγ c
†
σkγ cσkγ ,

(2)
HT =

∑
iσkγ

Viσkγ d
†
i cσkγ + H.c.

The summation in the lead part of the Hamiltonian is
over spin (σ = ↑,↓ quantized along the respective magnetic

orientation), momentum (k), and left (γ = l) and right (γ = r)
leads. εσkγ is the energy of the corresponding electron that is
created (annihilated) by c

†
σkγ (cσkγ ) (See Fig. 1 for a schematic

of our setup.) The dot Hamiltonian is a Hermitian function of
dot creation and annihilation operators d

†
i and dj , respectively,

that furnish a complete basis for the local Fock space:

HD =
∑

i

εid
†
i di + U(d†

i ,dj ), (3)

whereU(d†
i ,dj ) is a spin-isotropic electron-electron interaction

on the dot. The indices i and j run over the relevant quantum
numbers. As the simplest nontrivial example, we consider a
single spin-1/2 on-site energy level, so that i,j = ↑,↓ for spin
along the z axis. Note that the dot can in general be Zeeman
split by an external magnetic field or by the proximity-induced
exchange field from the magnetic leads. Although we have
chosen a single level on the dot connected to two leads, our
formalism can be readily generalized to an arbitrary number
of levels and leads.

We take two noncollinear magnetic leads, whose orienta-
tions define the xz plane, as sketched in Fig. 1, which mix
the majority and minority electron bands via tunneling. The
matrix defining the hopping in the tunneling Hamiltonian is

V̂kγ ≡
(

V↑kγ cos θγ

2 −V↓kγ sin θγ

2

V↑kγ sin θγ

2 V↓kγ cos θγ

2

)
, (4)

where θγ is the angle of lead γ with respect to the z axis. V↑kγ

(V↓kγ ) is the matrix element for a spin-preserving spin-up
(down) electron tunneling from lead γ to the dot.

Using Keldysh formalism [17], we calculate charge and spin currents out of lead γ under an arbitrary bias:

Jγ = 2e

h
Re

∫
dω Tr[Ŵ<

γ (ω)ĜR(ω) − ŴR
γ (ω)Ĝ<(ω)],

Jγ = Re
∫

dω

2π
Tr

[
Ŵ<

γ (ω)σ̂ ĜR(ω) − ŴR
γ (ω)σ̂

(
Ĝ<(ω) − i

π
P

∫
dω′ Ĝ

<(ω′)
ω′ − ω

)]
, (5)

where e < 0 is the electron charge. ĜR and Ĝ< are, respectively, the Fourier-transformed retarded and lesser Green’s functions
on the dot and ĜA = (ĜR)† is the advanced Green’s function. P denotes the Cauchy principal value of the integral and σ̂ is a
vector of Pauli matrices. We have defined

ŴR
γ = − i

2

(

↑γ cos2 θγ

2 + 
↓γ sin2 θγ

2
1
2 (
↑γ − 
↓γ ) sin θγ

1
2 (
↑γ − 
↓γ ) sin θγ 
↓γ cos2 θγ

2 + 
↑γ sin2 θγ

2

)
(6)

and

Ŵ<
γ = i

(
f↑γ (ω)
↑γ cos2 θγ

2 + f↓γ (ω)
↓γ sin2 θγ

2
1
2 [f↑γ (ω)
↑γ − f↓γ (ω)
↓γ ] sin θγ

1
2 [f↑γ (ω)
↑γ − f↓γ (ω)
↓γ ] sin θγ f↓γ (ω)
↓γ cos2 θγ

2 + f↑γ (ω)
↑γ sin2 θγ

2

)
. (7)


σγ (ω) = 2π
∑

k |Vσkγ |2δ(ω − εσkγ ) and fσγ (ω) is the Fermi-Dirac distribution function of lead γ in the majority (σ = ↑) or
minority (σ = ↓) band. 
σγ will be taken to be energy independent within the electron bandwidth and zero otherwise. The details
of our derivation are straightforward and can be found in Appendix A.

The following substitutions will be convenient (at the Fermi level): 
↑(↓)l = 
(1 + α)(1 ± pl) and 
↑(↓)r = 
(1 − α)(1 ± pr ),
where the polarization pγ of lead γ may take values from zero (normal metal) to one (half-metal). We may vary the weight of
hopping from left and right leads to the dot by changing α from −1 (coupled only to the right lead) to 1 (coupled only to the left
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lead), while α = 0 is the left-right symmetric case. This allows us to rewrite

ŴR
γ = − i(1 ± α)


2

(
1 + pγ cos θγ pγ sin θγ

pγ sin θγ 1 − pγ cos θγ

)
, (8)

with ± corresponding to the left (right) lead.
A serious challenge in the calculation of the nonequilibrium current is determining the on-site lesser Green’s function.

According to Dyson’s equation [20] and using a generalized [11] Ng’s ansatz [21] for matrix-valued Green’s functions, Ĝ< =
ĜR̂<ĜA, where ̂< = −(Ŵ<

l + Ŵ<
r )(ŴR

l + ŴR
r )−1[(ĜR)−1 − (ĜA)−1]/2 is the dot’s lesser self-energy due to tunneling and

interactions. This ansatz recovers the exact result for Ĝ< when either no bias is applied or there is no interaction on the dot.
For a better ansatz, one could anti-Hermitize ̂< (which yields an equivalent expression for charge current). We will, however,
retain the above form for the self-energy (which is sufficient to illustrate the salient features) for our purposes. In the special
case when the bias is spin independent, Ŵ<

γ = −2fγ ŴR
γ and, using Ng’s ansatz, we can separate the equilibrium (first line) and

nonequilibrium (second line) contributions to the spin current:

Jγ = − Re
∫

dω

2π
Tr

[{
fγ (ω)ŴR

γ σ̂ [ĜR(ω) + ĜA(ω)] − ŴR
γ σ̂

i

π
P

∫
dω′ Ĝ

<(ω′)
ω′ − ω

}]

+ [fγ̄ (ω) − fγ (ω)]
{
ŴR

γ σ̂ ĜR(ω)ŴR
γ̄

(
ŴR

l + ŴR
r

)−1
[ĜR(ω)−1 − ĜA(ω)−1]ĜA(ω)

}
, (9)

where lead γ̄ is opposite to lead γ . We find a similar expression for the charge current, which coincides with the results of
Ref. [11], wherein the equilibrium contribution vanishes (as it should):

Jγ = −2e

h
Re

∫
dω Tr

[
[fγ̄ (ω) − fγ (ω)]

{
ŴR

γ ĜR(ω)ŴR
γ̄

(
ŴR

l + ŴR
r

)−1
[ĜR(ω)−1 − ĜA(ω)−1]ĜA(ω)

}]
. (10)

Because Ng’s ansatz does not guarantee continuity of current when the Green’s functions are matrix valued, we symmetrize
the steady-state charge and spin currents as J = (Jl − Jr )/2 and J = (Jl − Jr )/2, respectively. We expect Eqs. (9) and (10) to
quantitatively determine the currents in equilibrium and many of the interesting qualitative features out of equilibrium which are
captured by the retarded Green’s function. Here, we focus our attention on the case with no external magnetic field, such that the
isolated dot is SU(2) symmetric.

In equilibrium, fl(ω) = fr (ω) = f0(ω), the spin current can be written down exactly from Eq. (5) by invoking the fluctuation-
dissipation theorem, Ĝ<(ω) = f0(ω)[ĜA(ω) − ĜR(ω)]:

Jγ = −Re
∫

dω

2π
Tr

{
f0(ω)ŴR

γ σ̂ [ĜR(ω) + ĜA(ω)] − ŴR
γ σ̂

i

π
P

∫
dω′f0(ω′)

ĜA(ω′) − ĜR(ω′)
ω′ − ω

}
. (11)

The magnetic leads are invariant under the composition of time reversal and spin-space reflection with respect to the xz plane.
Therefore, because the dot is isotropic, the only equilibrium current that can persist is J y while all others vanish, J = J x = J z = 0.
Using the same transformation, we argue that the total spin density on the dot along the y direction must be zero.

III. GREEN’S FUNCTIONS

We now specialize the above formalism to calculation of
the charge and spin current in two extreme regimes of the
Anderson model: zero on-site charging energy (noninteracting
dot) and infinite on-site dot charging energy, which, in the
temperature regime considered below, leads to the onset of
Kondo features. The Anderson Hamiltonian for a single level is

HD = ε
∑

σ

nσ + Un↑n↓, (12)

where nσ = d†
σ dσ and U parametrizes the strength of

Coulomb repulsion on the dot: either zero or infinite.
Using the equation of motion technique [22], one finds the

noninteracting retarded Green’s function to be ĜR
0 = (ω − ε −

̂0)−1, where [23]

̂0 = (
ŴR

l + ŴR
r

) (
1 + 1

iπ
ln

∣∣∣∣ω − We

ω + Wh

∣∣∣∣
)

. (13)

Here, We (Wh) is the electron bandwidth above (below) the
chemical potential in the leads, and we have assumed that the
biases in the leads are much smaller than the bandwidths, i.e.,

μσγ � We,Wh, in order to recover Eq. (13) out of equilib-
rium. Because the relevant energy scales are in general much
smaller than the bandwidth, we take ̂0 to be independent
of ω. When the bandwidth is particle-hole asymmetric, i.e.,
We �= Wh, the real part of the self-energy both renormalizes
the bare dot resonance by a shift proportional to 
 as well
as lifts spin degeneracy by ∼ ∑

pγ 
γ cos θγ . If Wh = We,
the real part of the self-energy vanishes at ω = 0. Since
the dot is noninteracting, ̂0 is independent of the position
of the equilibrium chemical potential. In Fig. 2, we plot
spin-dependent densities of states for 3Wh = We = 75 (in
units of |ε|), ε = −1, 
 = 0.2, α = 0, pl = pr = 0.9, which
show zero spin splitting when the leads are antiparallel (dotted
curve), maximum effective spin splitting when the leads are
parallel (solid curve), and an intermediate splitting between
these values when θl = −θr = π/3 (dashed curve). Notice the
average of the spin-up and down resonances is shifted from
ε to ε0 ≈ −1.1. Furthermore, the spin degeneracy is broken
so that the spin-down (up) resonance is shifted above (below)
ε0 by �ε0 ≈ 0.07 as indicated by the vertical dashed lines in
Fig. 2 (Fig. 2, inset). Interchanging We ↔ Wh, while keeping
all other parameters fixed, both the overall shift in the dot
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FIG. 2. (Color online) The density of states for the spin-down
electron of the noninteracting dot at θ = 0 (solid), 2π/3 (dashed),
and π (dotted) with parameters ε = −1, 
 = 0.2, α = 0, pl = pr =
0.9, 3Wh = We = 75, and θl = −θr = θ/2. Inset: spin-up density of
states of the noninteracting dot with the same parameters. There is
an overall shift of the average resonance energy from ε to ε0 ≈ −1.1
while the vertical dashed lines indicate a shift of �ε0 ≈ 0.07 above
(below) ε0 for the spin-down (up) density of states.

resonance as well as the effective spin splitting reverse sign.
When We = Wh, Rê0 = 0 and the resonance for both bands
is at ε, independent of the magnetic orientations in the leads.

When the Coulomb repulsion is large, the proximity-
induced [24] spin splitting on the dot can be understood accord-
ing to the Schrieffer-Wolff transformation [25]. By treating
the lead electrons as a mean field, to lowest order in 
, the
magnetic lead γ splits the energy degeneracy on the dot by [13]

�εγ =
∑

σ

σ
σγP
∫

dε

π

[
1 − fσγ (ε)

ε − ε
+ fσγ (ε)

ε − ε − U

]
(14)

along the lead magnetic orientation, nγ = (cos θγ , sin θγ ),
where σ = ± for spin up/down. Unless otherwise specified, we
choose θl and θr (for a given misalignment θ ≡ θl − θr ) in this
and the following sections such that the total effective splitting
�ε = ∑

γ �εγ cos θγ is along the z axis: HD = ∑
σ (ε −

σ�ε/2)nσ + Un↑n↓. When U = 0, the spin splitting in Eq.
(14) reduces to the above noninteracting case. We henceforth
assume We = Wh so that ̂0 is purely imaginary and the up
and down resonances are split only in the interacting case.

While the interacting Green’s function cannot be found
exactly, using the equation-of-motion method and truncating
higher-order correlations within the leads [26], the retarded
Green’s function, when U → ∞ [27], is given by ĜR = (ω −
ε − ̂0 + �εσ̂ z/2 − ̂′)−1m̂, where [11]

′
σσ =

∑
σ ′γ

∫
dε

2π

fσ ′γ (ε − σ�ε)ρσ ′γ (ε)Vσσ ′γ V ∗
σ̄ σ ′γ

ω + iη − ε
,

′
σ σ̄ = −

∑
σ ′γ

∫
dε

2π

fσ ′γ (ε)ρσ ′γ (ε)Vσσ ′γ V ∗
σ̄ σ ′γ

ω + iη − ε
, (15)

mσσ = 1 − 〈nσ̄ 〉, mσσ̄ = 〈d†
σ̄ dσ 〉, ρσγ is the spin-dependent

density of states in lead γ , σ̄ = −σ , and η → 0+. The density-
matrix elements must be calculated self-consistently according

−0.6 −0.3

3π/2

0
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2Δ
0. 0.3

0.

0.25

0.5

0.75

1.
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G
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)
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G
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(ω
)

/π

FIG. 3. (Color online) Equilibrium Kondo density of states of the
dot at θ = 0 (solid), 2π/3 (dashed), and π (dotted), setting μ = 0,
ε = −1, 
 = 0.2, α = 0, pl = pr = 0.9, and We = Wh = 50. By
the vertical dashed lines, we indicate a splitting of the Kondo peak
due to the effective exchange field of 2�ε ≈ 0.5 for the specific case
of θ = 2π/3.

to

〈nσ 〉 = Im
∫

dω

2π
G<

σσ (ω), 〈d†
σ̄ dσ 〉 = −i

∫
dω

2π
G<

σσ̄ (ω).

(16)

The details of the calculation of the Kondo Green’s function
can be found in Appendices B and C. In addition to the
ordinary broadening of single-particle levels due to tunneling
[see Eq. (13)], which we treat exactly, we take, to lowest order
in tunneling, processes corresponding to spin flips in the usual
Kondo problem [8], which lead to logarithmic divergences.

This simplified treatment of the Anderson model captures
qualitative aspects of the Kondo physics and should give us
guidance regarding the position of singularities. Because the
sharpness of the Fermi sea gives rise to the Kondo peaks,
we expect a resonance for each Fermi surface in the leads.
In the general case of noncollinear magnetic leads with spin-
dependent biases, there could be, according to Eqs. (15), eight
peaks at μ↑l ± �ε, μ↓l ± �ε, μ↑r ± �ε, and μ↓r ± �ε from
the diagonal of ̂′ and four at μ↑l , μ↓l , μ↑r , and μ↓r from the
off-diagonal of ̂′. When the bias is spin independent, μ↑γ =
μ↓γ , the number of Kondo peaks is halved to six at μl , μr , μl ±
�ε, and μr ± �ε. In equilibrium, one can show [according to
the form (4) of the tunneling matrix elements] that ′

σ σ̄ = 0,
and, therefore, there are only two Kondo peaks near the Fermi
surface shifted by the exchange-proximity field, μ ± �ε, as
seen in the equilibrium density of states plotted in Fig. 3, taking
We = Wh = 50 while keeping all other parameters as before.
As a specific example, when θ = 2π/3, the Kondo peaks are
split by 2�ε ≈ 0.5. Notice that the single peak is restored
when the leads are oriented antiferromagnetically, i.e., in the
absence of an effective exchange splitting.

The decoupling scheme used to calculate the Kondo
Green’s function is applicable when the temperature in
the leads is above the Kondo temperature, Tl,Tr � TK ∼√


W exp(−π |μ − ε| /
) [26]. Below TK , some of the
correlators that are assumed to vanish in our approximation
(see Appendix C) start diverging. In order to elucidate the
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key qualitative aspects, we will, however, set the common
temperature T = 0 in the following discussion. A finite T >

TK would merely broaden the essential features.

IV. EQUILIBRIUM

In the absence of a nonequilibrium bias, i.e., μl = μr = μ

and Tl = Tr , the symmetry of our setup allows only for spin
current polarized along the y axis and dot polarization along
the z axis. In this and the following sections, we consider a dot
symmetrically coupled (α = 0 and pl = pr ≡ p) to the leads,
where ε = −1, the bandwidth in the leads is W = 2Wh =
2We = 100, and kBT = 10−3, setting μ = 0. (The energy is
measured in units of the detuning energy � = |μ − ε|.)

We plot the polarization of the noninteracting and the
interacting dots (Fig. 4) as a function of θ for 
 = 0.2 and
several values of lead polarizations varying from p = 0.1
to p = 1, increasing in increments of 0.1. For both the
noninteracting and interacting dots, the magnitude of the dot
polarization is maximized when the magnetization directions
of leads is parallel and increases with lead polarization.
The magnetic moment of the dot is antiparallel and parallel
to the z axis in the noninteracting and interacting cases,
respectively, and the magnitude of polarization is about a factor
of 5 larger in the interacting case, due to the large on-site
repulsion, when p = 1. Although one may naively expect the
magnetic moment of the noninteracting dot to point along
the exchange field (corresponding to the majority spins in the
leads), in the parallel alignment case, the stronger tunneling
in the spin-up sector hybridizes the electrons on the leads and
dot, delocalizing the up spin, which leaves a net antiparallel
polarization on the dot when ε < 0. If the dot resonance was
above the Fermi level in the leads, ε > 0, the net polarization
on the dot would be parallel to the exchange field, according
to the particle-hole symmetry.

The spin current, similarly, is negative (for both ε = ±1)
and small for the free dot but positive and relatively large
for the interacting dot (Fig. 5). This means that the magnetic
leads separated by a quantum dot with resonance below the
Fermi surface tend to have a weak antiferromagnetic exchange
coupling when there is no interaction on the dot, whereas, when

FIG. 4. (Color online) Spin polarization of the dot as a function
of the relative canting of the magnetic leads for several values
of lead polarization, p = 0.1,0.2, . . . ,1, and 
 = 0.2. The positive
(negative) values of spin are for the interacting (noninteracting) dot.
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FIG. 5. (Color online) y component of the spin current flowing
from left to right, for a noninteracting dot as a function of the relative
canting of the magnetic leads for several values of lead polarization,
p = 0.1,0.2, . . . ,1, and 
 = 0.2.

there is a large on-site repulsion, the magnets are subject to a
stronger ferromagnetic coupling (which bears some analogy
with the double-exchange mechanism).

In Fig. 6, we plot the average spin on the dot for several
values of 
, taking the same parameters as before while
fixing polarization p = 0.9. When the dot is noninteracting,
the polarization monotonically decreases as the dot decouples
from the leads. For large on-site repulsion, the spin of the
nearly decoupled dot is antiparallel to the exchange field and
decreases with increasing 
. Increasing the coupling beyond
some critical value, 
 ≈ 0.1, the polarization passes through
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FIG. 6. (Color online) Spin polarization of the interacting (top)
and noninteracting (bottom) dots as a function of the relative canting
of the magnetic leads for 
 = 0.02, . . . ,0.2, in increments of 0.02,
and p = 0.9.
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FIG. 7. (Color online) Equilibrium spin current of the noninter-
acting (top) and interacting (bottom) dots, as a function of the relative
canting of the magnetic leads for 
 = 0.02, . . . ,0.2, in increments of
0.02, and p = 0.9.

zero and becomes positive. That is, when the coupling is weak,
there are no Kondo correlations and the system is a singly
occupied quantum dot with spin that approaches −�/2. As the
coupling is increased, many-body correlations between the dot
and the leads build up reversing the spin polarization of the
dot.

Similarly to the spin polarization, the spin current for the
noninteracting dot monotonically increases with increasing
coupling [see Fig. 7 (upper panel)]. The interacting dot [Fig. 7
(lower panel)], on the other hand, exhibits a nonmonotonic
behavior, with the spin current changing sign as 
 is increased.
This is shown in Fig. 8, where we plot the spin current as a
function of 
 at θ = π/2.
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 for canted
magnetic leads fixed at θ = π/2 for p = 0.9.
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FIG. 9. (Color online) Differential conductance (top panel), z

component (middle panel), and y component (bottom panel) of the
spin differential conductance for the noninteracting dot as a function
of bias voltage eV for several values of θ .

V. VOLTAGE BIASING

Next, we symmetrically apply a (spin-independent) voltage
difference to the leads, μl = −μr = eV/2, and calculate the
differential conductance, G = dJ/dV , and the differential
spin conductance, G = dJ/dV . (Throughout this section, we
set ε = −1, 
 = 0.2, α = 0, and pl = pr = 0.9.) In this setup,
under a π rotation (both in real and spin space) around the z

axis, the voltage difference as well as the charge current and
z component of spin current reverse sign, whereas the x and
y components of spin current are invariant. Accordingly, as a
function of voltage difference, G and Gz (Gx and Gy) must
be symmetric (antisymmetric).

We plot the differential conductance of the free dot for
several values of θ in Fig. 9 (top panel). When there is no
on-site interaction, the conductance is flat near zero bias and
increases as the voltage approaches the resonance of the dot,
ε = −1. The decrease in conductance as the relative angle of
the leads is increased from 0 to π reflects the mismatch of the
density of states between up and down conduction bands in the
leads, which is responsible for the tunnel magnetoresistance
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FIG. 10. (Color online) Differential conductance (top panel), z

component (middle panel), and y component (bottom panel) of the
spin differential conductance for the interacting dot as a function of
bias voltage eV for several values of θ . For θ = 2π/3, the dotted
(dashed) vertical line indicates features in the conductance at eV =
�ε (eV = 2�ε).

[1]. In the antiparallel configuration near zero bias, there is
a small dip with width proportional to the temperature in the
leads: When eV � kBT , the current is smeared over an energy
range proportional to the temperature, around the Fermi level.

The z component of the spin differential conductance [Fig. 9
(center panel)] is similarly symmetric in voltage and decreases
as the magnetic misalignment of the leads is increased.
Gy [Fig. 9 (bottom panel)] is, consistently with symmetry,
monotonically decreasing as a function of voltage difference.
It is exactly zero when the leads are parallel and largest in
magnitude when the magnetization vectors are approximately
perpendicular.

For the interacting dot, peaks in conductance occur when
the difference in chemical potentials between the two leads is
equal to the exchange splitting, �ε [11] [see Fig. 10 (upper
panel)]. Because the Kondo peaks are shifted away from
the chemical potential when the leads are not antiparallel,
the Kondo resonance is inaccessible at zero bias. However,
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FIG. 11. (Color online) Density of states of the interacting dot for
θ = 2π/3 when eV = 2�ε ≈ 0.5, wherein we point out the positions
of each of the six expected Kondo resonances; note the overlap of the
resonances at eV/2 − �ε = −eV/2 + �ε indicated by the dashed
vertical line at ω ≈ 0. Inset: Derivative of the spin polarization of the
dot in the y direction. We indicate by the vertical dashed line a peak
at eV = 2�ε.

when eV = �ε, the Kondo resonances at μl − �ε and
μr + �ε become energetically accessible and there is a peak
in conductance corresponding to the additional transport
through these channels [26]. There are an additional two
peaks when the difference in chemical potentials between
the left and right leads is equal to twice the exchange
splitting. Recall that for the spin-independent bias there are,
generally, six Kondo peaks; when eV = 2�ε the resonances
at eV/2 − �ε and −eV/2 + �ε are both positioned at zero,
thus partially restoring the magnetically unperturbed zero-bias
peak. Because the spin and charge currents, Eqs. (9) and (10),
are nonlinear in the Green’s functions, we indeed expect some
feature (in this case a peak) at eV = 2�ε. For the particular
example of θ = 2π/3, we point out in Fig. 10 the peaks in
conductance at eV = �ε ≈ 0.25 (dotted vertical line) and
eV = 2�ε ≈ 0.5 (dashed vertical line). Recalling Fig. 3, the
peaks in conductance at eV ≈ ±0.25 are at the same energy as
the Kondo resonances in the equilibrium density of states. On
the other hand, when eV = 2�ε ≈ 0.5, the nonequilibrium
density of states (Fig. 11) yields a partially restored (original)
Kondo peak. This manifests in the density matrix: dSy/dV as
a function of eV shows a peak at precisely 2�ε [cf. Fig. 11
(inset)]. Because the retarded Green’s function depends on the
density matrix, there is a peak in conductance at 2�ε.

The z component of the spin conductance [Fig. 10 (center
panel)] is enhanced at eV = 2�ε analogous to the charge
conductance. However, it is diminished at �ε as the newly
accessible resonances at μl − �ε, corresponding to the ma-
jority band, and μr + �ε, corresponding to the minority band,
contribute oppositely in spin current along the z axis, resulting
in a suppression of Gz. There is a zero-bias peak in the spin
conductance [28], when the leads are canted, which is rooted
in the off-diagonal elements of the interacting self-energy ̂′
(see Sec. III). The same holds for the zero-bias peak in the
derivative of the y component of dot polarization [cf. Fig. 11
(inset)].

Gy [Fig. 10 (bottom panel)] similarly has features at eV =
0, ±�ε, and ±2�ε. There are large enhancements when the
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bias is equal to twice the exchange splitting, small decreases
at ±�ε, and a small feature at zero bias. At the peaks, the y

component of the spin conductance is enhanced by two orders
of magnitude in comparison to the noninteracting case.

The differential conductance of spin current polarized along
the x axis (omitted from Figs. 9 and 10) is, analogously
to Gy , antisymmetric as a function of voltage in both the
noninteracting and interacting regimes, and has features at
eV = 0,±�ε,±2�ε.

VI. MICROWAVE PRECESSION

As another application of our formalism, we now consider
spin and charge pumping induced by circular precession of the
left magnetic lead at frequency �, while taking the right lead
to be nonmagnetic (i.e., setting pr = 0). Transforming to the
frame of reference of the rotating magnetic lead, both leads
are static but we must include a fictitious Zeeman splitting of
�� along the axis of precession and spin-dependent bias in the
leads of [14] μ↑(↓)l = ∓(��/2) cos θ and μ↑(↓)r = ∓��/2,
where, departing from the convention of the previous sections,
we fix θl = θ (i.e., the angle of precession). The magnitude of
the total spin splitting for the interacting dot is the magnitude
of the vector sum of the fictitious and exchange fields, which
are noncollinear: �ε′ =

√
(�ε sin θ )2 + (�ε cos θ + ��)2.

Taking all other parameters as in the previous section and
zero applied voltage (which is now not necessary in order to
drive nonequilibrium transport), we calculate the differential
current response to microwaves, Gs = dJ/d(��), and the
analogous quantity for the z component of the spin current,
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to microwaves of frequency � through the noninteracting dot tunnel
coupled to a magnetic lead on the left and nonmagnetic lead on the
right, for several angles of precession.
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to microwaves of frequency � through the interacting dot tunnel
coupled to a magnetic lead on the left and nonmagnetic lead on
the right, for several angles of precession. We indicate by a dashed
vertical line a feature in the current response at �� ≈ 0.25 as a result
of the partial restoration of the Kondo resonance.

Gz
s = dJ z/d(��). We also find a finite spin current polarized

along the x and y axes in the rotating frame of reference
which, in the laboratory frame, contributes an ac spin current
and averages to zero over a period of precession. Under a π

rotation around the x axis in spin space, θ → π − θ and � →
−� while J → J and J z → −J z. From these geometric
considerations, Gs(�,θ ) = −Gs(−�,π − θ ) and Gz

s(�,θ ) =
Gz

s(−�,π − θ ) for an arbitrary on-site interaction.
For the noninteracting dot (Fig. 12), Gs is exactly anti-

symmetric when θ = π/2 and nearly antisymmetric for other
values of θ . We expect an enhancement of the transport
when any of the spin-dependent chemical potentials in the
leads is at the dot resonance for either up or down spin,
ε ± ��/2. For an arbitrary ��, one resonance is always below
the smallest chemical potential and therefore inaccessible.
Increasing (decreasing) the microwave frequency, there is an
upturn (downturn) in Gs corresponding to the opening of the
accessible transport channel. When � → −�, the spin-up
and spin- down resonances, which in general have different
spectral widths, exchange roles. Because |0,↓↓| �= |0,↑↑|,
the onset of the resonance occurs at different positions in
the positive- and negative-frequency regimes, hence some
asymmetry in Gs . (There is no asymmetry when θ = π/2
because 0,↑↑ = 0,↓↓.) Using similar arguments, we explain
the asymmetry in Gz

s(�).
The microwave responses for the interacting dot are

smooth for positive frequencies when 0 < θ < π/2 and for
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(��/2) cos θ + �ε ′ ≈ 0.08 at precession frequency �� ≈ 0.25, in-
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negative frequencies when π/2 < θ < π . Conversely, when
the frequency is positive and π/2 < θ < π or the frequency
is negative and 0 < θ < π/2, the current response has several
sharp features. Informed by the previous section, we expect
these features to correspond to either the opening of transport
channels or partial restoration of the Kondo resonances. The
Kondo resonance is now split by both the fictitious magnetic
field and spin-dependent splittings of the Fermi surfaces, both
of which depend on the frequency of precession. One may
show [29] that a necessary condition for partial reconstruction
of the Kondo resonance, varying only �, is � cos θ < 0,
consistent with Fig. 13. For example, when θ = 3π/4, there
is a visible feature in Gs at �� ≈ 0.25 (dashed vertical line).
In Fig. 14, we plot the density of states when θ = 3π/4 at
frequency �� ≈ 0.25 (solid curve) and �� = 0.3 (dashed
curve). In the plotted range of energy, there are three distinct
peaks for �� ≈ 0.25 and four for �� = 0.3. The reduction in
the number of peaks is due to the overlap of the resonances
at −(��/2) cos θ = (��/2) cos θ + �ε′ ≈ 0.08, i.e., a partial
reconstruction of the original Kondo peak. Other features
in the current response to microwaves may be explained
analogously.

VII. SUMMARY AND OUTLOOK

In summary, correlation effects generically give rise to
low-energy peaks which manifest in both equilibrium and
nonequilibrium spin currents. In equilibrium, this results in
a characteristically larger spin current, as compared with the
noninteracting case, as well as a nonmonotonic dependence
on the dot-lead tunneling rate. The exchange mediated by
the spin current can therefore be either ferromagnetic or
antiferromagnetic as a function of the tunneling strength.

When driven by voltage, many-body correlations enhance
both the charge and spin conductance as a direct result
of the additional transport through conductance channels
associated with the Kondo peaks. The enhancement is a
manifestation of either the opening of additional transport or

the partial reconstruction of Kondo peaks split by the effective
exchange field from the leads. At low voltages, away from
the dot resonance, the spin conductance can be increased by
orders of magnitude as compared with the noninteracting spin
conductance.

Similarly, driving charge and spin transport by microwave
precession enhances the charge and spin conductance. How-
ever, in contrast to voltage driving, the total effective exchange
splitting on the dot and the effective spin-dependent (pumping)
bias are both simultaneously dependent on the frequency of
magnetic precession. We have shown that sharp features in
the conductance, associated with the position of the Kondo
resonances, may only occur when the projection of the
exchange field along the axis of magnetic precession is
negative.

Although our calculations have been done for a single dot,
one may consider a tunnel junction wherein impurities are
treated as an ensemble of quantum dots. Upon averaging over
this ensemble, the characteristics of noninteracting dots in the
spin current will be smeared out while preserving the signature
of the interacting spin current induced by low-energy peaks. As
such, introducing impurities in tunnel junctions can enhance
charge and spin current at sufficiently low temperatures.

Based on the extreme limits studied in this paper, we may
generally expect electron-electron interactions to qualitatively
impact low-energy charge and spin conductance driven by
voltage, thermal bias, or magnetic precession as well as
exchange coupling, as a function of ambient temperature. Their
measurements, in turn, could thus be used as effective probes
of the underlying correlated state in and out of equilibrium.
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APPENDIX A: DERIVATION OF THE GENERALIZED
CURRENT

In this Appendix, we detail the derivation of the formula for
nonequilibrium spin current through a quantum dot attached
to noncollinear ferromagnetic leads, Eq. (5). We begin with
a Hamiltonian of the form H = HL + HD + HT , which
describes noninteracting collinear leads (HL) coupled to a
quantum dot (HD) by tunneling (HT ). Recall that these are
defined by

HL =
∑
σkγ

εσkγ c
†
σkγ cσkγ , HT =

∑
σkγ

Vσkγ d†
σ cσkγ + H.c.,

(A1)
and HD left general. The creation and annihilation operators
in the basis of lead γ canted at angle θγ :

d↑kγ → d
′†
↑kγ = cos

θ

2
d
†
↑ + sin

θ

2
d
†
↓,

(A2)

d↓kγ → d
′†
↓kγ = − sin

θ

2
d
†
↑ + cos

θ

2
d
†
↓.
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Both the lead and dot Hamiltonians are invariant under this transformation, while the tunneling term in the Hamiltonian becomes

HT =
∑

σσ ′kγ

d†
σVσσ ′kγ cσ ′kγ + H.c., (A3)

where

V̂kγ = Vσσ ′kγ ≡
(

V↑kγ cos θγ

2 −V↓kγ sin θγ

2

V↑kγ sin θγ

2 V↓kγ cos θγ

2

)
. (A4)

Closely following the approach of Ref. [17], we begin by taking the time derivative of d†
μdν ,

−i�
d

dt
(d†

μdν) = [H,d†
μdν] = i

�
[HD + HT ,d†

μdν] = [HD + HT ,d†
μ]dν + d†

μ[HD + HT ,dν]

= (εν − εμ)d†
μdν +

∑
αkγ

(V †
αμkγ c

†
αkγ dν − Vναkγ d†

μcαkγ ). (A5)

We equate the expectation value of Eq. (A5), without magnetic precision, to the current

J γ
μν = i

�

∑
αk

(V †
αμkγ 〈c†αkγ dν〉 − Vναkγ 〈d†

μcαkγ 〉) = 1

�

∫
dω

2π

∑
αk

[V †
αμkγ G<

ν,kαγ (ω) − Vναkγ G<
αkγ,μ(ω)], (A6)

where we have defined G<
ν,αkγ (t) = i〈c†αkγ dν〉(t) and G<

αkγ,μ(t) = i〈d†
νcαkγ 〉(t) which are lesser Green’s functions in the Keldysh

formalism. Taking advantage of the noninteracting electrons in the leads, we use their equations of motion and Langreth’s theorem
[22] to separate the lead and dot Green’s functions

G<
ν,αkγ = −

∑
λ

Vλαkγ

(
gt̄

αkγ G<
νλ − g<

αkγ Gt
νλ

)
, G<

αkγ,μ =
∑

λ

V
†
αλkγ

(
gt

αkγ G<
λμ − g<

αkγ Gt̄
λμ

)
, (A7)

where we have introduced the (anti-)time-ordered Green’s functions on lead γ (gt̄
αkγ ) gt

αkγ of momentum k and spin α and on
the dot (Gt̄

μν) Gt
μν from spin μ to spin ν. Plugging this back into our equation for current we obtain

J γ
μν = −1

�

∑
αk

∫
dω

2π

[
V

†
αμkγ Vλαkγ

(
gt̄

αkγ G<
νλ − g<

αkγ Gt
νλ

) + Vναkγ V
†
αλkγ

(
gt

αkγ G<
λμ − g<

αkγ Gt̄
λμ

)]
. (A8)

Using identities between Green’s functions [30] we rewrite the expression for the current, eliminating the time-ordered Green’s
functions in favor of retarded and advanced Green’s functions

J γ
μν = −1

�

∑
αk

∫
dω

2π

[−V
†
αμkγ Vλαkγ

(
gA

αkγ G<
νλ + g<

αkγ GR
νλ

) + Vναkγ V
†
αλkγ

(
gR

αkγ G<
λμ + g<

αkγ GA
λμ

)]
, (A9)

where GR
ij = −i�(t − t ′)〈{di(t),d

†
j (t ′)}〉 and GA

ij = (GR)∗ji . After some tedious but straightforward manipulations one may show
that ∑

μναλ

[−V
†
αμkγ Vλαkγ

(
gA

α G<
νλ + g<

αγ GR
νλ

)]∗
σ ∗

μν =
∑
μναλ

[
Vναkγ V

†
αλkγ

(
gR

αγ G<
λμ + g<

αγ GA
λμ

)]
σμν, (A10)

and therefore the spin current is real. Note that the free electron Green’s functions uncoupled to the dot are

g<
σkγ = 2πiδ(ω − εσkγ )fσγ (ω), gR

σkγ = 1

ω − εσkγ + iη
= −iπδ(ω − εσkγ ) + P 1

ω − εσkγ

, (A11)

where η → 0+ and P denotes the Cauchy principal value. We define

ŴR
γ = − i

2

(

↑γ cos2 θγ

2 + 
↓γ sin2 θγ

2
1
2 (
↑γ − 
↓γ ) sin θγ

1
2 (
↑γ − 
↓γ ) sin θγ 
↓γ cos2 θγ

2 + 
↑γ sin2 θγ

2

)
, (A12)

where 
σγ = 2π
∑

k |Vσkγ |2δ(ω − εσkγ ) = 2π
∫ |Vσkγ |2ρσγ δ(ω − εσkγ ) = 2π |Vσγ |2ρσγ so that

∑
αk Vλαkγ V

†
αμkγ Im gR

αγ =
−∑

αk Vλαkγ V
†
αμkγ Im gA

αγ = WR
λμγ . Likewise defining W<

λμγ = ∑
αk Vλαkγ V

†
αμkγ g<

αγ , we find

Ŵ<
γ = i

(
f↑γ (ω)
↑γ cos2 θγ

2 + f↓γ (ω)
↓γ sin2 θγ

2
1
2 [f↑γ (ω)
↑γ − f↓γ (ω)
↓γ ] sin θγ

1
2 [f↑γ (ω)
↑γ − f↓γ (ω)
↓γ )] sin θγ f↓γ (ω)
↓γ cos2 θγ

2 + f↑γ (ω)
↑γ sin2 θγ

2

)
, (A13)
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which reduces to W<
νλγ = −2fγ (ω)WR

νλγ in the absence of spin biasing. fσγ (ω) is the Fermi-Dirac distribution function in lead
γ with spin σ . We take 
σγ to be energy independent inside the electron band of the leads and zero otherwise. The principal part
can be evaluated as∑

αk

∫
dω Vλαkγ V

†
αμkγ G<

νλP
1

ω − εσkγ

=
∑
αk

P
∫

dω dω′Vλαkγ V
†
αμkγ G<

νλ(ω)
δ(ω′ − εσkγ )

ω − ω′

=
∑
αk

P
∫

dω dω′Vλαkγ V
†
αμkγ G<

νλ(ω′)
δ(ω′ − εσkγ )

ω′ − ω
= −WR

λμγ

∫
dωP

∫
dω′

iπ

G<
νλ(ω′)

ω′ − ω
.

(A14)

The spin current can be written in the compact form

Jγ = SμνJ
γ
μν = �

2
σμνJ

γ
μν = Re

∑
μνλ

∫
dω

2π

[
−WR

λμγ σμνG
<
νλ + W<

λμγ σμνG
R
νλ + iWR

λμγ σμνP
∫

dω′

π

G<
νλ

ω′ − ω

]

= Re
∫

dω

2π
Tr

[
Ŵ<

γ σ̂ ĜR − ŴR
γ σ̂

(
Ĝ< − i

π
P

∫
dω′ Ĝ

<(ω′)
ω′ − ω

)]
, (A15)

where ŴR
γ ≡ WR

μνγ , Ĝ< ≡ G<
μν , Ŵ<

γ ≡ W<
μνγ , and ĜR ≡ GR

μν . Using the cyclic properties of the trace and that (Ĝ<)† = −Ĝ<

and (iŴR
γ )† = iŴR

γ we recover the known result for charge current [17]

Jγ = eδμνJ
γ
μν = 2e

�
Re

∫
dω

2π
Tr

(
Ŵ<

γ ĜR − ŴR
γ Ĝ<

)
. (A16)

These general expressions for charge and spin current under voltage, temperature, or spin bias is the principal result of our work.
A similar expression was derived in Ref. [19] for spin-independent biasing.

APPENDIX B: LESSER GREEN’S FUNCTION

In order to determine the on-site lesser Green’s function, Ĝ< = ĜR̂<ĜA, out of equilibrium we use a generalized [11] Ng
ansatz [21]:

̂< = − 1
2 (Ŵ<

l + Ŵ<
r )

(
ŴR

l + ŴR
r

)−1 [
(ĜR)−1 − (ĜA)−1

]
. (B1)

The advantage of this approach is that we recover the exact expression for Ĝ< when either no bias is applied or there is no
interaction on the dot.

Although this does not simplify the general form of the current, considering only voltage and temperature biasing, from which
it follows Ŵ< = −2fγ (ω)ŴR , the lesser Green’s function simplifies to

Ĝ< = ĜR
(
flŴ

R
l + frŴ

R
r

) (
ŴR

l + ŴR
r

)−1 [
(ĜR)−1 − (ĜA)−1

]
ĜA (B2)

and the spin current takes the form

Jγ = −Re
∫

dω

2π
Tr

[
ŴR

γ σ̂ ĜR
(
flŴ

R
l + frŴ

R
r

) (
ŴR

l + ŴR
r

)−1 [
(ĜR)−1 − (ĜA)−1

]
ĜA

+ fγ ŴR
γ σ̂ (ĜR − ĜA) + fγ ŴR

γ σ̂ (ĜR + ĜA) − ŴR
γ σ̂

i

π
P

∫
dω′ Ĝ

<(ω′)
ω′ − ω

]
. (B3)

Using ĜR − ĜA = ĜR[(ĜA)−1 − (ĜR)−1]ĜA and inserting the identity 1 = (ŴR
l + ŴR

r )(ŴR
l + ŴR

r )−1, we have

Jγ = −Re
∫

dω

2π
(fγ̄ − fγ )Tr

[
ŴR

γ σ̂ ĜRŴR
γ̄

(
ŴR

l + ŴR
r

)−1 [
(ĜR)−1 − (ĜA)−1

]
ĜA

]

+ Re
∫

dω

2π
Tr

[
fγ ŴR

γ σ̂ (ĜR + ĜA) − ŴR
γ σ̂

i

π
P

∫
dω′ Ĝ

<(ω′)
ω′ − ω

]
, (B4)

wherein the spin current is clearly separated between equilibrium and nonequilibrium contributions.

APPENDIX C: ANDERSON GREEN’S FUNCTION

We calculate the time-ordered Green’s function of the dot

Gt
ij (t − t ′) = 〈T {di(t)d

†
j (t ′)}〉, (C1)

245427-11



SILAS HOFFMAN AND YAROSLAV TSERKOVNYAK PHYSICAL REVIEW B 91, 245427 (2015)

where T denotes time ordering of the operators and 〈· · ·〉 the thermal average of · · · . Using the fact that

[di,H ] = εidi + Udinī +
∑
σkγ

Viσkγ cσkγ , (C2)

where we have introduced ni = d
†
i di and ī = −i, we follow the equation-of-motion method [22] of determining the Green’s

function by taking the time derivative

i
d

dt
Gt

ij (t − t ′) = δ(t − t ′)δij + 〈T {[di,H ](t),d†
j (t ′)}〉 = δ(t − t ′)δij +

〈
T

{[
εidi + Udinī +

∑
σkγ

Viσkγ cσkγ

]
(t),d†

j (t ′)
}〉

= δ(t − t ′)δij + εiG
t
ij (t − t ′) + U
i +

∑
σkγ

Viσkγ Gt
σkγ,j (t − t ′), (C3)

where Gt
σkγ,j (t − t ′) = 〈T {cσkγ (t),d†

j (t ′)}〉 and 
i = 〈〈dinī,d
†
j 〉〉. We adopt the notation that 〈〈A,B〉〉 = 〈T {A(t),B(t ′)}〉. We

further differentiate Gt
σkγ,j (t − t ′),

i
d

dt
Gt

σkγ,j (t − t ′) = εσkγ Gt
σkγ,j (t − t ′) +

∑
i

V
†
σ ikγ Gt

ij (t − t ′) (C4)

or, after Fourier transforming,

(ω − εσkγ )Gt
σkγ,j (ω) =

∑
i

V
†
σ ikγ Gt

ij (ω), (C5)

where we have used the commutation relation [cσkγ ,H ] = εσkγ cσkγ + V
†
σσ ′kγ dσ ′ . Solving for the Green’s function

Gt
σkγ,j (ω) =

∑
i V

†
σ ikγ Gt

ij (ω)

ω − εσkγ

. (C6)

The equation of motion for 
i is

i
d

dt

i = δ(t − t ′)〈{dinī ,d

†
j }〉 + 〈〈[dinī ,H ],d†

j 〉〉. (C7)

Taking these (anti-)commutation relations gives

{dinī,d
†
j } = δijnī − δīj d

†
ī
di , [dinī,H ] = (εi + U )dinī +

∑
σkγ

(did
†
ī
Vīσ cσkγ − diV

†
σ ī

c
†
σkγ dī + Viσkγ cσkγ nī). (C8)

In order to time differentiate these new operators we will again need to commute them with the Hamiltonian:

[did
†
ī
cσkγ ,H ] = (εi − εī + εσkγ )did

†
ī
cσkγ + did

†
ī
dμV

†
σμkγ +

∑
μk′γ ′

(Viμk′γ ′cμk′γ ′d
†
ī
cσkγ − diV

†
μīk′γ ′c

†
μk′γ ′cσkγ ),

[dic
†
σkγ dī ,H ] = (εi + εī − εσkγ + U )dic

†
σkγ dī − didīVμσkγ d†

μ

∑
μk′γ ′

(diVīμcμk′γ ′c
†
σkγ + Viμk′γ ′cμk′γ ′dīc

†
σkγ ),

[cσkγ nī ,H ] = εσkγ cσkγ nī + nīV
†
σμkγ dμ +

∑
μk′γ ′

(d†
ī
Vīμk′γ ′cμk′γ ′cσkγ − V

†
μīk′γ ′c

†
μk′γ ′dīcσkγ ).

(C9)

Evaluating the anticommutator of these operators with d
†
j ,

{did
†
ī
cσkγ ,d

†
j } = δij d

†
ī
cσkγ , {dic

†
σkγ dī ,d

†
j } = δīj dic

†
σkγ + δij c

†
σkγ dī , {cσkγ nī ,d

†
j } = δīj cσkγ d

†
ī
. (C10)

Because a factor of U enters the equation of motion in the second term in Eq. (C9), it will not contribute to the equation of motion
for the full dot Green’s function when the on-site interaction is large in comparison to all other energy scales in the problem. The
time differentiation of the remaining operators’ respective Green’s functions is

(ω − εσkγ − εi + εī)

(1)
iσkγ = −δij 〈d†

ī
cσkγ 〉− V

†
σ īkγ


i +
∑

μk′γ ′ (Viμk′γ ′ 〈〈d†
ī
cμk′γ ′cσkγ ,d

†
j 〉〉+ V

†
μīk′γ ′ 〈〈dic

†
μk′γ ′cσkγ ,d

†
j 〉〉), (C11)

(ω − εσkγ )
(2)
īσ kγ

= − δīj 〈d†
ī
cσkγ 〉 + V

†
σ ikγ 
i +

∑
μk′γ ′

(Vīμk′γ ′ 〈〈d†
ī
cμk′γ ′cσkγ ,d

†
j 〉〉 + V

†
μīk′γ ′ 〈〈dīc

†
μk′γ ′cσkγ ,d

†
j 〉〉), (C12)
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where we have made use of (di)2 = 0 and defined 

(1)
iσkγ = 〈〈d†

ī
dicσkγ ,d

†
j 〉〉 and 


(2)
īσ kγ

= 〈〈nīcσkγ ,d
†
j 〉〉. After making the following

decoupling [22],

〈〈c†μk′γ ′cσk′γ ′di,d
†
j 〉〉 ≈ 〈c†μk′γ ′cσk′γ ′ 〉〈〈di,d

†
j 〉〉 − 〈c†μk′γ ′di〉〈〈cσk′γ ′ ,d

†
j 〉〉,

(C13)
〈〈d†

ī
cμk′γ ′cσk′γ ′ ,d

†
j 〉〉 ≈ 〈d†

ī
cμk′γ ′ 〉〈〈cσk′γ ′ ,d

†
j 〉〉 − 〈d†

ī
cσk′γ ′ 〉〈〈cμk′γ ′ ,d

†
j 〉〉,

and evaluating 〈c†μk′γ ′cσkγ 〉 = δμσ δkk′δγ γ ′fσγ (εσkγ ) and 〈d†
i cσkγ 〉 = 0, which ensures the onset of Kondo-like features, we obtain

[11,26]

(ω − εσkγ − εi + εī)〈〈did
†
ī
cσkγ ,d

†
j 〉〉 = V

†
σ īkγ

〈〈dinī ,d
†
j 〉〉 − V

†
σ īkγ

fσkγ 〈〈di,d
†
j 〉〉,

(ω − εσkγ )〈〈cσkγ nī ,d
†
j 〉〉 = V

†
σ ikγ 〈〈dinī ,d

†
j 〉〉 + V

†
σ īkγ

fσkγ 〈〈dī,d
†
j 〉〉.

(C14)

Plugging this back into the equation of motion for 
i ,

ω
i = δij 〈nī〉 − δīj 〈d†
ī
di〉 + (εi + U )
i +

∑
σkγ

Vīσkγ V
†
σ īkγ

[

i − fσγ (εσkγ )Gt

ij

]
ω − εσkγ − εi + εī

+
∑
σkγ

Viσkγ

[
V

†
σ ikγ 
i + fσγ (εσkγ )V †

σ īkγ
Gt

īj

]
ω − εσkγ

.

(C15)
Owing to the strength of the on-site interaction

U
i = δīj 〈d†
ī
di〉 − δij 〈nī〉 +

∑
σkγ

fσγ (εσkγ )Vīσkγ V
†
σ īkγ

ω − εσkγ − εi + εī

Gt
ij −

∑
σkγ

fσγ (εσkγ )Viσkγ V
†
σ īkγ

ω − εσkγ

Gt
īj

, (C16)

which, in turn, is used to solve the expression for the original Green’s function

(ω − εi)G
t
ij = δij + δīj 〈d†

ī
di〉 − δij 〈nī〉 +

∑
σ

(0,iσ + ′
iσ )Gt

σj , (C17)

where we have defined the noninteracting (tunneling) self-energy ̂0 and the Anderson dot self-energy ̂′ as

0,ij =
∑
σkγ

Viσkγ V
†
σjkγ

ω − εσkγ

, ′
ii =

∑
σkγ

fσγ (εσkγ )Vīσkγ V
†
σ īkγ

ω − εσkγ − εi + εī

, ′
iī

= −
∑
σkγ

fσγ (εσkγ )Viσkγ V
†
σ īkγ

ω − εσkγ

. (C18)

Equivalently, we may write this as (
ĝ−1

0 − ̂0 − ̂′)Ĝt = m̂, (C19)

where g0,ij = δij (ω − εi)−1 is the free Green’s function on the dot, Ĝt ≡ Gt
ij and mii = 1 − 〈nī〉 and miī = 〈d†

ī
di〉, which agrees

with Ref. [11]. We must self-consistently determine the occupation on the dot by numerically evaluating

〈ni〉 = Im
∫

dω

2π
G<

ii (ω), 〈d†
ī
di〉 = −i

∫
dω

2π
G<

iī
(ω). (C20)

To extract the retarded ĜR Green’s functions we analytically continue ω to the imaginary plane ω → ω + iη. The imaginary
part of ̂0 is equal to ŴR while the real part is

Re0,ij =
∑
σkγ

P
Viσkγ V

†
σjkγ

ω − εσkγ

=
∑

γ

WR
ijγ

iπ
ln

∣∣∣∣ω − We

ω + Wh

∣∣∣∣ , (C21)

where we have assumed Wh/e � μσγ . ̂′ has the form

∑
σkγ

fσkγ (εσkγ )Vīσkγ V
†
σkīγ

ω + iη − εσkγ − A
= −iπ

∑
σkγ

fσγ (εσkγ )Vīσkγ V
†
σ īkγ

[
δ(ω − εσkγ − A) + 1

iπ
P 1

ω − εσkγ − A

]
. (C22)

Defining the functions Gσγ (ω) = (1/iπ )P
∫

dω′fσγ (ω′)/(ω − ω′), we obtain

′
ii = i

2

∑
γ

{
[fiγ (ω − εi + εī) + Giγ (ω − εi + εī)]
īγ cos2 θγ

2
+ [fīγ (ω − εi + εī) + Gīγ (ω − εi + εī)]
iγ sin2 θγ

2

}
,

′
iī

= − i

4

∑
γ

{[f↑γ (ω) + G↑γ (ω)]
↑γ − [
f↓γ (ω) + G↓γ (ω)

]

↓γ )} sin θγ . (C23)
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In the zero temperature limit, these may be evaluated analytically,

Gσγ (ω) = P
∫ μσγ

−Wh

dω′

iπ

1

ω − ω′ = − 1

iπ
ln

∣∣∣∣ω − μσγ

ω + Wh

∣∣∣∣ , (C24)

which immediately gives the locations of the Kondo resonances at μσγ .
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[10] R. López and D. Sánchez, Phys. Rev. Lett. 90, 116602 (2003);
J. Martinek, Y. Utsumi, H. Imamura, J. Barnaś, S. Maekawa, J.
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